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Abstract

Motivated by current day crowdsourcing platforms and
emergence of online labor markets, this work addresses
the problem of task allocation and payment decisions
when unreliable and strategic workers arrive over time
to work on tasks which must be completed within a
deadline. We consider the following scenario: a re-
quester has a set of tasks that must be completed before
a deadline; agents (aka crowd workers) arrive over time
and it is required to make sequential decisions regarding
task allocation and pricing. Agents may have different
costs for providing service and these costs are private in-
formation of the agents. We assume that agents are not
strategic about their arrival times but could be strategic
about their costs of service. In addition, agents could
be unreliable in the sense of not being able to complete
the assigned tasks within the allocated time; these tasks
must then be reallocated to other agents to ensure on-
time completion of the set of tasks by the deadline. For
this setting, we propose two mechanisms: a DPM (Dy-
namic Price Mechanism) and an ABM (Auction Based
Mechanism). Both mechanisms are dominant strategy
incentive compatible, budget feasible, and also satisfy
ex-post individual rationality for agents who complete
the allocated tasks. These mechanisms can be imple-
mented in current day crowdsourcing platforms with
minimal changes to the current interaction model.

Introduction
We consider the problem of allocation and pricing of tasks in
a crowdsourcing setting where agents arrive over time, so as
to ensure that all tasks can be completed before a deadline.
The costs of service are private information of the agents
and the agents may be strategic about revealing this infor-
mation. Furthermore, an agent assigned a task may not com-
plete it (unreliable agents) and these incomplete tasks must
then be reallocated to other agents to ensure on-time com-
pletion. Though motivated by crowdsourcing marketplaces
like Amazon Mechanical Turk (AMT), this setting models
has significance for any reverse (procurement) auction set-
ting where agents commit to a time and may not deliver.

Allocation and pricing decisions in this setting are chal-
lenging due to the following reasons. Unreliable Agents: An
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agent who is allocated a task may not complete it; hence the
task may need to be reallocated. Online Arrivals: Agents ar-
rive over time and may leave; allocation and payment deci-
sion must be made without information about future arrivals.
Time Sensitive : There is a deadline before which the set of
tasks must be completed. Strategic Agents: An agent’s cost
is private information and he may not reveal it truthfully.

The strategic nature of agents clearly calls for a mecha-
nism design approach. Consider a requester who posts time-
sensitive tasks on a crowdsourcing platform. The arrival of
agents who accept the task is a stochastic process. At any
point before the deadline, the requester needs a mechanism
to decide how many tasks to allocate to an agent and what
payments to make for these allocated tasks. Even though we
assume that only the costs of the agents are private infor-
mation and the arrival time of the agents is common knowl-
edge, the mechanism design problem becomes non-trivial
due to the unreliable agents: when the requester values on-
time completion, a mechanism must take into account the
value of potential time lost due to the unreliability of an
agent, along with the cost of paying the agent.

Related Work
A vast majority of the literature in mechanism design fo-
cuses on maximizing either social utility (allocative effi-
ciency) or the seller’s revenue (optimal) (Mas-Colell et al.
1995) - minimizing cost in reverse auctions. Singer (Singer
2010) introduced the scenario where the social planner’s val-
uation depends on the allocation. In such settings, the mech-
anism seeks to maximize the social planner’s value within
a budget constraint. Such budget feasible mechanisms are
relevant when the social planner is not indifferent to the al-
location among agents. Singer and Mittal (Singer and Mit-
tal 2011) design budget feasible auctions for crowdsourcing
marketplaces. In crowdsourcing settings, when the requester
utility depends on the capability of the agent to whom the
task is allocated, a reverse auction which minimizes cost is
not suitable. Instead, an auction which accounts for the value
that a requester places on allocating a task to an agent, while
ensuring that the budget constraint is satisfied, is more suit-
able. The online version of their mechanism relies on divid-
ing time into epochs, splitting up the available budget into
chunks and applying the proportional share allocation mech-
anism in each epoch so that the budget constraint is satisfied.
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Our work is motivated by a similar setting where the so-
cial planner’s utility depends on the allocation as well as the
cost. However, our work is different in that we consider the
challenges due to unreliable agents who may not complete
the task allocated to them within a specified time. These
tasks must then be reallocated to other agents. The time lost
due to such failed allocations can lead to a failure to meet
the deadline and lower requester value. Thus, the presence
of unreliable agents introduces non-trivial challenges to the
mechanism design problem here.

Singla and Krause (Singla and Krause 2013) also con-
sider the design of truthful budget feasible mechanisms in
a crowdsourcing marketplace. They formulate this problem
as a multi-armed bandit problem where the requester must
decide the posted price (arm) to use when the cost of each
agent is private information and agents arrive over time.
Their approach relies on designing a posted price mecha-
nism strategy which minimizes regret within a budget con-
straint. They too do not consider the effect of unreliable
agents who may not complete the tasks allocated to them
and this distinguishes our work from theirs.

Fardani, Hartmann, and Ipeirotis (Faradani, Hartmann,
and Ipeirotis 2011) propose a pricing mechanism for com-
pleting tasks by a deadline on crowdsourcing platforms.
Their approach relies on establishing a relationship between
price and completion time based on empirical observations
on a crowdsourcing platform.

Gerding et. al. (Gerding et al. 2010) consider the setting
where a social planner must procure services for completing
a task within a deadline. Agents have duration uncertainty,
that is, agents vary in the time they take to complete the task
and this is private information of the agents. Their approach
relies on redundant allocation to increase the probability of
meeting the deadline. They propose an execution contingent
VCG mechanism which pays agents only after they com-
plete the task. Unlike our work, they do not consider the
budget constrained setting where agents arrive over time.

Parkes and Singh (Parkes and Singh 2003) consider the
online mechanism design problem where a social planner
must make sequential decisions as agents arrive over time. In
addition to the agents’ valuations of the item being private,
the exact arrival and departure times are also private infor-
mation of the agent. Hence, agents have temporal strategies,
that is, strategic agents can lie not only about their valuation
but also about their arrival / departure time. We address a
different challenge of sequential decision making in online
settings. In our setting, agents do not have temporal strate-
gies but the presence of unreliable agents requires the mech-
anism to take into account the potential time lost due to an
allocation when working towards a deadline.

Our Contributions
We believe our work is the first one to consider allocation
and pricing issues involving unreliable, strategic agents in an
online setting when operating with a deadline constraint. For
this setting, we propose two mechanisms - DPM (Dynamic
Price Mechanism) and ABM (Auction Based Mechanism) -
and requesters can choose to deploy either of the two.

The key insight of our work is that in this setting agent
patience levels can influence the requester utility. When
agents arrive sequentially and are not willing to wait (im-
patient agents), the mechanism must make allocation and
payment decisions sequentially. DPM is suitable for this
setting. When agents are willing to wait (patient agents),
the mechanism can delay allocation and payment decisions.
ABM is suitable for this setting. ABM allows a trade off be-
tween maximizing the probability of on time completion and
minimizing the cost incurred. Assuming a quasilinear util-
ity function, ABM seeks to maximize requester utility. We
prove that both DPM and ABM mechanisms are dominant
strategy incentive compatible (DSIC) and are ex-post indi-
vidually rational (IR) for workers who meet the deadlines.

Outline of the Paper
The rest of the paper is organized as follows. In the next
section, we describe our model of a crowdsourcing market-
place which captures many realistic phenomena observed in
web-based crowdsourcing marketplaces. We propose an ex-
tension of the current interaction model which can be im-
plemented with minimal changes to current crowdsourcing
platforms. In the section entitled Mechanism Design, we
propose two mechanisms: DPM and ABM. We establish the
desirable properties of these mechanisms. The section on
Simulation presents pertinent experimental results. We con-
clude with a summary and directions for future work.

Crowdsourcing System Model
Our crowdsourcing system model consists of the agents, the
requester, and the interaction between them.

Agent Model
An agent i ∈ {1, 2, ..., n} incurs a cost of ci in completing
each task. At time t, if he is allocated kti tasks and paid rti ,
his value (vi) and utility (ui) are:

vi(k
t
i , ci) = −cikti

ui(k
t
i , r

t
i , ci) = rti − cikti (1)

We assume that agents are utility maximizers and the cost of
servicing a task (ci) is private information of the agent. Be-
ing strategic, an agent may lie about his true cost of service
and misreport it. Each agent is characterized by his relia-
bility (bi) which refers to the probability that the agent will
complete the task assigned to him within a specified timeout.
Agent reliability can be estimated as the ratio of responses
submitted timely to tasks accepted by the agent. Since the
platform can empirically estimate this parameter and make
it available, we treat it as common knowledge. Each agent
is further characterized by his capability which refers to the
probability that agent i’s response to a task is correct. This
can be estimated as the ratio of correct responses to re-
sponses submitted by the agent. Most platforms allow the
requester to set a qualification threshold so that only agents
having capability greater than this threshold can attempt the
task. The requester can thus control the quality of responses
and we do not consider this aspect of the agent further in this
work.
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Figure 1: System Model

Requester Model
At t = 0, the requester (i = 0) has h0 tasks that it aims to
complete by a deadline T . With the above mentioned quali-
fication process in place, the requester value depends on the
number of tasks leftover at the deadline. Let hT be the num-
ber of tasks leftover at the deadline T and let ϑ be the maxi-
mum possible requester valuation which is obtained if there
are no leftover tasks at the deadline (hT = 0). If C is the
total cost incurred by the requester, her value and utility are
given by:

v0(h
T ) = ϑδ(hT )

u0(h
T ) = v0(h

T )− C (2)

where δ() is a delta function that takes the value 1 at 0 and
0 elsewhere. This captures the scenario where the requester
has an all or nothing valuation for ontime completion. In
general, any function which has a maximum at 0 and is non-
increasing in hT can be a valuation function. The requester’s
value and utility are revealed only at the deadline T . At any
time t < T , the requester’s value and utility are random vari-
ables (V0, U0) whose value can be estimated based on the
number of pending tasks (ht) and the probability of these
tasks being completed in the remaining time (T − t). We
use the notation Pt(V0 = x) to refer to the probability that
requester value at T would be x as estimated at time t. Sim-
ilarly, we use the notation Et(V0) to refer to the expected
requester value at T as estimated at time t.

Table 1: Notation Table
Symbol Term
ni No. of tasks committed by agent i
ti Time committed for ni tasks
bi Agent-i’s ontime completion probability
ci Agent-i’s cost per task

ζi = (ni, ti, bi, ci) Agent-i’s contract
T Deadline for all tasks to complete
r0 Fixed posted task price

µ(r0) Task assignment rate at posted price r0
Nt2−t1 No. of tasks (contracts) assigned in (t1, t2]
Wt2−t1 No. of tasks completed in (t1, t2]
ht No. of tasks pending at time t
βt Bonus budget available at time t
%ti On-time bonus offered to agent i

(kti , r
t
i) Allocation and Payment rule at time t

Current Interaction Model
1. Requester Posts Task Group: At t = 0, the requester posts

tasks on the platform at a posted price (r0) and a posted
timeout before which an agent who has accepted a task
must submit it. Assume that the total number of tasks ac-
cepted by agents up to time t follows a Poisson process
({N(t)}t≥0) with rate µ. The number of tasks accepted in
the interval (t1, t2] is given as:
N(t2)−N(t1) = Nt2−t1 ∼ Poisson(µ(t2 − t1))
µ may be estimated by assuming a Gamma prior and
updating the estimate based on empirical service times
observed for an initial fixed period. We assume that the
agent arrival process is homogeneous, so µ does not
change with time. Previous work (Faradani, Hartmann,
and Ipeirotis 2011) has shown that the posted price (r0)
is a dominant factor in determining the rate at which tasks
get accepted by agents. Thus, the requester may leverage
historical data for setting r0 so that a task group would
be completed by the deadline T in expectation, that is,
E[hT ] = 0 or equivalently E[NT−0] = µ(r0)T = h0.
However, there is a marked variation in completion times
even for tasks that are priced the same (V ar(NT−0) =
µ(r0)T ) and thus, we propose an adaptive approach.

2. Agent Accepts a Task: When an agent accepts to work on
a task, a predetermined timeout is started before which the
agent must submit this task.

3. Agent Submits: Agent completes the task and submits her
response to the task; alternatively, the timeout expires.

4. Requester Pays / Reposts: The requester verifies the agent
response and if satisfied, pays the agent. If the timeout
for the task has expired or if the requester is not satisfied
by the agent’s response, she may reject it (no payment is
made to the agent) and repost the task on the platform.

Proposed Interaction Model
1. Requester Posts Task Group: Same as before.
2. Agent Proposes Contract: An agent i can propose to do

several tasks at once (ni) and can specify the timeout (ti)
by which he agrees to submit these ni tasks. We treat this
proposal as a contract for on time completion.

3. Requester Accepts / Rejects Contract: The requester de-
cides whether or not to accept the contract.

4. Agent Submits: Same as before.
5. Requester Pays / Reposts: Same as before.

Mechanism Design
The contract proposed by an agent is modeled as a four-tuple
ζi = (ni, ti, bi, ci). Contracts arrive over time and a mech-
anism must decide whether to accept the contract and the
price. We assume that agent reliability (bi) is either known
or can be learned without any cost to the requester. All three
mechanisms we discuss release the payments only after ver-
ifying that the agent has completed ni tasks at ti: so bi, ni, ti
are all known to the requester at the time the payment is re-
leased. However, a strategic agent may lie about his true cost
of service, ci, and misreport it as ĉi.
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Fixed Price Mechanism
The current interaction model on crowdsourcing platform
uses the Fixed Price (FP) mechanism with the allocation
rule kti = 1 and payment rule rti = r0. This mechanism
allocates exactly one task to every qualified agent who is
willing to work on the task at any time t and pays a fixed
amount r0 after the agent submits the response to the task.
Since agents are unreliable, allocations may fail. If the agent
population can be clustered into groups so that all agents
belonging to cluster j have reliability b(j), then N

(j)
τ and

W
(j)
τ represent the number of tasks allocated to and com-

pleted by agents of capability b(j) in time τ . The task service
Poisson process can be considered as a merge of multiple
Poisson processes and we have N (j)

τ ∼ Poisson(µ(j)τ) and
W

(j)
τ ∼ Poisson(b(j)µ(j)τ). (Figure 1). Thus, at time t, the

expected requester value can be calculated as:

Wτ ∼ Poisson(
bmax∑
j=bmin

b(j)µ(j)τ) (3)

Et[V0] = ϑPt(hT = 0) = ϑP(WT−t ≥ ht) (4)

Dynamic Price Mechanism
The dynamic price mechanism (DPM) seeks to operational-
ize our proposed interaction model where a requester may
allocate more than one task to an agent. Here N

(j)
τ ∼

Poisson(µ(j)τ) is the number of contracts which arrive in
time τ and since each contract can have more than one tasks
allocated, we have P(W (j)

τ = m(j)) =

m(j)∑
s=1

P(N(j)
τ = s)

ht∑
x=m(j)

P(
s∑
i=1

ni = x)p(m
(j)

; x, b
(j)

)

with p(m
(j)

; x, b
(j)

) =
( x

m(j)

)
(b

(j)
)
m(j)

(1− b(j))x−m
(j)

The aggregate service rate for tasks is thus:

P(Wτ = m) = P(
bmax∑
j=bmin

W (j)
τ = m) (5)

The requester’s expected value at time t if she accepts the
contract ζi depends on the contract’s outcome. With prob-
ability bi, the agent completes the contract and we have
ht − ni tasks remaining to be serviced within the remain-
ing time T − t. With probability 1 − bi, the agent reneges
on the contract. The requester still has ht−ni tasks remain-
ing to be serviced within the remaining time T − t but an
additional ni tasks to be serviced within T − ti when the
requester realizes that agent has reneged on his contract and
re-posts these tasks as an independent set of task. (Figure 2).

Et[V0|ζi] = ϑ(Pt(hT = 0|ζi)) (6)

= ϑ(biP(WT−t ≥ (ht − ni))

+ (1− bi)P(WT−t ≥ (ht − ni))P(WT−ti ≥ ni))

= ϑ(biw + (1− bi)wz)
ω(ζi, t) = Et[V0|ζi]− Et[V0]

= ϑ(biw + (1− bi)wz − y) (7)

where
w , P(WT−t ≥ (h

t − ni)); y , P(WT−t ≥ h
t
); z , P(WT−ti ≥ ni)

We define the value of a contract ω(ζi, t) as the increment in
the expected value of the requester due to accepting a con-
tract vis-a-vis relying on the default FP mechanism. This has
a worst case interpretation: it is the contract value if no other
contracts (ni > 1) arrive in the future. For this approach, we
use Wτ from (3) to evaluate w, y, z. An alternate approach
is to define the value of a contract as the increment in the ex-
pected value of the requester due to accepting a contract vis-
a-vis not accepting it and relying on the DPM mechanism.
This has an expectation interpretation: it is the expected con-
tract value if contracts arrive in the future at the same rate
they have been arriving in the past. For this approach, we
use Wτ from (5) to evaluate w, y, z.Having evaluated the
the contract, we specify DPM as:

kti =

{
ni if ω(ζi, t) > 0 and rti > niĉi
0 otherwise

rti =

{
nir0 + %ti if kti > 0
0 otherwise (8)

DPM’s allocation rule accepts all bids on a first-come first-
serve basis as long as the contract offered by the agent in-
creases the expected value of the requester (ω(ζi, t) > 0)
and the bid is affordable (niĉi < rti). Thus, DPM is an on-
line myopic optimizer. If the number of pending tasks is less
than the contract offer (ht < ni), DPM allocates all pending
tasks to the agent if the contract is accepted.

DPM’s payment rule has a fixed price component (r0) and
an ontime completion bonus component (%ti). The fixed price
has been pre-decided by the requester at the time of posting
the tasks. To incentivize agents to undertake larger contracts,
DPM sets aside a bonus budget at initialization (β0 > 0).
It uses this budget to offer an additional bonus amount to
agents who complete larger contracts. When offered a con-
tract (ni, ti, bi, ĉi) at time t, it first evaluates the contract
value as explained above. It then calculates a bonus payment
(%ti) that it is willing to offer to an agent’s contract based on
the value of the contract and the bonus budget available (βt).

%ti =
ω(ζi, t)

ϑ
βt

Once a contract is allocated the available budget for future
contracts is reduced. Let ai be the time at which ζi is offered
and accepted. Thus,the leftover bonus budget at t > ai is
βt = βai − %aii . Only this leftover budget is used for cal-
culating future contract bonuses. Even though the payment
rule calculates the payment at t it defers the disbursement
of payment till the agent has in fact submitted all ni tasks.
Thus, the payment is contingent on contract completion.

Theorem 1. DPM is dominant strategy incentive compat-
ible (DSIC), budget feasible, ex-post individually rational
(EPIR) for agents who honor the contract, and for all t ∈
[0, T ],EtDPM [V0] ≥ EtFP [V0].

Proof. DSIC: The payment rule in DPM is independent of
the agent’s bid: rti does not depend on ĉi. Also, the allocation
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rule of DPM is monotone in the cost: a reduction in ĉi can
only increase kti . These two conditions are sufficient for a
mechanism to be DSIC (Mas-Colell et al. 1995).

EPIR: An agent will voluntarily participate and bid for a
contract if his utility due to participation is greater than non
participation, that is, ui(kti(ci, c−i), r

t
i(ci, c−i), ci) = (rti −

nici) ≥ 0. This follows easily from the DPM’s allocation
rule which allocates the contract iff (rti > nici) and when
we note that rti ≥ 0 since r0 > 0 and β0 > 0. Thus, DPM
is EPIR as long as the agent honors the contract. If the agent
does not complete the tasks assigned to him, it is possible he
may obtain a negative utility.

Budget Feasible: Let m be the total number of contracts
accepted under DPM and let ai be the arrival time of con-
tract ζi. For budget feasibility, total payment under DPM
(
∑m
i=1 r

ai
i ) must be less than the total budget (β0 + r0h

0).
This constraint can be simplified as follows:

β0 + r0h
0 ≥

m∑
i=1

raii =
m∑
i=1

r0ni + %aii

⇒ β0 ≥
m∑
i=1

%aii (∵
m∑
i=1

ni ≤ h0)

⇒ β0 ≥
m∑
i=1

βai (∵ ω(ζi, t) ≤ ϑ)

∑m
i=1 ni ≤ h0 due to DPM’s conservative approach re-

garding tasks allocated in a contract. DPM does not not re-
allocate the tasks committed in a contract till the contract
has been completed or it has expired even though the allo-
cated tasks continue to show up as pending tasks (ht is up-
dated only at the time of successful contract completion).
ω(ζi, t) ≤ ϑ follows from equation (7) and the last in-
equality is true due to DPM’s conservative approach regard-
ing budget allocated in a contract: DPM updates the budget
available for bonus after every contract allocation and does
not re-allocate the budget that has been committed for a con-
tract till the contract has been completed or it has expired.

More Efficient than FP: This result is an artifact of the
way DPM treats tasks allocated in a contract: the requester
does not change ht till the contract has been completed but
also does not re-allocate these tasks that she has commit-
ted in a contract. Formally, the expected requester value
under DPM is a monotone submodular function since we
ensure that the value of each contract is positive before
accepting it EtFP [V0] = Et[V0|{φ}] ≤ Et[V0|{ζ1}] ≤
Et[V0|{ζ1, ζ2, . . . , ζm}] = EtDPM [V0]. The simulation sec-
tion demonstrates this result more intuitively.

Auction Based Mechanism
DPM increases the requester value while ensuring the bud-
get constraint. However, it does not optimize the amount the
requester has to pay: all available budget is used to incen-
tivize on-time completion. ABM seeks to address this. In
ABM, the available time T is divided into epochs of length
l each indexed with τ . With a slight abuse of notation we
also refer to the the time of the epoch ends as τ . Let I(τ)

Figure 2: (i) DPM accepts or rejects contract when they are
offered based on the number of pending tasks (ht), dead-
line (T) and proposed contract time (ti) (ii) ABM works in
epochs and delays allocation and payment decisions

represent the set of positive valued contracts (ω(ζi, τ) > 0)
available for consideration at the end of interval τ . Then, we
specify ABM as follows:

j = arg max
i∈I(τ)

ci

I−j(τ) = I(τ) \ j

kτi =

{
ni if i ∈ I−j(τ)
0 otherwise

rτi =

{
min(nicj , %

τ
i + nir0) if kτi > 0

0 otherwise (9)

If |I(τ)| = 1, ABM’s allocation rule operates as DPM i.e.
accepts the contract and pays the maximum price as deter-
mined by the available budget. If |I(τ)| ≥ 2, ABM accepts
all contracts in |I(τ)| except for the highest bid (highest per-
task price). If ht < ni, ABM allocates all pending tasks
to the agent if the contract is accepted. ABM’s pricing rule
uses the rejected bid to compute the payment for the ac-
cepted bids. All accepted contracts (I−j(τ)) are paid this
same amount. ABM is thus a multi-unit auction with a bud-
get constrained reserve price. Unlike the traditional multi-
unit setting is that the number of contracts to be allocated
is not pre-decided but determined based on the number of
arrivals in in time epoch τ .
Theorem 2. ABM is DSIC, budget feasible, ex-post IR for
agents who honor the contract but not ex-post IR for agents
who do not honor the contract.

Proof. DSIC: Since agents are assumed not to have tempo-
ral strategies, we treat each time epoch as an independent
auction. mth price auctions in multi-unit settings are known
to be DSIC (Mas-Colell et al. 1995).

EPIR: We have to show that
ui(k

t
i(ci, c−i), r

t
i(ci, c−i), ci) = (rτi − nici) ≥ 0.

ABM’s allocation rule ensures that for each accepted
contract (rτi > nici). Thus ABM is EPIR as long as the
agent honors the contract.

Budget Feasible: ABM is budget feasible because DPM is
Budget Feasible and ABM never pays more than DPM for
any contract.
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Figure 3: Expected Value vs. Time when (a) fewer than ex-
pected agents arrive and (b) higher than expected agents ar-
rive

Comparison with DPM: It is clear that the expected re-
quester value under ABM cannot be more than under DPM
since the requester rejects a positive valued contract. How-
ever, the expected requester utility under ABM can be more
than under DPM due to the lower costs incurred by the re-
quester. The expected requester utility under ABM is:

EτABM [U0] = Eτ [V0|I−j(τ)]−
|I(τ)|−1∑
i=1

cjni (10)

Let Eτ [V0|{ζ1, . . . , ζ|I(τ)|}] be the expected valuation at
time τ given that the mechanism accepted each contract at its
time of arrival. Let Eτ [V0|I(τ)] be the expected valuation at
time τ given that the mechanism accepted all the contracts
arrived at time τ . If l, the length of a time epoch, is small
enough, then Eτ [V0|{ζ1, . . . , ζ|I(τ)|}] = Eτ [V0|I(τ)] (See
Appendix). Since the expected requester value is a submod-
ular function, Eτ [V0|I(τ)] ≤ Eτ [V0|I−j(τ)] + ω(ζj , τ) and
we can bound the expected requester utility under DPM:

EτDPM [U0] ≤ Eτ [V0|I−j(τ)]+ω(ζj , τ)−
|I(τ)|∑
i=1

(%aii +r0ni)

(11)

ABM outperforms DPM if EτDPM [U0] < EτABM [U0]. Us-
ing equations (10) and (11), this condition reduces to:

ω(ζj , τ) −
|I(τ)|∑
i=1

(%aii + r0ni) < (−
|I(τ)|−1∑
i=1

cjni)

ω(ζj , τ) <

|I(τ)|−1∑
i=1

(%aii + r0ni − cjni) + %
aj
j + njr0

< (r0 − cj)
|I(τ)|−1∑
i=1

ni +

|I(τ)|−1∑
i=1

%aii

≤ (r0 − cj)
|I(τ)|−1∑
i=1

ni +

|I(τ)|−1∑
i=1

%τi

The last inequality holds because (τ ≥ ai) ⇒ (ω(ζi, τ) ≤
ω(ζi, ai)), that is, the value of a contract can only reduce

Figure 4: (a) Min. Agent Reliability for contract to be ac-
cepted vs. number of pending tasks at different points in time
and (b) Contract Value vs. number of pending tasks for dif-
ferent agent capabilities

by delaying allocation and if no allocations are made during
this delay. Also βτ = βai since no allocations are made
during (τ − 1, τ ]. These two conditions ensure %τi ≤ %

ai
i .

Thus, ABM outperforms DPM when the loss in expected
value due to rejection of the highest bid contract (ζj) is less
than the reduction in cost achieved due to rejection of the
highest bid contract. A natural generalization of this mecha-
nism is to drop the q highest bids. This reduces the consider-
ation set by |I(τ)|−q but also potentially reduces the price to
be paid to the allocated contracts. If q = 0, ABM reduces to
DPM. As q increases, we sacrifice expected requester value
for a potential reduction in payment. Another approach is
to select q so as to maximize the requester expected utility.
Unfortunately, unlike the expected requester value, the ex-
pected requester utility is not a submodular function. Hence,
this approach requires the evaluation of the expected utility
for all possible subsets (2|I(τ)|) of contracts in the consider-
ation set. The choice of q also depends on the epoch length.
l = 0 ⇒ q = 0 and this is suitable when agents are im-
patient. As l → T , the maximum value that q can take in-
creases. Realistically, l must be chosen taking into account
the willingness of agents to wait after bidding.

Simulations
We use simulations to demonstrate the effectiveness of our
proposed mechanisms with varying arrival rate and agent re-
liability. We compare DPM with FP which is currently the
defacto mechanism on crowdsourcing platforms today. We
have already derived the conditions under which ABM out-
performs DPM. Real world deployments must also take into
account how patient the agents are when choosing to deploy
DPM or ABM. We consider the following setup. At t = 0, a
requester posts h0 = 50 tasks on the platform with a dead-
line of T = 25 hours. On-time completion of these tasks
generates a requester value of ϑ = 20. The posted price at-
tracts qualified agents to service the task at µ = 2 per hour
(Poisson process) so that tasks will complete in expectation
( µT = 50 = h0). These values are representative of real
world scenarions where more than 60% of task groups com-
plete within 24 hrs (Faradani, Hartmann, and Ipeirotis 2011).
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Figure 3(a) compares the requester’s expected value un-
der FP (’o’) with the requester’s expected value under DPM
(’*’) when 2 agents arrive per hour. At t = 5 an agent with
reliability bi = 0.9 offers to complete ni = 3 tasks by
ti = 8. The requester’s expected value at t = 5 hence shows
an instantaneous spike. However, this gain in expected value
is not taken into account till t = 8 when the agent actu-
ally submits the completed tasks. Thus, at t = 8 when this
contract is fulfilled by the agent, the expected value is incre-
mented and stays at this higher level. Subsequently a second
contract arrives at t = 15 where an agent with reliability
bj = 0.9 offers to complete nj = 3 tasks by tj = 21. We
see an instantaneous spike at the time the contract is offered
with a permanent increase when the contract is completed.

Figure 3(b) compares requesters expected value under FP
(’o’) with the requesters expected value under DPM (’*’)
when 3 agents arrive per hour. The same two contracts are
offered but the second contract is offered too late to offer a
substantial gain in expected requester value.

The key criteria for accepting a contract (ω(ζi, t) > 0)
translates to a bound on the agent reliability (bi >

y
w−z
1−z ).

Figure 4(a) shows the minimum reliability that an agent
must have for a contract to be accepted as a function of the
pending tasks (ht). We have used ni = 10 and ti = 24 for
this simulation at t = 1 (’+’), t = 10 (’*’) and t = 20 (’o’).
At any time t, as the number of pending tasks increases, the
minimum reliability threshold that the requester is willing to
accept is lowered.

Figure 4(b) shows how the value of a contract of size ni =
20 and ti = 24 offered at t = 20 changes with number of
pending tasks for various values of agent reliability bi = 0.1
(’o’), bi = 0.6 (’+’) and bi = 0.9 (’*’). At any time t, as
the number of pending tasks increases, the contract value
initially increases (due to the increasing risk to the requester
of missing the deadline) and later decreases as the number of
pending tasks increases due to the strict valuation function
of the requester wherein even a single leftover task drives
the requester value to 0.

Future work
We have assumed that agents do not strategically delay their
arrival time. Relaxing this assumption is a key direction for
future work. One approach is to assume that agents cost and
arrival time are independent of each other. Even with this
assumption and assuming the complete information setting,
designing (Nash) Incentive Compatible mechanisms is non-
trivial since the value that a requester places on an agent’s
contract depends in a non-trivial way on the number of left-
over tasks, time to deadline and agent reliability. A second
key direction of future work is to consider scenarios with un-
known agent capabilities and reliabilities. These may need to
be learned by the requester at a cost and leads to the problem
of learning within a budget and time constraint.
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Appendix
Theorem 3. Eτ [V0|{ζ1, . . . , ζ|I(τ)|] = Eτ [V0|I(τ)]

Proof. Suppose agents j1, . . . , j|I(τ)| have arrived at times
a1, . . . , a|I(τ)| ∈ (τ − 1, τ ]. Then the expected valuation of
DPM at time τ given it has accepted contracts ζ1, . . . , ζ|I(τ)|
is

Eτ [V0|{ζ1, . . . , ζ|I(τ)|}] =
|I(τ)|∑
k=0

∑
j1,...,jk

k∏
l=1

bjl
∏

l/∈I(τ)\{j1,...,jk}

(1− bl)

× ϑP(hT = 0|{jl finishes by tjl , l = 1, . . . , k})
= Eτ [V0|I(τ)]

Here Eτ [V0|I(τ)] is the expected valuation of DPM given
all the accepted contracts arrived at time τ . The last equality
holds for two reasons

• If agent i arrives at time τ instead of ai where ai > τ − l,
the agent will finish the task by time ti with same proba-
bility bi. This is true under the assumption that agents are
patient for a duration of length at least l.

• P(hT = 0|{jl finishes by tjl , l = 1, . . . , k}) is same in
both the cases, since this probability is computed with re-
spect to the arrival of new agents in the interval (τ, T ].

Contract Variants: We have modeled the contract as a
four-tuple ζi = (ni, ti, bi, ĉi). Alternative contract specifi-
cations where the proposed mechanisms can also be applied
are:
• ζi = (ni, bi, ĉi) and requester picks the ti which opti-

mizes her value ( dωdti = 0) and pays a price ri ≥ niĉi.
• ζi = (ti, bi, ĉi) and requester picks the ni which opti-

mizes her value ( dωdni = 0.) and pays a price ri ≥ niĉi.
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