
CrowdWON: A Modelling Language for
Crowd Processes Based on Workflow Nets

David Sánchez-Charles and Victor Muntés-Mulero
CA Labs, CA Technologies, Barcelona (Spain).
{David.Sanchez, Victor.Muntes}@ca.com

Marc Solé
Universitat Politècnica de Catalunya -

BarcelonaTech,
Barcelona (Spain).
msole@ac.upc.edu

Jordi Nin
Barcelona Supercomputing Center (BSC),

Universitat Politècnica de Catalunya - BarcelonaTech,
Barcelona (Spain).
{nin@ac.upc.edu

Abstract

Although crowdsourcing has been proven efficient as a
mechanism to solve independent tasks for on-line pro-
duction, it is still unclear how to define and manage
workflows in complex tasks that require the partici-
pation and coordination of different workers. Despite
the existence of different frameworks to define work-
flows, we still lack a commonly accepted solution that is
able to describe the most common workflows in current
and future platforms. In this paper, we propose Crowd-
WON, a new graphical framework to describe and mon-
itor crowd processes, the proposed language is able to
represent the workflow of most well-known existing ap-
plications, extend previous modelling frameworks, and
assist in the future generation of crowdsourcing plat-
forms. Beyond previous proposals, CrowdWON allows
for the formal definition of adaptative workflows, that
depend on the skills of the crowd workers and/or pro-
cess deadlines. CrowdWON also allows expressing con-
straints on workers based on previous individual contri-
butions. Finally, we show how our proposal can be used
to describe well known crowdsourcing workflows.

1 Introduction
According to massolution (Massolution 2013), there was a
continuous growth of crowd-based companies from 2009
to 2012. Analogously, the crowdfunding market has also
grown significantly (Thorpe 2013). In general, trends seem
to indicate that industrial interest in crowdsourcing will con-
tinue increasing in the near future. Although business pro-
cesses may require to solve complex tasks, crowdsourcing is
mainly used to solve independent tasks. Previous work such
as (Bernstein et al. 2010) shows that finding the proper com-
bination of tasks to solve a complex problem using crowd-
sourcing is not straightforward. In fact, designing proper
workflows is one of the major issues in crowdsourcing ac-
cording to employees of the crowd-based company Crowd-
Flower1 (Kittur et al. 2012). Although some previous works

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1http://www.crowdflower.com

propose mechanisms to express collaboration patterns in a
visual way, their expressive power is still not sufficient to
describe the variety of current crowdsourcing processes. Just
as an example, none of the visual workflow languages used
for crowdsourcing allow users to define the complete work-
flow behind a continuously open competition such as those
in Threadless2 and Innocentive3, in an easy way.

Recent research (Sun et al. 2014) shows the interest of in-
dustry on increasing the participation of in-house workers in
crowdsourcing processes. In many of these applications, re-
questers need to express restrictions on the characteristics of
individual workers. Unfortunately, previous workflow lan-
guages used in crowdsourcing cannot express usual rules on
workers such as allowing to solve a task to only those in-
dividuals who contributed in a previous task of a process.
Besides, processes in crowdsourcing may change dynam-
ically depending on worker skillsets or deadline. Authors
in (Kulkarni, Can, and Hartmann 2012), discuss the need
for continuously adapting workflows depending on the con-
text. Another important concern is compliance with dead-
lines (van der Aalst, Rosemann, and Dumas 2007) (Mason
and Watts 2009). To our knowledge, none of the workflow
languages for crowdsourcing presented in the literature al-
lows for expressing these usual requirements accurately.

In this paper, we define CrowdWON, a graphical mod-
elling tool suitable for describing crowdsourcing processes
using petri net extensions. Our main contributions are:

• We propose a flexible language that allows defining work-
flows for a large variety of scenarios, including open com-
petitions.

• We propose the first graphical language for crowdsourc-
ing platforms able to express sophisticated restrictions on
the workers participating in a task.

• We propose a language that allows to define dynamic
workflows that adapt to the status of the process; in par-
ticular, it adapts to deadlines and worker profiles.

Our modelling language makes it easier to define busi-

2http://www.threadless.com
3http://www.innocentive.com

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

1284



XOR

Post a Job Position

Worker claims task

Remove Job Position XOR

Worker cancelled task

Task submission

Figure 1: Description of the execution of a task in a generic
crowdsourcing platform using an EPC diagram.

ness processes in crowdsourcing. Thanks to these proposal
we can easily visualize and improve the collaboration be-
tween individuals in the crowd, computers and companies.
Our adaptative flows make it possible to design collabora-
tion patterns that allow to react when the performance of the
process is below expectations.

In Section 2, we review previous contributions in the
crowdsourcing context and existing modelling frameworks.
The definition of our modelling language can be found in
Section 3. Then, in Section 4 we propose a mechanism for
describing changes in the flow triggered by deadline con-
straints. In Section 5, we describe two examples of actual
crowdsourcing processes using CrowdWON. Finally in Sec-
tion 6, we conclude and set some guidelines for future im-
provements of CrowdWON.

2 Previous Work
Despite the increasing popularity of crowdsourcing, the
number of specialized process-modelling frameworks pro-
posed in the literature is still limited. With TurKit (Little et
al. 2010), anyone is able to describe the iterations of simple
tasks in crowdsourcing. Jabberwocky (Ahmad et al. 2011)
focuses on the reusability of sequential processes, but its ap-
plication to iterative processes is not clear. In Turkomatic
(Kulkarni, Can, and Hartmann 2012), individuals collabo-
rate in the design of the process and contribute, through
refining the textual description of tasks, to its resolution.
CrowdWeaver (Kittur et al. 2012) is the first graphical mod-
elling framework for workflow definition and management.
With this tool, individuals can design a crowdsourcing pro-
cess by combining human and predefined computer tasks.

In the aforementioned modelling frameworks, tasks and
processes are completed after a known number of individu-
als contribute to them. However, using these previous pro-
posals, it is not straightforward to represent other scenarios,
such as for instance, crowdsourced open competitions, in
which the end of the process is defined by a deadline. Dead-
line management are usually based on simple mechanisms
such as notifications to the process manager, so that she can
manually adjust the workflow (e.g. increasing the financial
reward in order to reduce the time-to-completion of tasks
(Mason and Watts 2009)). Task routing techniques (Hassan,
O’Riain, and Curry 2013) showed that tasks can be adapted

to the profile of crowd workers. However, none of these
previous proposals allows expressing automatic transforma-
tions of the workflow based on the context.

Petri Nets (Petri 1966) are a common tool to model pro-
cesses and workflows. Petri Nets can be defined as directed
bipartite graphs, in which nodes represent inactive systems
(places) or active systems (transitions). Information is repre-
sented through tokens (pointers to places) and the execution
of a process changes the position of tokens. The basic idea
of Petri Nets is that transitions transform information from
one state (place) to another. Several extensions of Petri Nets
can be found in the literature. We highlight two of them re-
lated to process modelling. Workflow Nets (van der Aalst
1998) are Petri Nets with two special places to represent the
start and end of the process, and dualistic Petri Nets (Dawis,
Dawis, and Koo 2001) which allow tokens to point to places
and transitions: A token points to the transition while the
transformation is being performed. Due to the complexity
of describing human collaboration and time management,
other modelling languages–e.g. BPMN4 and EPC5–include
conditions based on human and timed events. Unfortunately,
the use of these event-based frameworks produces complex
diagrams in the crowdsourcing context. Figure 1 shows the
execution of a single task using the EPC language.

3 Crowdsourcing Workflow Net model
We propose CrowdWON, a language to describe crowd-
sourcing processes which is a combination of Workflow
Nets and Dualistic Petri Nets. As in the latter, a token point-
ing to a task (or transition) represents an individual perform-
ing such task. We define the status of tasks based on the posi-
tion of the token. Figure 2 shows the different status depend-
ing on the token position. Places are implicitly represented
in any direct connection between two tasks. Besides, in or-
der to adapt to usual processes in crowdsourcing, we allow
tokens to return to a previous place. With this, we can design
a reverse firing rule: If a worker canceled the task, the token
should return to its previous place.

Waiting for worker

TASK

Performing task
Task is inactive

Figure 2: Status of the task depending on the token location.

It is important to remark the simplicity of CrowdWON
thanks to this representation. As we mentioned before, Fig-
ure 1 describes the execution of a single task using EPC
(event-driven language). In our proposal, by considering the
position of a token, we are able to simplify the representation
to only three nodes: Two places connected to a task (see Fig-
ure 2). A Job position is created when a token arrives to the
first place, and it will be removed when the token leaves the
place. If the worker cancels the task, the token will return

4Business Process Model and Notation.
hwwp://www.bpmn.org

5Event-driven process chain

1285



to the first place repeating the creation of the job position
(describing the loop in Figure 1). The second place is only
involved when the worker submits the task.

Tasks in CrowdWON are a tuple (ID, typein, typeout,
kernel) that defines the execution of the task. ID is a unique
identifier allowing future references of the task; typein is
a specification of the structure of the input data (typeout
specifies the returned structure); and kernel defines the
method used to perform the task. Depending on the type
of task, kernel may contain different information: Human
tasks (represented with a box) require at least a user inter-
face; computer tasks (double-edged box) require a service
protocol; a special case of tasks are control flows, used to
describe non-sequential processes. In Subsection 3.2, we de-
scribe the different control flows available in our model.

Tokens in CrowdWON are a tuple (current, data). The
token is pointing to the current node, and data is the in-
formation that is being processed by the current node. If
current is a task, then data must be structured as speci-
fied in typein. That allows individuals to complete the task
using the information contained in data. After the task is
completed, the contribution is stored in data as specified
in typeout. Therefore, it is important that two consecutive
tasks have compatible data structures. At the end of the pro-
cess, data is the proposed solution to the problem. Note that
this construction only allows one individual to perform the
task with the same piece of information. Later in Section 3.2,
we introduce a mechanism to describe resolution of tasks by
multiple workers.

3.1 Worker management
Popular crowdsourcing platforms allow defining restrictions
on which individuals can claim the task. Those restrictions
are usually related to the ratio of successful submitted tasks,
passing some preliminary tests and geo-location. One of the
main contributions of CrowdWON is the proposal of a lan-
guage that allows expressing worker selection constraints in
a simple way. These restrictions may be complex: a worker
might not be able to take a task if she participated in a partic-
ular previous task in the process, workers with a lack of cer-
tain skills might only be allowed to solve a task when dead-
line compliance is at risk, as the last resort, etc. Although
these restrictions may be usual in many circumstances, pre-
vious languages do not allow to express them. CrowdWON
allows for expressing these types of constraints.
Definition. Let us call worker requirement to a set of con-
straints on the group of individuals allowed to choose a cer-
tain task. Constraints are defined over any property of the
profile of individuals (such as ratio of approved contribu-
tions, knowledge about a topic, age, gender or location), be-
longing to a group of individuals or any combination (using
conjunctions, disjunctions or negations).

CrowdWON provides a set of predefined groups of a
given task ID to facilitate the design of a worker require-
ment:
• e(ID) is the set of workers who completed the task.
• r(ID) is the set of workers who failed to complete the task

or revoked it.

• a(ID) is the set of all workers that at some point claimed
the task.

Definition. Let us call worker selection to an ordered list
of tuples (r, d), where r is a worker requirement and d is an
optional deadline.

The list defines a priority on the requirements: Individuals
must satisfy the first worker requirement in the list in order
to claim the task. When a requirement is an empty set, or the
deadline has already been met, the tuple is removed from the
list. An empty list puts no restriction on individuals, and so
anybody can claim the task.

In Figure 3, an example of our worker selection model
is depicted. The Review task only accepts workers with a
success ratio greater than 90%. On the other hand, the se-
lection node has a more complex worker selection: firstly,
only workers with a ratio greater than 80% are considered.
After 1 day, the worker selection will decrease the threshold
to 40%. After 2 days, anyone can claim the task.

3.2 Control flow tasks
In CrowdWON, analogously to other modelling languages,
the two most basic tasks to control the data flow are AND
and OR operators. The AND operator must wait until it re-
ceives a token from each of the incoming edges. Then, all
these tokens are automatically merged into a single one that
remains in the flow of tasks. If the operator has more than
one outgoing edge, then a copy of the token is created for
every outgoing path. In this case, the kernel parameter may
specify extra rules for the merging and creation of the to-
kens (such as splitting a list instead of creating copies). On
the other hand, the XOR operator only accepts one token
at a time from incoming edges, and only one outgoing path
is executed. The operator will look at data contained in the
token to decide the outgoing path. Conditions for execution
will be written in terms of the received data structure i. The
default path will be represented by an empty condition.

SELECTION Authors in (Hassan, O’Riain, and Curry
2013) show an example of a task that adapts to the exper-
tise of workers: If an individual has knowledge in the Amer-
ican culture, he will answer more questions related to Amer-
ica than other countries. In order to describe these adaptable
processes, we extended the XOR operator to include condi-
tions over the profile of workers. The SELECTION node is
a control flow task that first finds an individual following the
worker selection criteria attached to the node; and then the
profile of the selected worker is used to choose an outgoing
path.

Figure 3 shows an example of a workflow that behaves
differently depending on the individuals involved in solving
the task. Inexperienced workers (e.g. success rate lesser than
90%) can perform the post edition task, reducing the work-
load of experienced workers.

MAPREDUCE STRUCTURE Collaboration in crowd-
sourcing processes follows an asynchronous approach:
crowd workers are asked to perform tasks individually, and
then an aggregation of their contributions is the final output.

1286



SELECTION

Post
edition XOR

Post
edition

Review

Success
rate > 90%

Success
rate ≤ 90%

1st
(

Success
rate > 80%,≥ 1d

)
2nd

(
Success

rate > 40%,≥ 2d
)

1st
(

Success
rate > 90%, ∅

)

Figure 3: Example of the Selection operator. If inexperi-
enced workers claim the first task, then an extra review phase
will be required.

The MapReduce structure defines the level and mechanisms
of collaboration.

Following the PartitionMapReduce approach of Crowd-
Forge (Kittur et al. 2011), we divided our structure in:

• A sub-process. The operator contains another crowd-
sourcing workflow net, defining how data will be pro-
cessed. We can graphically represent it in the parent pro-
cess as in Figure 4.

• A generator of tokens. Every token enters the structure
through this generator. It has some rules to create copies
(or chunks) of the received data. These tokens are pro-
cessed independently as described in the sub-process. A
list of common generators can be found in Table 1

• Finally, we have an aggregation mechanism that pro-
duces a single output from all the independent contribu-
tions. This last part is connected to the generator, so it
knows how many tokens are being manipulated by the
sub-process. It is also able to request the creation of addi-
tional tokens. A list of common aggregation mechanisms
can be found in Table 2.

Figure 4 represents the basic definition of a crowdsourced
contest: an infinity generator allows individuals to accept the
Submit task at any moment; then, in order to decide a win-
ner contribution, a review phase is used to score them by
computing the average opinion of N workers.

Submit∞
6∈ a(Score entry)[∗]

Score entry AveN ∅

Figure 4: Basic description of a crowdsourced competition:
An unknown number of submissions are independently re-
viewed. In the figure, an average of N evaluations is used to
rank submissions.

As for token management, the token in the parent pro-
cess points to the structure until the aggregation mechanism
returns a value. Generated tokens are executed in parallel
instances of the same sub-process. This particularly affects
our worker management model. In Section 3.1, we intro-
duced three functions on tasks that returns workers involved
in their resolution. Due to the parallel execution of the sub-

Generator
icon Description

N Create N copies of the token.

N+
Create N copies of the token. The
generator will create more tokens if
requested.

∞
The first task in the sub-process is
always available to claim. A dead-
line specifies when the platform
should stop offering the task.

For
each

It is used to independently process
elements in a list generated by the
crowd.

Table 1: Examples of generators used in crowdsourcing pro-
cesses.

Aggregation
icon Description

MV
Majority vote. Only the most re-
peated answer will be considered.

N%

Returns solutions repeated by more
than N% individuals. Optionally, it
can request more tokens if there is
no consensus.

∅ There is no aggregation. It returns a
list of contributions.

Table 2: Examples of aggregation mechanisms used in
crowdsourcing processes.

process, these sets only returns workers of the current in-
stance. Nevertheless, it might be useful to also consider
workers in parallel executions. See Figure 4 for an example.
In order to avoid multiple reviews from the same individual,
a restriction on workers must consider parallel review tasks.

In order to tackle this issue, we define the operator [∗]
that requests a higher-level point of view. By attaching
the operator [∗] to one of the sets, we are looking at the
task from the parent process. So, we can use the condition
workers not in a(Score entry)[∗] to avoid the duplication
of reviewers in Figure 4. The operator can be stacked, get-
ting access to a broader point of view: subsequent parent
processes will be considered.

LOOP STRUCTURE Even though iterative processes
can be modelled by a proper combination of XOR operators,
this approach does not allow us to properly limit the number
of iterations or measure changes between iterations. Conse-
quently, we introduced a new mechanism to properly define
iterative processes. Besides, this will allow us to improve the
worker management of tasks inside a loop.

As in the MapReduce Structure, the LOOP Structure con-
tains a sub-process that will be executed as many times as
needed until an exit condition is satisfied. As an example,

1287



Action-Verification units presented in (Muntés-Mulero et al.
2013) are described using our model in Figure 5. An Action-
Verification Unit is a pattern used in tasks where human re-
view is required to measure and ensure quality. In this fig-
ure, the Action task is repeated until the Verification task ac-
cepts the contribution or the sub-process is executed at least
3 times.

LOOP

Action
1st (e(Action)[-1], ∅)

2nd (6∈ e(Verification)[∗], ∅)

Verification
1st (e(Verification)[-1], ∅)

2nd (6∈ e(Action), ∅)

≥ 3 iterations
or accepted

Figure 5: In this process, Action and Verification tasks are
performed iteratively. Note that nobody can review an action
performed by themselves, and reviewers are not allowed to
contribute to following actions.

The LOOP structure also inherits the [∗] operator from the
MapReduce. The absence of the operator represents workers
in the current iteration. By using [∗], we will consider work-
ers from all iterations. We can restrain the scope by replacing
∗with a finite set of non-positive integers. 0 represents work-
ers involved in the current iteration; −1 represents workers
involved in the previous iteration; etc.

3.3 Workflow Transformation
We already described workflows that adapt to the profile
of involved individuals. Nevertheless, Turkomatic (Kulka-
rni, Can, and Hartmann 2012) showed that changes can also
come from decisions made by the crowd. And due to exter-
nal necessities (such as deadlines), process designers may
need to adapt the workflow while it is being performed by
the crowd. CrowdWON models those unusual changes in the
process with a map ϕ between the places of two workflows.
When a transformation is requested (by a computer task or
the process administrator), every token pointing to a place p
will be now pointing to the place ϕ(p). If a token is pointing
to a task t, the platform will wait until it naturally arrives
at a place. Since tasks are usually performed by humans, we
should not discard their contributions without prior warning.

The description of a generic process in Turkomatic can
be found in Figure 6. An initial task allows individuals to
decide if the subsequent task must be completed at once or
needs to be split into smaller tasks. If so, they provide a sep-
aration of the task and the Request map? task request the
workflow transformation ϕ. Note that workflow (a) is now
a sub-process in workflow (b), allowing further subdivisions
of the problem.

4 Deadline Management
In many different scenarios, the production must be fin-
ished before a certain date. Deadline management is the
use of any mechanism to ensure the process is completed
within a certain time frame. Previous mechanisms in crowd-
sourcing were based on manual modifications of the pro-

(a)

Split?
Request

map?
Big task

(b)
Split? For

each

Copy of

workflow

(a)
∅ Aggregate

ϕ ϕ

Figure 6: As in Turkomatic (Kulkarni, Can, and Hartmann
2012), workers may request to split a task in easier chunks.

Post
edtion

Review Final edition

Notify admin

8h 8h

≤ 24h ≤ 8h

Figure 7: Deadline management in a post edition process.
Individuals in the post edition and review have 8 hours to
submit a task. Tasks may be skipped depending on the re-
maining time.

cess. All these manual modifications can be formalized with
the use of our workflow maps. Nevertheless, CrowdWON
provides a mechanism to automatize those transformations.
Note that we already included time conditions in the se-
lection of workers. In order to increase the capabilities of
our deadline management, we introduce the following timed
events:

• Deadline of submission. Individuals have an amount of
time to complete claimed tasks.

• Deadline of claim. Individuals have a limited amount of
time to claim a task.

The amount of time available can be fixed at the design
phase of the process, or it can be computed when a token
arrives at a node. Deadlines will be graphically represented
with an extra circle, representing a clock. In general, the
platform will perform an alternative path (represented with
dashed arrows) when the deadline is met. In a more complex
scenario, one may additionally trigger a workflow transfor-
mation.

An example of deadline management is depicted in Fig-
ure 7. Individuals have 8 hours to submit a contribution to
the Post edition or Review task. If they spend more than that,
the platform will revoke the claim and republish the task (the
dashed arrow sends the token to the place before). The only
mandatory task is the final edition: If the process must end
before 8 hours, the review phase will be skipped. If the pro-
cess did not start and we have less than 24 hours to complete
the process, then only the final edition will be performed and
a notification will be sent to the administrator of the process.

5 Examples
To show the potential of our model, we are going to describe
two complex crowdsourcing processes. We chose one of the

1288



10

FI
N

D

20%
For
each

10

FI
X

∅
Empty fix2d

XOR 5

V
E

R
IF

Y

MV XOR ∅

typein.fixes is empty

Figure 8: Crowdsourcing process used in Soylent (Bernstein et al. 2010). Given a text, the crowd find sentences that can be
shortened. The group also proposes 10 shorter versions for every sentence. Consensus is reached by a simple voting system.

For
each

Label

XOR

2+ Yes/No 60%

XOR

∅

Needs review?AND

For
each

Review label

and create rule

Remove
labelled
items

AND

∅

typein.product.label is empty

1st (∈ Analyst, ∅)

Figure 9: Process used by Chimera to label a list of products
using machine learning, crowd workers and analysts. In the
model, Analyst is a fixed group of individuals hired by the
company.

first collaboration patterns present in crowdsourcing as an
example of marketplace-like tasks. Then, we describe an in-
dustrial process that combines the power of machine learn-
ing algorithms, in-house analysts and crowd workers.

The FIND-FIX-VERIFY is a pattern designed by Soylent
(Bernstein et al. 2010) in order to reduce the length of a text.
It consists of three phases: In the FIND phase, 10 individu-
als flag sentences or paragraphs as potentially reducible. If
more than 20% of individuals send the same flag, then it is
considered in the following phases; The FIX and VERIFY
phases are executed for every discovered flag in the FIND
phase. First, 10 users propose an alternative text with the
same meaning. Finally, 5 individuals vote for the most ac-
curate alternative. The original text is replaced by the most
voted. We assume there is a time-constraint in the resolu-
tion of the process. In order to ensure finishing on time, we
enforce the FIX phase to end in at most 2 days. After that
period, the number of proposed fixes might be less than 10
or even none. In the latter, we assume that the sentence is
already correct or too complex for the available crowd. This
process is described in Figure 8 using our model.

Chimera is a crowdsourcing process designed by Walmart
Labs (Sun et al. 2014) to classify a large set of products.
Given the size of the set, using hired analysts to label prod-
ucts, or review the quality of machine learning algorithms, is
unfeasible. But the crowd can help to reduce the workload of

analysts. In Figure 9, one can find a graphical representation
of the process. The whole process is repeated until all the
products are labeled. In the first phase, all products are clas-
sified by a combination of machine-learning algorithms and
a set of handmade rules. If the algorithm is not sure about the
label of a product, it remains unlabeled and passes directly
to the next phase. If the algorithm recommends a label, then
it is reviewed by the crowd. The total number of reviewers
depends on initial consensus: only three crowd workers are
involved if the two first reviewers do not agree on the cor-
rectness of the classification. After that, some of the products
will be examined in a second review. This second phase is
done by hired professional analysts: They check the quality
of the classification and create new rules for the machine-
learning algorithm if needed.

6 Conclusions and Future Work
The research on crowdsourcing has been mostly focused
on study individual tasks properties, and the application of
crowdsourcing to the resolution of real complex problems
has been limited to a few examples. However, we have ob-
served a real industrial interest in crowdsourcing for solving
complex real world processes. To cover this industrial need,
the design of tasks takes a global perspective: deadline man-
agement does not only affect particular tasks, but the whole
process; Individuals can participate in multiple tasks of the
same process, but it may be need to limit those contributions,
etc. CrowdWON offers to the industry a graphical language
able to represent a possible workflow for any complex in-
dustrial process.

For future work, we want to further investigate the best
procedure to describe reward mechanisms in our model. At
the moment, it is easy to implement usual financial incen-
tives, but we still need to study how our workflow transfor-
mations can affect rewards. In the near future, we will set up
an scenario where processes can adapt to the current exper-
tise of the individuals–instead of only allowing experts.

It still remains to study if our modelling language can also
help in the design of mechanisms to measure the skill acqui-
sition of crowd workers. Our new contribution-based policy
in the selection of workers allows for communication be-
tween individuals contributing to the process. Therefore, it
is possible to give feedback to individuals, so they can im-
prove their contribution. Moreover, this also sets a first step
to group-based crowdsourcing. Groups could claim complex
tasks, collaboratively create sub-processes to solve the prob-
lem and assign sub-tasks to their colleagues or the crowd–if

1289



the team does not have expertise in an area.

Acknowledgments This work is partially supported by
Secretaria de Universitats i Recerca of Generalitat de
Catalunya (2013DI062), by the Ministry of Science and
Technology of Spain under contract TIN2012-34557 and by
the BSC-CNS Severo Ochoa program (SEV-2011-00067).

References
Ahmad, S.; Battle, A.; Malkani, Z.; and Kamvar, S. 2011.
The jabberwocky programming environment for structured
social computing. In Proceedings of the 24th Annual ACM
Symposium on User Interface Software and Technology,
UIST ’11, 53–64. New York, NY, USA: ACM.
Bernstein, M. S.; Little, G.; Miller, R. C.; Hartmann, B.;
Ackerman, M. S.; Karger, D. R.; Crowell, D.; and Panovich,
K. 2010. Soylent: A word processor with a crowd inside.
In Proceedings of the 23Nd Annual ACM Symposium on
User Interface Software and Technology, UIST ’10, 313–
322. New York, NY, USA: ACM.
Dawis, E.; Dawis, J.; and Koo, W. P. 2001. Architecture of
computer-based systems using dualistic petri nets. In In pro-
ceeding of 2001 IEEE International Conference on Systems,
Man, and Cybernetics.
Hassan, U. U.; O’Riain, S.; and Curry, E. 2013. Effects
of expertise assessment on the quality of task routing in hu-
man computation. In 2nd International Workshop on Social
Media for Crowdsourcing and Human Computation, 1–10.
Kittur, A.; Smus, B.; Khamkar, S.; and Kraut, R. 2011.
Crowdforge: crowdsourcing complex work. In Proceedings
of the 24th annual ACM symposium on User interface soft-
ware and technology, UIST ’11, 43–52. New York, NY,
USA: ACM.
Kittur, A.; Khamkar, S.; André, P.; and Kraut, R. 2012.
Crowdweaver: Visually managing complex crowd work. In
Proceedings of the ACM 2012 Conference on Computer
Supported Cooperative Work, CSCW ’12, 1033–1036. New
York, NY, USA: ACM.
Kulkarni, A.; Can, M.; and Hartmann, B. 2012. Collab-
oratively crowdsourcing workflows with turkomatic. In In
Proceedings of the ACM 2012 conference on Computer Sup-
ported Cooperative Work (CSCW ’12), 1003–1012. New
York, NY, USA: ACM.
Little, G.; Chilton, L. B.; Goldman, M.; and Miller, R. C.
2010. Turkit: Human computation algorithms on mechanical
turk. In Proceedings of the 23Nd Annual ACM Symposium
on User Interface Software and Technology, UIST ’10, 57–
66. New York, NY, USA: ACM.
Mason, W., and Watts, D. J. 2009. Financial incentives and
the ”performance of crowds”. In Proceedings of the ACM
SIGKDD Workshop on Human Computation, HCOMP ’09,
77–85. New York, NY, USA: ACM.
Massolution. 2013. The crowd in the cloud: Exploring the
future of outsourcing. Technical report, massolution.com.
Muntés-Mulero, V.; Paladini, P.; Manzoor, J.; Gritti, A.;
Larriba-Pey, J.-L.; and Mijnhardt, F. 2013. Crowdsourcing
for industrial problems. In Nin, J., and Villatoro, D., eds.,

Citizen in Sensor Networks, volume 7685 of Lecture Notes
in Computer Science. Springer Berlin Heidelberg. 6–18.
Petri, C. A. 1966. Communication with automata. Ph.D.
Dissertation, Universitt Hamburg.
Sun, C.; Rampalli, N.; Yang, F.; and Doan, A. 2014.
Chimera: Large-scale classification using machine learning,
rules, and crowdsourcing. PVLDB 7(13):1529–1540.
Thorpe, D. 2013. Crowdfunding entrepreneurs predict more
good in the world in 2014. Forbes.
van der Aalst, W. M. P.; Rosemann, M.; and Dumas, M.
2007. Deadline-based escalation in process-aware informa-
tion systems. Decis. Support Syst. 43(2):492–511.
van der Aalst, W. M. P. 1998. The application of petri nets
to workflow management. Journal of Circuits, Systems and
Computers 8(1):21–66.

1290




