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Abstract

Human computation or crowdsourcing involves joint
inference of the ground-truth-answers and the worker-
abilities by optimizing an objective function, for in-
stance, by maximizing the data likelihood based on an
assumed underlying model. A variety of methods have
been proposed in the literature to address this inference
problem. As far as we know, none of the objective func-
tions in existing methods is convex. In machine learn-
ing and applied statistics, a convex function such as the
objective function of support vector machines (SVMs)
is generally preferred, since it can leverage the high-
performance algorithms and rigorous guarantees estab-
lished in the extensive literature on convex optimiza-
tion. One may thus wonder if there exists a meaningful
convex objective function for the inference problem in
human computation. In this paper, we investigate this
convexity issue for human computation. We take an ax-
iomatic approach by formulating a set of axioms that
impose two mild and natural assumptions on the objec-
tive function for the inference. Under these axioms, we
show that it is unfortunately impossible to ensure con-
vexity of the inference problem. On the other hand, we
show that interestingly, in the absence of a requirement
to model “spammers”, one can construct reasonable ob-
jective functions for crowdsourcing that guarantee con-
vex inference.

1 Introduction
Human computation (or crowdsourcing) involves humans
performing tasks which are generally difficult for comput-
ers to perform. Since humans may not have perfect abili-
ties and sometimes may not even have good intentions, ma-
chine learning and statistical inference algorithms are typi-
cally employed to post-process the data obtained from the
human workers in order to infer the true answers (Dawid
and Skene 1979; Whitehill et al. 2009; Welinder et al. 2010;
Raykar et al. 2010; Karger, Oh, and Shah 2011; Wauthier
and Jordan 2011; McCreadie, Macdonald, and Ounis 2011;
Luon, Aperjis, and Huberman 2012; Zhou et al. 2012;
Liu, Peng, and Ihler 2012; Shah et al. 2013; Bachrach et al.
2012; Kamar, Hacker, and Horvitz 2012; Vempaty, Varsh-
ney, and Varshney 2013; Salek, Bachrach, and Key 2013;
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Does the picture show a Bengal tiger ? 

Yes 
No 

Figure 1: An example of a binary-choice task.

Shah et al. 2014; Matsui et al. 2013; Piech et al. 2013;
Chen et al. 2013). These algorithms infer the true solu-
tions to the tasks and the worker abilities by minimizing
some carefully designed function that captures these param-
eters and their dependence on the observed responses. We
shall call this function the “objective function”. For exam-
ple, it is typical to assume a generative model and take a
maximum likelihood estimation. In such a case, the ob-
jective function is the negative-likelihood or the negative-
log-likelihood of the data obtained from the workers, and
Expectation-Maximization (EM) style optimization proce-
dures are often employed to minimize this function (Dawid
and Skene 1979; Whitehill et al. 2009; Welinder et al. 2010;
Raykar et al. 2010; Liu, Peng, and Ihler 2012; Zhou et al.
2012; Chen et al. 2013).

To the best our knowledge, none of the objective functions
in the literature for the inference problem in human compu-
tation is convex, and there are no generic guarantees avail-
able regarding obtaining a global optimum. Inspired by the
extremely successful machine learning algorithms which are
developed with convex objective functions (such as support
vector machines (SVMs) (Vapnik 1998)), we investigate if
there exists a meaningful convex objective function for the
inference problem in human computation. Convex func-
tions have appealing properties, and convex problems have
been studied extensively in the literature, with high perfor-
mance algorithms and rigorous guarantees available for very
generic settings. It is thus of interest to investigate ‘reason-
able’ models for human computation that ensure convexity
in inference, thereby providing the ability to take advantage
of this vast body of literature.

In this paper, we investigate the problem of convexity in
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human computation via an axiomatic approach. Our results
show that unfortunately, under two mild and natural assump-
tions in crowdsourcing, no model can guarantee convexity
in the inference procedure. We show subsequently that all
known models for crowdsourcing satisfy the two proposed
mild axioms. The takeaway from this result is that it is futile
to construct human-computation models, for present setups,
that attempt to gain tractability by ensuring convexity. Fi-
nally, we show that interestingly, if one can forgo the explicit
modelling of “spammers”, it is indeed possible to construct
‘reasonable’ models for human computation that guarantee
convexity in the objective for inference.

2 Problem Setting
Consider a binary-choice setting, where the worker must se-
lect from two given options for every question (e.g., Fig-
ure 1).1 Suppose there are k workers, each of whom is
assumed to have some latent ‘ability’. Denote the latent
ability of worker i ∈ [k] as wi ∈ [Wmin,Wmax] for some
Wmin < Wmax ∈ R, with a higher value of wi repre-
senting a more able worker.2 We will use the value “0”
to represent the ability of a spammer and assume that 0 ∈
[Wmin,Wmax). A spammer is a worker who answers ran-
domly with no regard to the question being asked. Spam-
mers are known to exist in plentiful numbers among the
worker pools on crowdsourcing platforms (Bohannon 2011;
Kazai et al. 2011; Vuurens, de Vries, and Eickhoff 2011;
Wais et al. 2010). Throughout the paper, we will restrict our
attention to the (convex) subset [0,Wmax] of the parameter
space of the worker ability, since a function that is not con-
vex on this set [0,Wmax] will not be convex on the superset
[Wmin,Wmax] either. For convenience of notation, we de-
fine w := [w1 · · ·wk]T ∈ [0,Wmax]

k.
There are d questions, and each question has two choices,

say, “0” and “1”. This paper looks at procedures to infer,
via convex optimization, the true answers x∗ ∈ {0, 1}d to
these d questions and the worker abilities w ∈ [0,Wmax]

k

from the responses received from the workers. However,
an optimization problem over a discrete set is non-convex
by definition. A convex optimization based procedure will
thus relax the discrete domain of x∗ to a continuous set.
To this end, we associate every question j ∈ [d] to a pa-
rameter xj ∈ [0, 1]. The inference procedure operates on
x := [x1 · · ·xd]T ∈ [0, 1]d, and the inferred values may be
subsequently quantized to obtain a solution in the discrete
set {0, 1}d.

Every question is asked to one or more of the k workers,
and every worker is asked one or more of the d questions.
We shall represent the workers’ responses as a {0, 1,∞}-
valued matrix Y of size (k × d). For every i ∈ [k] and

1Results on ‘impossibility of convexity’ for the binary-choice
setting extend to more general settings (such as multiple-choice
with more than two choices) by restricting attention to only two
choices.

2We adopt the standard notation of representing the set
{1, 2, . . . , α} as [α] for any positive integer α, and representing
the interval of the real line between (and including) β1 and β2 as
[β1, β2] for any two real numbers β1 < β2.

j ∈ [d], we let Yi,j denote the (i, j)th element of the matrix
Y . The value of Yi,j is set as ∞ if worker i was not asked
question j, and is set as worker i’s response to question j
otherwise. The answers to the questions and the abilities
of the workers are now inferred by minimizing some rea-
sonable objective function L of x and w given the worker-
responses Y :

(x̂, ŵ) = argmin
x∈[0,1]d,w∈[0,Wmax]k

L (x,w;Y ) .

In the sequel, we will discuss the possible convexity of this
optimization program under certain proposed axioms, and
show that this optimization cannot be convex even after re-
laxing the domain of the answers from {0, 1}d to [0, 1]d.

Upon completion of the inference procedure, an addi-
tional rounding step is often executed to convert x̂ ∈ [0, 1]d

to a discrete space x̂∗ ∈ {0, 1}d. This rounding may be per-
formed via a deterministic approach, for instance, by quan-
tizing xj to 1 iff x̂j > 0.5, or via a probabilistic approach,
for instance, by quantizing x̂j to 1 with a probability x̂j , for
every question j ∈ [d]. Many a times, however, the inferred
vector x̂ is often left in the continuous set [0, 1]d as a “soft”
output. In either case, the value |x̂j − 0.5| is interpreted as
the “confidence” associated with the inference of the answer
to the jth question, with a higher value of |x̂j − 0.5| imply-
ing a higher confidence in the answer inferred for question
j. A larger value of x̂j indicates a greater confidence that
x∗j is 1. A higher value of ŵi for any i ∈ [k] is interpreted
as a greater belief in the ability of worker i.

3 Axiomatization of Objective Function
We take an axiomatic approach towards the design of the
objective function L, and formulate two weak and natural
axioms that the objective function L must satisfy. Recall
that the inference procedure minimizes the objective func-
tion L, and hence the objective function should have a lower
value when its arguments form a better fit to the observed
data. While the axioms are stated in a general manner be-
low, for an intuitive understanding one may think of a max-
imum likelihood approach with L(x,w;Y ) as the negative
log likelihood of the observed data Y conditioned on (x,w).

First consider the case when there is only d = 1 question
and k = 1 worker. The vectors x and w can be represented
by scalars x ∈ [0, 1] and w ∈ [0,Wmax] respectively, and
the matrix Y can be represented as a scalar in {0, 1}.
Axiom 1 (Distinguishing different worker abilities).
There exists ε > 0 such that
L(x,w; 1) > L(x, 0; 1) ∀(x,w) ∈ (0, ε) × (0, ε) and
L(x,w; 1) < L(x, 0; 1) ∀(x,w) ∈ (1− ε, 1)× (0, ε).

Informally, Axiom 1 says that if the worker reports ‘1’
when x is also close to 1, then the worker is likely to be more
able. On the other hand, if the worker reports the opposite
answer, then the worker is likely to be less able.

Axiom 2 (Modeling spammers). The objective function
L(x,w; 1) is independent of x when w = 0.

A spammer is a worker who answers randomly, with-
out any regard to the question being posed. Spammers are
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highly abundant in today’s crowdsourcing systems, and pose
a major challenge to the data collection as well as the infer-
ence procedures. Axiom 2 necessitates an explicit incorpo-
ration of a spammer into the parameter space.

One may also define analogous axioms for the function
L(·, ·; 0), but for the purposes of this paper, it will suffice
to work with solely the function L(·, ·; 1). Observe that we
have not made any other assumptions on the function L such
as continuity, differentiability, or Lipchitzness.

In the next section, we will show that no objective func-
tion L for inference in human computation that satisfies the
two simple requirements identified above can be convex.
We will also show that all existing inference techniques for
crowdsourcing (that we are aware of) fall into this class. We
will also subsequently demonstrate, by means of a construc-
tive example, the interesting fact that in the absence of the
requirement of modelling a spammer, the objective function
can indeed be convex.

The three axioms listed above for the setting of d = k = 1
are translated to the general setting of d ≥ 1 questions and
k ≥ 1 workers in the following manner. Consider the convex
subset of the domain of parameters x and w that is given by
x = x1 and w = w1, where x ∈ [0, 1], w ∈ [0,Wmax].
Furthermore, suppose the observed data is Yi,j = 1 for every
(i, j) for which worker i is asked question j. In this case the
objective function reduces to being a function of only the
scalars x and w, as L(x,w; 1), and we can now call upon the
two axioms listed above. Now, if an optimization problem
is non-convex over a convex subset of the parameter space,
then it is non-convex over the entire parameter space as well.
Thus, it suffices to show non-convexity for the case of d =
k = 1 and the result for d ≥ 1, k ≥ 1 follows.

4 Impossibility of Convexity
Theorem 1 below proves the impossibility of models guar-
anteeing convex inference in crowdsourcing.

Theorem 1. No function L satisfying Axiom 1 and Axiom 2
can be convex.

Non-convex problems are often converted to convex prob-
lems via transformations of the variables involved. Our re-
sult however says that for any such transformation of the
variables at hand, as long as the semantic meanings of the
variables are retained, it is reasonable to expect the two
aforementioned axioms to be satisfied, rendering the result
of Theorem 1 applicable.

5 Some Examples of Existing Models
To the best of our knowledge, all existing models for in-
ference in crowdsourcing tasks satisfy our two axioms. We
illustrate the same with a few examples in this section.

While the two axioms of Section 3 were constructed to
identify the precise cause of non-convexity, in this section,
we propose three general properties that we would like any
objective function for crowdsourcing to satisfy. As we will
see later, satisfying these three properties automatically im-
plies adherence to the two axioms. We will also show that

all existing models satisfy these three properties. As be-
fore, while the properties are defined for generic human-
computation models, for an easier understanding one may
think of the objective function L as the negative log likeli-
hood function.
P1 (Monotonicity in accuracy of the answer). L(x,w; 1)
is non-increasing in x.

Property P1 says that the likelihood does not decrease if
x is brought closer to the observed response “1 ” (recall that
we are considering only the interval [0,Wmax] for w, where
the latent ability of the worker is no worse than randomly
answering).
P 2 (Monotonicity in worker ability). There exists some
non-decreasing function g : [0,Wmax) → [0.5, 1) such that
L(x,w; 1) increases with w when x < g(w) and L(x,w; 1)
decreases with an increase in w when x > g(w).

Recall that for an inferred answer x̂, the value |x̂ −
0.5| represents the confidence associated to the inference.
A higher confidence in the inference directly relates to a
greater belief in the ability of a worker. Property P2 for-
malizes this relation, with function g(w) capturing the con-
fidence associated to the work of a worker with ability w.
The likelihood is thus higher when the confidence associ-
ated to the work of the worker is closer to the corresponding
confidence in the inferred answer.
P 3 (Modeling spammers). The objective function
L(x,w; 1) is independent of x when w = 0.

Property P3 is identical to Axiom 2.
Proposition 2. Any objective function L that satisfies Prop-
erty P2 also satisfies Axiom 1.

We now present examples of existing models for crowd-
sourcing and show that these models indeed satisfy the three
properties listed above (and therefore the two axioms de-
fined in Section 3). Throughout this section, we will let n
denote the number of responses received from the workers,
i.e, the number of {0, 1}-valued entries in the response ma-
trix Y .
Example 1 (Dawid-Skene model).
Model: The Dawid-Skene model is one of the most pop-
ular models for crowdsourcing (Dawid and Skene 1979;
Ipeirotis, Provost, and Wang 2010; Gao and Zhou 2013;
Zhang et al. 2014; Karger, Oh, and Shah 2011; Dalvi et al.
2013; Ghosh, Kale, and McAfee 2011). The model assumes
that the ability of a worker represents the probability of her
correctly answering any individual question, i.e., if worker
i ∈ [k] is asked question j ∈ [d], then she will give the cor-
rect answer with a probability pi and an incorrect answer
with probability (1 − pi), for some parameter pi ∈ [0, 1]
whose value is unknown. The response of any worker to any
question is independent of all else. In order to ensure that
the model is identifiable, it is typically also assumed that
pi ∈ [0.5, 1] ∀i ∈ [k], or 1

k

∑k
i=1 pi ≥ 0.5, or simply p1 ≥

0.5. We shall restrict our attention to pi ∈ [0.5, 1] ∀ i ∈ [k].
Further, we will work with a shifted and scaled version of
pi’s by defining wi = 2pi− 1 ∀ i ∈ [k]. Under this transfor-
mation, we have Wmin = 0 and Wmax = 1.
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Inference: Consider inferring x and w via maximum like-
lihood estimation. Observe that the likelihood of observa-
tion Y is ∏

(i,j):Yi,j 6=∞

(
1 + wi

2

)Yi,jxj+(1−Yi,j)(1−xj)

×
(
1− wi

2

)Yi,j(1−xj)+(1−Yi,j)xj

.

The negative log-likelihood is thus given by

L(x,w;Y ):=−
∑
(i,j):
Yi,j 6=∞

(
(Yi,jxj+(1−Yi,j)(1−xj))log

(
1+wi
2

)

+(Yi,j(1−xj)+(1−Yi,j)xj)log
(
1−wi
2

))
,

and this function is minimized over (x,w)∈[0,1]d+k.
Consider the following subspace of the arguments: x=x1

and w=w1 for some x∈[0,1] and w∈[0,1]. Further, sup-
pose Yi,j=1 for every (i,j) for which worker i was asked
question j. Under this restriction, the objective function re-
duces to

L(x,w;1)=−n
(
xlog

(
1+w

2

)
+(1−x)log

(
1−w
2

))
(1)

Properties: Let us understand what the three properties
listed earlier mean in this context. Observe that

L(x, 0; 1) = −n(x log 0.5 + (1− x) log 0.5)
= −n log 0.5,

and hence L(x,w; 1) is independent of x when w = 0. Thus
w = 0 models a spammer, and the functionL obeys Property
P3. For Property P1, observe that when w ∈ [0, 1],

∂

∂x
L(x,w; 1) = −n

(
log

(
1 + w

2

)
− log

(
1− w
2

))
≤ 0.

Thus Property P1 is satisfied. Finally,

∂

∂w
L(x,w; 1) = −n

(
x

1 + w
− 1− x

1− w

)
,

which is positive when 2x− 1 < w and negative when 2x−
1 > w. Property P2 is thus satisfied with g(w) = 1+w

2 .
The objective function (1) is plotted in Figure 2.

Example 2 (Two-coin Dawid-Skene model).
The two-coin model associates the ability of every worker
i ∈ [k] to two latent variables pi,0 ∈ [0.5, 1] and pi,1 ∈
[0.5, 1]. Under the two-coin model, the probability with
which a worker answers a question correctly depends on the
true answer to that question: if the true answer to a question
is x∗ ∈ {0, 1} then the worker (correctly) provides x∗ as
the answer with probability pi,x∗ and (incorrectly) provides
(1−x∗) as the answer otherwise, independent of all else. In
order to connect to our theory, we simply restrict our atten-
tion to a (convex) subset of the parameters {pi,0, pi,1}ki=1
obtained by setting pi,0 = pi,1 ∀ i ∈ [k]. The resulting
model is identical to the one-coin model discussed earlier.

Figure 2: The objective function for maximum-likelihood
inference under the Dawid-Skene model.

Example 3 (Additive Noise).
Model: The additive noise model assumes that when worker
i ∈ [k] is asked question j ∈ [d], the response Yi,j of the
worker is given by

Yi,j = 1{wi(xj − 0.5) + εi,j > 0},

where {εi,j}i∈[d],j∈[k] is a set of i.i.d. random variables with
some (known) c.d.f. F . The function F is non-constant in
the domain of interest [−0.5Wmax, 0.5Wmax]. The response
is assumed to be independent of all other questions and all
other workers. A common choice for F is the c.d.f. of the
Gaussian distribution (Piech et al. 2013; Thurstone 1927;
Welinder et al. 2010).

Inference: The inference is usually performed by minimiz-
ing the negative log likelihood of the observed data Y :

argmin
x,w

−
∑

(i,j):Yi,j 6=∞

(Yi,j log(1− F (−(xj − 0.5)wi))

+(1− Yi,j) log(F (−(xj − 0.5)wi)) .

Properties: Let us now relate this model to the three prop-
erties enumerated earlier. Let us restrict our attention to
the (convex) subset of the parameters where x = x1 and
w = w1 for some x ∈ [0, 1] and w ∈ [0,Wmax]. Sup-
pose Yi,j = 1 for every (i, j) for which worker i was asked
question j. The objective function then reduces to

L(x,w; 1) = −n log(1− F (−(x− 0.5)w)).

One can verify that this function is non-increasing in x
(whenever w ≥ 0), thereby satisfying Property P1. Further-
more, setting g(w) = 0.5 satisfies Property P2. A spammer
is modeled by the parameter value w = 0, in which case, the
function L ceases to be dependent on x.
Example 4 (Minimax Entropy Model).
Model: The minimax entropy model (Zhou et al. 2012)
hypothesizes that when worker i ∈ [k] answers question
j ∈ [d], she provides “1” as the answer with a probabil-
ity πi,j and “0” otherwise, independent of all else, for some
unknown value πi,j ∈ [0, 1]. Under the ‘minimax entropy
principle’ proposed therein, the set {πi,j}i∈[k],j∈[d] has the
maximum entropy under the constraints imposed by the set
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of true answers and the observed data, and the true answers
minimize this value of maximum entropy:

min
x

max
{πi,j}i∈[k],j∈[d]

−
k∑
i=1

d∑
j=1

πi,j lnπi,j

s.t.
k∑
i=1

πi,j =
k∑
i=1

Yi,j ∀j ∈ [k]

d∑
j=1

xjπi,j =
d∑
j=1

xjYi,j ∀i ∈ [k]

d∑
j=1

(1− xj)πi,j =
d∑
j=1

(1− xj)Yi,j ∀i ∈ [k]

0 ≤ πi,j , xj ≤ 1 ∀i ∈ [k], j ∈ [d].

Inference: The authors show that the values πi,j must nec-
essarily be of the form

πi,j=
exp((1−xj)(τj,1+σi,1,0)+xj(τj,1+σi,1,1))∑1
`=0exp((1−xj)(τj,`+σi,`,0)+xj(τj,`+σi,`,1))

for some parameters {σi,`1,`2}i∈[k],`1∈{0,1},`2∈{0,1} and
{τj,`}j∈[d],`∈{0,1}. The authors then propose minimization
(with respect to variables {xi, σi,`1,`2 , τj,`}) of the dual of
the aforementioned program, which they derive to be of the
form

−
∑
(i,j):
Yi,j 6=∞

exp
(
(1−xj)(τj,Yi,j

+σi,Yi,j ,0)+xj(τj,Yi,j
+σi,Yi,j ,1)

)∑1
`=0exp((1−xj)(τj,`+σi,`,0)+xj(τj,`+σi,`,1))

Properties: Consider the following (convex) subset of the
parameter space: τj,` = 0 ∀j ∈ [d], ` ∈ {0, 1}, σi,0,0 =
σi,1,1 = 1−σi,1,0 = 1−σi,0,1 := 0.5+wi ∈ [0, 1] ∀i ∈ [k].
The minimization program can now be rewritten as

argmin
x,w∈[0,1]d+k

∑
L(xi, wj ;Yi,j)

where

L(x,w; 1) :=

e(1−x)(0.5−w)+x(0.5+w)

e(1−x)(0.5−w)+x(0.5+w) + ex(0.5−w)+(1−x)(0.5+w)
,

and L(x,w; 0) = L(1 − x,w; 1). With some algebraic ma-
nipulations, one can verify that this function L(·, ·; 1) satis-
fies Property P1, Property P2 (with g(w) = 0.5) and Prop-
erty P3 (with w = 0 representing a spammer).
Example 5 (GLAD model).
Model and inference: The GLAD model was introduced
in (Whitehill et al. 2009). We will restrict attention to the
subspace of the parameter set which has, in the notation
of (Whitehill et al. 2009), βj = 0 ∀ j. Using the notation
of the present paper for the rest of the parameters, the ob-
jective function (the negative log likelihood) is

L(x,w; 1) = nx log
(
1 + e−w

)
+ n(1− x) log (1 + ew)

Figure 3: An objective function that satisfies properties P1
and P2, is convex, but does not incorporate the modeling of
a spammer. This function is defined in (2).

under the convex subset x = x1 and w = w1 of the param-
eters, wth x ∈ [0, 1], w ∈ [0, 1].

Properties: The derivative of L(x,w; 1) with respect to
x is non-positive (for w ≥ 0), thus satisfying Property
P1. One can also verify that Property P2 is satisfied with
g(w) = 1

1+e−w . Finally, we have L(x, 0; 1) = n log 2,
thereby satisfying Property P3.

6 If Not Modelling Spammers
We now discuss the role of modeling a spammer, i.e., Ax-
iom 2. We show that ignoring this axiom indeed allows for
convex objective functions for crowdsourcing, not only sat-
isfying Axiom 1, but also satisfying the stronger properties
P1 and P2.
Theorem 3. Let Wmin = 0 and Wmax = 1. The function
L : [0, 1]× [0, 1]→ R defined as

L(x,w; 1) =

{
−w − x− 1 if w ≤ 2x− 1

w − 5x+ 1 if w ≥ 2x− 1
(2)

satisfies properties P1 and P2 (and hence Axiom 1) and is
(jointly) convex in its two arguments.

For the general setting of multiple workers and multiple
questions, letting

L(x,w; 0) = L(1− x,w; 1),
and

L(x,w;Y ) =
∑

(i,j):Yi,j 6=∞

L(xi, wj ;Yij)

ensures that the function L(·, ·;Y ) satisfies Axiom 1 and
is convex in its arguments (x,w). The objective function
L(·, ·; 1) constructed in Theorem 3 is plotted in Figure 3.

Note that we do not intend to claim the proposed func-
tion (2) as a “good” objective function to use for crowd-
sourcing. Instead, the takeaway from this section is that if
one forgoes the inclusion of spammers in the objective, then
one may indeed be able to design a crowdsourcing model
that is reasonable and permits convex inference.
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7 Discussion
It is important to be aware of the limitations of the frame-
work of this paper. Throughout the paper we assumed no
prior knowledge or complexity controls on the parameter
space. One may alternatively consider the inference prob-
lem in a Bayesian setting with non-uniform priors, or im-
pose some convex regularization. In fact, if the regularizer
is strictly convex, then giving it a sufficiently large weight
can make the objective function convex, albeit perhaps at the
expense of the model not capturing certain essential features
of the problem. However, as long as the objective function
continues to satisfy the two axioms presented here, the con-
clusions drawn in this paper continue to apply.

While convexity is certainly desirable, absence of con-
vexity certainly does not mean the complete absence of
guarantees; indeed, there is a line of recent works (Loh
and Wainwright 2013; Netrapalli, Jain, and Sanghavi 2013;
Zhang et al. 2014) which provide guarantees for non-convex
problems as well. In particular, although existing models
for human computation are not convex, there exist theoreti-
cal guarantees on inference under the popular Dawid-Skene
model to a certain extent (Ghosh, Kale, and McAfee 2011;
Karger, Oh, and Shah 2011; Dalvi et al. 2013; Gao and Zhou
2013; Zhang et al. 2014). For instance, (Zhang et al. 2014)
show that the EM algorithm for the Dawid-Skene model can
achieve a minimax rate up to a logarithmic factor when it
is appropriately initialized by spectral methods. However,
these results need certain conditions which may not hold in
real scenarios. Moreover, algorithms that are minimax op-
timal may not always work well in practice, for instance,
see the experimental results in (Liu, Peng, and Ihler 2012).
Most importantly, guarantees for non-convex problems are
constructed to-date on a case-by-case basis (for example, all
known theoretical guarantees for crowdsourcing are for the
Dawid-Skene model alone). These guarantees do not allow
for a convenient application of the theory to any new model.
On the other hand, although the theory of convex optimiza-
tion is highly generic and extensive, the results of this paper
imply that unfortunately one cannot readily exploit this the-
ory in the context of human computation.

This paper also shows that a willingness to forgo the
explicit incorporation of spammers into the crowdsourc-
ing model indeed allows for reasonable objective functions
guaranteeing convex inference. Successful deterrence of
spammers in crowdsourcing systems, for instance, by de-
signing suitable reward mechanisms, may thus expand the
scope of model-design for human computation. In conclu-
sion, we would like to enumerate, partially in jest, the prob-
lems resulting from spammers in crowdsourcing systems:
(a) low-quality work, (b) depletion of the monetary budget,
and now, (c) prevention of models guaranteeing convex in-
ference.

Appendix: Proofs
Proof of Theorem 1: The proof employs a contradiction-
based argument. Suppose there exists some function
L(·, ·; 1) that satisfies the two axioms and is convex in its
two arguments in the set [0, 1] × [0,Wmax]. Without loss

of generality assume ε ∈ (0,min{0.5,Wmax}). Axiom 1
mandates

L(ε− ε2/2, ε2/2; 1) > L(ε− ε2/2, 0; 1) and (3)
L(1− ε/2, ε/2; 1) < L(1− ε/2, 0; 1). (4)

The assumed convexity of function L implies

(1−ε)L(0,0;1)+εL(1−ε/2,ε/2;1)≥L(ε−ε2/2,ε2/2;1).

Substituting (3) and (4) in this inequality gives

(1− ε)L(0, 0; 1) + εL(1− ε/2, 0; 1) > L(ε− ε2/2, 0; 1).

Now, calling upon Axiom 2 gives

(1− ε)L(0, 0; 1) + εL(0, 0; 1) > L(0, 0; 1),

yielding the desired contradiction.

Proof of Proposition 2: Pick a value δ arbitrarily in
(0,min{1,Wmax}/2). Set

ε = min{δ, 1− g(δ)}.

Observe that due to Property P2, ∀ x < 0.5 (which includes
all x < ε), L(x,w; 1) increases with an increase in w, and
hence L(x,w; 1) > L(x, 0; 1) when w > 0. Also, for our
chosen ε, Property P2 implies that for any x ∈ (1− ε, 1) and
w < ε, the function L(x,w; 1) decreases with an increase
in w. Thus we have L(x,w; 1) < L(x, 0; 1) ∀ (x,w) ∈
(1− ε, 1)× (0, ε). Axiom 1 is thus satisfied.

Proof of Theorem 3: Let us first verify that the proposed
function L(·, ·; 1) satisfies the two properties. First, observe
from the definition of L in (2) that L is always (strictly) de-
creasing in its first argument, and hence satisfies Property
P1. Towards Property P2, set

g(w) = (1 + w)/2.

By definition, L(x,w; 1) (strictly) decreases with an in-
crease in w when x > g(w), and (strictly) increases with
an increase in w when x < g(w). Proposition 2 now guar-
antees that the function also satisfies Axiom 1.

Let us now investigate the convexity of this function.
Consider two hyperplanes H0 and H1 defined as

H0(x,w) = −w − x− 1

H1(x,w) = w − 5x+ 1.

Observe that for any (x,w),

H0(x,w)−H1(x,w) = 2(−w + 2x− 1).

Thus, H0(x,w) ≥ H1(x,w) if x ≥ (1 + w)/2 and
H0(x,w) ≤ H1(x,w) if x ≤ (1 + w)/2. It follows that

L(x,w; 1) = max{H0(x,w), H1(x,w)}

meaning that L is the maximum of two linear functions.
Hence L is convex.
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