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Abstract

Recent studies have suggested that current agent-based
models are not sufficiently sophisticated to reproduce
results achieved by human collaborative learning and
reasoning. Such studies suggest that humans are diverse
and dynamic when solving problems socially. However,
despite their relevance to problem-solving, these two
behavioral features have not yet been fully investigated.
In this paper we analyse a recent social problem-solving
model and attempt to address its shortcomings. Specif-
ically, we investigate the effects of separating exploita-
tion from exploration in agent behaviors and explore the
concept of diversity in such models. We found out that
diverse populations outperform homogeneous ones in
both efficient and inefficient networks. Finally, we show
that agent diversity is more relevant than the strategic
behavioral dynamics. This work contributes towards un-
derstanding the role of diverse and dynamic behaviors
in social problem-solving as well as the advancement of
state-of-art social problem-solving models.

1 Introduction
Collaborative problem-solving has been the subject of Arti-
ficial Intelligence research for over half a century (Newell,
Shaw, and Simon 1959; Newell and Simon 1972; 1976;
Simon 1990). Recent investigations in human computation,
social computing and complex networks have also con-
tributed to new results, tools and technologies for social
and human problem-solving (Easley and Kleinberg 2010;
Hogg and Huberman 2008; Kearns 2012; Law and von
Ahn 2011). The analysis of collaboration has gained at-
tention and several authors have indicated that it is an
essential feature in problem-solving (Amir et al. 2013;
Tabajara et al. 2013). By understanding the dimensions and
patterns of collaborative human problem-solving, we can
improve (human) organizations’ performance, thus devis-
ing stronger ones (Araujo and Lamb 2008; March 1991;
Page 2007).

In a recent study, (Mason and Watts 2012) have inves-
tigated relevant aspects of human collaborative learning in
networks. They compared how humans and artificial agents
solved the same problem in the same collaborative network
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context. Unsurprisingly, one of the findings was that humans
behaved in a richer way than their artificial counterparts. Hu-
mans considerably outperformed artificial agents. They sug-
gest that this result may indicate a lack of sophistication in
current agent-based models, pointing to the fact that their
agents — and the ones found in the literature — are “in-
sufficiently sophisticated and heterogeneous to reflect real
human responses to changing circumstances” (Mason and
Watts 2012), lacking the dynamic behavior which humans
presented in their problem-solving strategies. They go fur-
ther and, accordingly to their findings: “the results of both
artificial simulations and artificial experiments should be
generalized with caution” (Mason and Watts 2012).

There is evidence that heterogeneity compensates for low
ability in problem-solving (Marcolino et al. 2014). (Hong
and Page 2004) state that “diversity trumps ability”. In their
paper, they detail how a diverse pool of problem-solvers can
outperform a homogeneous pool of high-ability agents. Al-
though the authors did not address dynamic problem-solving
agents (i.e. agents who change strategies throughout the
solving process) the fact that human agents are likely to be
dynamic and heterogeneous (Mason and Watts 2012) is an
indicator that this question is still open.

This paper addresses the interplay between (1) collective
diversity (heterogeneity), (2) dynamic strategic behavior,
and (3) network efficiency, by extensive agent-based sim-
ulations. We show that the dissociation of exploitation from
exploration can influence and change drastically what is an
optimal individual strategy. More importantly, we found out
that, from the three above parameters, collective diversity is
shown more relevant to the collective performance than net-
work efficiency and dynamic strategic behavior.

2 Preliminaries and Related Work
Computational social science is currently facing huge re-
search interest (Lazer et al. 2009; Kearns 2012). Research
in social problem-solving predates the recent ubiquity of so-
cial technologies. An early example is the work of (Clearwa-
ter, Huberman, and Hogg 1991; Clearwater, Hogg, and Hu-
berman 1992), who discuss solving constraint-satisfaction
problems by means of cooperative artificial agents.

More recently, (Hong and Page 2004) investigate how di-
verse agents teams can outperform high-ability ones. (Lazer
and Friedman 2007) studied the dissemination of informa-
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tion in a network environment where artificial agents com-
municate with themselves in order to solve a particular com-
plex problem 1. They found that inefficient networks outper-
form efficient ones in the long-run. Network efficiency is
measured as the average distance among the agents: an ef-
ficient network has small average distance between all node
pairs, thus information flows faster.

(Mason and Watts 2012) experimented with both human
and simulated agents to investigate collaborative learning in
networks. They identified a gap between the results from
human and computational experiments. They conjecture a
lack of sophistication in current artificial agent-based mod-
els with respect to heterogeneity and dynamicity.

2.1 On Heterogeneity and Dynamicity
Our model builds upon the one employed by (Mason and
Watts 2012), which in turn draws inspiration from (Lazer
and Friedman 2007). We adapt Mason and Watts’ model to
support heterogeneity and dynamicity in the population, en-
abling different agents to have different search radii (hetero-
geneity) and also enabling them to change their radii during
execution (dynamicity). The agents are tasked with finding
the maximum of a particular real valued function. The pre-
cise meaning of the terms mentioned here and the details of
the function solved by the agents are detailed below.
Search Radius: The search radius is an agent parameter
responsible for establishing the boundaries of that agent’s
search space. Each agent’s search space is bounded by a cir-
cle whose center is determined by the coordinates of that
agent’s current best solution and whose radius is that partic-
ular agent’s search radius. It is only within the boundaries of
this circle that the agent can search for new solutions in the
exploration phase.
Myopic Search: A myopic search is a task performed by
agents in the Lazer-Friedman (LF) model. It consists of se-
lecting a point in the parameter space respecting the bound-
aries determined by the search radius.
Lazer-Friedman Model: (Lazer and Friedman 2007) is a
model of social problem-solving in which agents are con-
nected according to a particular network topology. The prob-
lem is solved after a number of iterations. At each iteration,
every agent updates its own state; if the agent in question (fo-
cal agent) holds the best solution it performs myopic search;
otherwise it copies the solution from the best neighbor agent.
Heterogeneity (diversity): An agent population is heteroge-
neous when agents have different search radii. A population
is homogeneous when all agents have the same search radii.
Dynamicity: When agents are able to change their search
radius when solving a problem, they are dynamic. In a
static population all agents are endowed with predetermined
search radii throughout the entire problem-solving task.

2.2 On Annular Myopic Searches
In a myopic search, agents select a point in the parameter
space respecting the boundaries determined by their search

1They used the maximization of a rugged continuous function
generated by NK-model (Kauffman and Weinberger 1989).

radii. As our results will show, this approach can be prob-
lematic: the fact that some agents have bigger circles than
others puts the second group in an unfair disadvantage to-
wards the first one, as its agents have their search space re-
duced in comparison. The problem with this disadvantage is
that it generates a bias toward homogeneous populations of
high-ability agents and against populations of diverse ones.
It is always possible for a homogeneous population to out-
perform a heterogeneous one - the only necessary condition
is that the global radius of the homogeneous population is
greater than every single radii of the heterogeneous one.

This conclusion is logical, but is nevertheless inconsis-
tent with the generally accepted idea that, at least to some
extent, diversity trumps ability. It is particularly inconsis-
tent with the findings of (Hong and Page 2004) who show
that high ability agents are often outperformed by diverse
ones. Naturally, the inconsistency is not due to the fact
that diversity actually does not trump ability - it does -
but rather to the fact that using search radii to determine
circular search spaces creates a bias against heterogeneous
populations. This happens because circular search spaces
fail to include the exploration-exploitation dichotomy in the
problem-solving task, as agents with larger circles are just as
capable of exploiting their current solutions as agents with
smaller circles, but additionally capable of exploring new so-
lutions in a larger area. In short, although we can create het-
erogeneous populations by diversifying their radii, we can-
not create a heterogeneous population in which agents have
varied inclinations towards exploration and exploitation - we
can only diversify their search.

A strategy to solve this problem is to restrict the search
space of exploration-inclined agents to outside their close
neighborhood, making it impossible for them to exploit their
current solutions. Exploitation-inclined agents should also
have their search space restricted, but this time to include
only their close neighborhood. This strategy can be imple-
mented by replacing the circles in the myopic search by
rings. Thus, when we enlarge a particular agent’s search ra-
dius, we are not only enlarging the ring’s outer circle but the
ring’s inner circle as well. This forces this agent to explore in
a region that becomes increasingly distant of the agent’s cur-
rent solution as its search radius grows. By manipulating an
agent’s search radius, we can place this agent wherever we
want in the exploration-exploitation continuum. We refer to
our model as the Ring Model.

3 Experimental Setup
In our experiments, we tested the Mason & Watts instance
of the LF model (Mason and Watts 2012) as well as our pro-
posed Ring Model and its variations. Although these varia-
tions implement different logical rules to solve a problem,
their algorithmic structure is the same - as described in Al-
gorithm 1.

Each agent is instantiated with a valid solution (line 1)
then it is embedded in a social network (line 2). Each so-
cial tie establishes that an agent will perform bidirectional
communication with another agent to whom it is connected.
After these two stages, each agent performs the search. The
agent samples a new solution according to the procedure
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Algorithm 1: General algorithm structure used by all
models.

Input : Populationsize, stop condition, Problemsize

Output: Solutionbest

// Initialize the population with random solutions.

1 Population← InitPopulation
(Populationsize,Problemsize)

// Establish social ties among individuals.

2 GenerateNetwork (Population)

3 repeat
4 foreach node ∈ Population do

// Execute the model search procedures.

5 NextState (node,Problemsize)

6 foreach node ∈ Population do
// Decide to accept or not the new state.

7 UpdateState (node,Problemsize)

until stop condition
8 Solutionbest←RetrieveBestSolution (Population)
9 return Solutionbest

Algorithm 2: Standard Ring Model procedure.

1 if node solution <max(Neigbors′solutions) then
// Local search procedure (or myopic search).

2 repeat
3 r← Random (low = max(node radius − 1, 0)

high = radius)
4 angle← Random (low = 0, high = 2 ∗ π)
5 x← RandomInt (r∗ cos(angle)+node x)
6 y← RandomInt (r∗ sin(angle)+node y)

until Until a valid solution is found
else

// Copy procedure.

7 (x,y)← RetrieveBestSolution (node Neighbors)

8 node nextSolution← (x,y)

NextState (line 5). This procedure is where each model im-
plements its own search rules (i.e. if the sampling will be
done within a full circle or within a ring shaped area). If the
new solution improves the current one, then the agent ac-
cepts it, otherwise it will hold the old solution (line 7). An
iteration is complete after all agents have their search turn.
The process is repeated until there is no more iterations to be
done. We limited the number of iterations to one hundred.

Algorithm 2 details how each individual executes the
NextState procedure in our Ring Model. The first step is to
detect if the solver (agent) holds the best solution among its
neighbors (line 1). If this is the case, then the agent performs
the myopic search procedure, that is randomly selecting the
coordinates of the next solution to be sampled. The coordi-
nates in lines 5 and 6 are bound by a ring shaped area with
a constant radius and constant thickness (lines 2 to 6). If the
agent is not among the best in its neighborhood, the agent
copies both coordinates from her neighbor (line 7). A solu-
tion is valid if it is within the search space coordinates.

The Ring Model can be divided into four types:

Static Homogeneous — All agents have the same fixed ra-
dius throughout the search process.
Static Heterogeneous — Though fixed, there may be di-
verse radii within the same population.
Dynamic Social — Agents copy not only their neighbor’s
solutions, but their radius at each iteration.
Dynamic Random — At each iteration, the agent chooses
a random radius from a limited pool of choices.
The problem instances were generated using a similar pro-
cess to that of (Mason and Watts 2012). The process gener-
ates a continuous bi-dimensional problem space which con-
tains noise - generated using the Perlin noise method (Perlin
1985) - and a single signal - generated by summing a Gaus-
sian to this noise.

Figure 1 depicts one such instance. The size of the search
spaces is fixed at 200 × 200 integer points - i.e. each solu-
tion is a pair (x, y) where x and y are integers within the
range [0, 200). Each combination of (x, y) represents a so-
lution which has a respective score and the problem con-
sists basically of finding the pair that maximizes the func-
tion output. The coordinates of the signal are chosen ran-
domly and the parameters to generate problem instances
are: ω = [2, 3, 4, 5, 6], σ = 9, and persistence parameter
$ = 0.7. The best solution (signal) is the black region while
the noise is depicted as the light grey region. We generated
a new instance for each independent trial and used 1000 in-
dependent trials. Moreover, our search space is larger and
more rugged than the search space employed by Mason &
Watts. This leads to a problem that is harder to solve. The

Figure 1: Sample problem instance: The peak is represented
in black; the noise, in light grey.

peak (best solution) has score of a 100.0. Successful trials
are the ones in which any agent achieve a score equal to or
higher than 95.0. Moreover, we discarded trials where any
agent’s initial score score was higher than or equal to 55.0
in order to avoid the case where an agent is positioned too
close to the peak (best solution).

4 Dissociating Exploitation from Exploration
One of our aims is to compare the effects of exploration and
exploitation in agent behaviors in social problem-solving
systems. We also analyse when such effects are mutually
exclusive. This means that we consider the effects of using
current information to solve a problem, while keeping or not
the chance of finding rather novel solutions.
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In this experiment, we compare the LF model instanti-
ated by (Mason and Watts 2012), with our proposed Ring
Model. The probability of finding the peak for both mod-
els is shown in Figures 2a and 2b. The main parameters
used are the radius and the population size. We considered
the first 32 rounds for this experiment and arranged indi-
viduals in a bi-dimensional periodic grid network where all
agents have the same degree and are at the same average
distance from any other node. By controlling the network,
we remove any effect that a network position may have
on the agent behavior (Kearns, Suri, and Montfort 2006;
Judd, Kearns, and Vorobeychik 2010). Vertical bars repre-
sent 99% confidence intervals using the Wilson score in-
terval method. Both models presented different behaviors

(a) 16 agents

(b) 64 agents

Figure 2: Probability of finding the peak for various radius
sizes in our Ring Model and in the Mason & Watts model.

when individuals have bigger radii. The optimal behavior,
w.r.t. radius size, is around 8 (4% of the grid’s size) in the
Ring Model, but in the Mason & Watts model, the bigger
the radius the better. Thus, even if these models do not sig-
nificantly differ for radius equal to or less than 8, for bigger
radii they clearly depart. This trend is valid for both popula-
tion sizes. Therefore, when one has a homogeneous agents’
population that have traits associated with exploratory be-
havior, one must pay attention to which kind of exploratory
behavior the agents employ. If exploration and exploitation
are packed together (as in the Mason & Watts’ models), the
highest the exploratory bias, the better. However, if this is
not the case, as it is in the Ring Model, that exploratory

and exploitative behaviors co-exist separately; one must fine
tune the agent group to the optimal strategy. We were able
to reproduce the effect we described before in the Mason
& Watts’s version of the LF model: as the individual radius
increased, so did the collective performance.

5 Diversity, Strategy and Network Efficiency
Until now, we experimented with the Ring Model and a ho-
mogeneous population where every agent held the same ra-
dius during the entire solving process. From now on, we will
incorporate diversity into the Ring Model, with both static
and dynamic diversity. Static diversity is characterized by
agents starting with different radii and holding such radii
until the end of the simulation, while in dynamic diversity
they start with different radii, but can change their own ra-
dius during the simulation. Recall that the Ring Model with
static diversity is known as the Static Heterogeneous Model.
In this model, agents start with a radius of 4, 8, 16, 24, or 32
units. Each radius has the same chance of being chosen (the
distribution is uniform).

Dynamic diversity invites an interesting question: how
can strategies be changed on an individual basis? To answer
this question we designed two versions of the Ring Model
with dynamic diversity. The first is called the Social Model,
where agents copy not only the solution of their best neigh-
bor, but also their radius at each iteration; the second one is
the Random Model, where agents always change their radius
randomly after performing search procedures. In both mod-
els, agents start with a random radius. In the random model,
the radii to be chosen are from the same radii pool used in
the Static Heterogeneous model.

Figure 3 depicts the average score of the population over
all trials. We consider 4 models: (1) the homogeneous Ring
Model with radius 8, (2) the Static Heterogeneous Model,
(3) the Random Model, and (4) the Social Model. The aver-
age score includes all trials, whether or not the trial is suc-
cessful. We isolated the effect of the individual position in
the network by using a bi-dimensional periodic grid topol-
ogy. For both population sizes, we observed that the Random
Model and the Heterogeneous Model presented the same av-
erage behavior. The difference between the Heterogeneous
Model and the Random Model is not significant for popu-
lation sizes of 16 and 64 (p=0.2 and p=0.9, respectively).
Thus, random dynamic diversity does not statistically dif-
fer from static diversity in this context. We can also see that
the Social Model never outperformed the Static Heteroge-
neous, nor the Random Model; it is not significantly better
than the Static Homogeneous model for a bigger population
(p=0.57). Even if agents are dynamic, and diverse, the So-
cial Model is not better than the Static Homogeneous Model.
When we remove the influence of network topology our re-
sults suggest that diversity could be more relevant than in-
dividual strategy dynamics which supports results of (Judd,
Kearns, and Vorobeychik 2010).

We then test how network efficiency impacts each model.
We define network efficiency the as the speed that solutions
flow through the network, which is related to the average
shortest path between any two network nodes (Mason and
Watts 2012). An efficient network has small average path
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(a) 16 agents

(b) 64 agents

Figure 3: Average scores over time for different population
sizes and models.

lengths while an inefficient has large ones; i.e. an efficient
network can be seen as a decentralized network where a
good solution spreads faster on average when compared to a
centralized network where the average distance between pe-
ripheral and central agents tend to be higher. The inefficient
(centralized) network was built using the generative model
of (Barabási and Albert 1999). This model produces a net-
work topology with a power-law distribution. This distribu-
tion guarantees a centralization of the network as a minor-
ity of agents will hold most connections. The periodic grid
topology was used as the efficient (decentralized) network.

Table 1 presents data from the experiments for all models
in efficient and inefficient networks. Values between paren-
thesis represent 99% confidence interval using the Wilson
score. We used the population size 64. We observe that a
small population of 16 agents would present a less clear dif-
ference between an efficient and an inefficient network. We
measured these probabilities after the 32nd round, therefore
if any agent found the best solution (peak), we considered it
a successful trial.

The difference among the above models was much
stronger and clear than the difference regarding network ef-

Model Network

Efficient Inefficient

Homogeneous radius 8 0.41 (± 0.06) 0.33 (± 0.06)
Homogeneous radius 16 0.15 (± 0.04) 0.13 (± 0.04)
Homogeneous radius 32 0.01 (± 0.01) 0.03 (± 0.02)
Static Heterogeneous 0.62 (± 0.06) 0.59 (± 0.06)
Dynamic Random 0.62 (± 0.06) 0.54 (± 0.06)
Dynamic Social 0.23 (± 0.05) 0.27 (± 0.05)

Table 1: Probabilities of finding the peak for efficient (de-
centralized) and inefficient (centralized) networks.

ficiency. With the exception of the Social Model, all mod-
els performed slightly better in efficient (decentralized) net-
works when compared to inefficient (centralized) networks.
However, the likelihood of finding the best solution varied
considerably among the models. The Dynamic Random and
the Static Heterogeneous models presented the highest odds
of finding the solution. The small difference between these
models is evidence that static diversity is as effective as dy-
namic diversity. Among the Static Homogeneous versions,
the Ring Model with radius 8 was the best ranked model in
both networks. In this case, the difference between network
efficiency accounted for approximately 20%, while between
the Ring Model with radius 16, the difference was approxi-
mately 64%. The model with radius 32 presented the worst
results for both networks. The Social Model was the only
one that took advantage of an inefficient network; its per-
formance increased by approximately 17% when compared
to the efficient network. These results provide evidence - by
means of artificial agents simulations - that individual be-
havior may have a stronger influence in the collective out-
come than network topologies themselves. This evidence, as
previous researchers have shown, reinforce that “the intrin-
sic behavioral traits of human actors may play a stronger role
in their relative influence than purely structural properties
of their network position” (Judd, Kearns, and Vorobeychik
2010).

In the sequel, we tested if the most central agent would
reach the best solution earlier than the median agent or the
least central one. In order to do so, we retrieved the round
that each of the above agents found the solution, from all
independent trials. One could expect central agents to find
the best solution before the peripheral ones. Results are de-
picted in Figure 4. We used betweenness (Borgatti and Ev-
erett 2006) as a centrality metric and used the Barabasi-
Albert (Barabási and Albert 1999) generative model to gen-
erate the networks. Results are depicted in Figure 4. For this
problem, an agent’s individual position in a network was ir-
relevant. On average, the least central agent, the median and
the most central agent achieved the best solutions at the same
round as seen in Figure 4.

6 Analysis and Discussion of Results
In homogeneous populations, all agents are restricted to a
fixed search radius. As a result, all of them see the search
space through the lens of exactly the same ring. For exam-
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(a) Ring 8 model

(b) Random model

Figure 4: Rounds before finding the peak (solution) for the
most, median, and least central node in: (a) Static Homoge-
neous with radius 8, and the (b) Dynamic Random model.

ple, a possible setup for an homogeneous population con-
sists of all agents having a search ring delimited by an outer
circle of radius 5 and an inner circle of radius 1. We could
also envision a setup in which all agents have an outer ra-
dius of 10 and an inner radius of 8.7. Although the rings
used by agents in both examples would have approximately
the same area (24π and 24.3π), they would render two com-
pletely different strategies. The first setup would render the
population highly exploitation-oriented, as each agent would
be able to see its surroundings in great detail, while not be-
ing granted access to further areas which would usually be
searched by exploration-oriented agents. In contrast, the sec-
ond setup above (radius 10 and inner radius of 8.7) would
render the population highly exploration-oriented, being un-
able to exploit their current solution and thus would be
forced to search for other, far away solutions.

The search space we used in our experiments was a
bi-dimensional Gaussian function with additional random
noise. Let us consider an one-dimensional analogue of this
search space. For simplicity, let us also assume we have a
sinusoidal wave of fixed frequency instead of random noise.
This search space has a global maximum near x = 0, but
several well-distributed local maxima. As a result, agents
that rely solely on exploitation will have a hard time find-
ing the global maximum, often getting stuck at local ones.
As each agent’s ring is limited (agents cannot see through
the ring’s cavity), agents will sometimes be unable to grasp
the general behavior of the curve in a given point, and would
refuse to accept a solution that would bring them closer to

the global maximum, even though they can see it with their
annular vision.

In a homogeneous population, the situation described
above is bound to happen very often. As all agents have
the same search radius, the population as a whole will not
be able to overcome the pitfalls of their particular search
ring, with its agents finding themselves stuck on local max-
ima a lot more often than they should. Conversely, in a het-
erogeneous population, the diversity of shapes agents’ rings
can take assures that no pitfall is more common than any
other. As a result, the probability that at least one search
ring will meet the necessary criteria to get its agent climbing
the search space without getting stuck in any point is max-
imized. Therefore the social dynamics of the agent model
can then spread this agent’s solution throughout the entire
population.

7 Conclusions
Collaboration is a relevant research issue in both human
and AI problem-solving. Mason and Watts’ results sug-
gest that artificial agents were vastly outperformed by hu-
man subjects (Mason and Watts 2012). Our initial hypoth-
esis was that the lack of diversity in artificial agent pop-
ulations was detrimental to their performance. As previ-
ously suggested in the literature (Hong and Page 2004;
Marcolino et al. 2014), diversity (or heterogeneity) in arti-
ficial agent models was thought to reduce the gap between
human and artificial agent collaborative behaviors. In our
investigation, we conducted a series of experiments testing
the performance of homogeneous and heterogeneous pop-
ulations. Our results not only clearly pointed out that het-
erogeneous populations have a significant advantage when
compared to homogeneous counterparts, but also shed new
light on a number of interesting proprieties regarding arti-
ficial agent populations and their diversity. In particular, we
found out that the performance of homogeneous populations
decrease with large radii.

We have drawn qualitative explanations of the rules we
discovered to dictate the performance of homogeneous and
heterogeneous agent populations. We have also analysed the
relationship between our findings and the work of others. We
have shown how our results about the benefits of heterogene-
ity are in conformity to those of (Hong and Page 2004). Ul-
timately, we added supportive evidence that heterogeneous
(diverse) populations are superior, performance-wise, to ho-
mogeneous ones and that diversity is more relevant to col-
laborative problem-solving than dynamic behavior and net-
work efficiency.
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