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Abstract

Transcribed speech is a critical resource for building
statistical speech recognition systems. Recent work has
looked towards soliciting transcriptions for large speech
corpora from native speakers of the language using
crowdsourcing techniques. However, native speakers of
the target language may not be readily available for
crowdsourcing. We examine the following question: can
humans unfamiliar with the target language help tran-
scribe? We follow an information-theoretic approach to
this problem: (1) We learn the characteristics of a noisy
channel that models the transcribers’ systematic percep-
tion biases. (2) We use an error-correcting code, specifi-
cally a repetition code, to encode the inputs to this chan-
nel, in conjunction with a maximum-likelihood decod-
ing rule. To demonstrate the feasibility of this approach,
we transcribe isolated Hindi words with the help of Me-
chanical Turk workers unfamiliar with Hindi. We suc-
cessfully recover Hindi words with an accuracy of over
85% (and 94% in a 4-best list) using a 15-fold repeti-
tion code. We also estimate the conditional entropy of
the input to this channel (Hindi words) given the chan-
nel output (transcripts from crowdsourced workers) to
be less than 2 bits; this serves as a theoretical estimate
of the average number of bits of auxiliary information
required for errorless recovery.

1 Introduction
Recently, crowdsourcing has been explored as a valuable
resource to speedily derive transcriptions for large speech
databases, e.g. (Callison-Burch and Dredze 2010; Novotney
and Callison-Burch 2010; Eskenazi et al. 2013). However,
prior work has typically relied on the crowd workers being
native speakers of the language in question. An interesting
question to investigate is the possibility of recovering spo-
ken words from mismatched transcriptions, i.e., transcrip-
tions by crowd workers who do not know the language.

How does one hear (or rather, mishear) a foreign lan-
guage? Indeed, the phenomenon of “cross-linguistic mon-
degreens” (mondegreen refers to the misinterpretation of a
phrase as a result of it being nearly homophonic with the
original) have captured the imagination of scholars and lay
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people alike.1 On the face of it, recovering the original text
from mismatched transcriptions seems like a very hard prob-
lem as crucial information about the original text is lost in
such a transcription. However, even though no single in-
dividual can provide sufficient information to recover the
foreign language transcriptions, using a crowd of workers
might allow us to do so. We initiate a systematic inquiry
into this question.

We formalize the problem of decoding from mismatched
transcriptions as follows. We are given a corpus of speech
in a foreign language and access to a crowd unfamiliar with
that language. The crowd workers can be requested to listen
to segments of this speech and provide us with English letter
sequences that most closely match what they hear. The prob-
lem then is to recover a transcription of the original speech
from these letter sequences.

Our main contributions in this work are:

• We follow an information-theoretic approach, by model-
ing the mismatched crowd transcribers as a noisy channel,
along with using an encoding scheme (a repetition code)
and a maximum likelihood decoding rule.

• We provide an information-theoretic analysis of how
much information is lost in transmission through the mis-
matched channel; we derive a tight upper-bound for con-
ditional entropy of the inputs given the outputs of the
channel.

• We demonstrate the feasibility of our technique using an
isolated word recovery task for Hindi – we predict tran-
scriptions for isolated words in Hindi using mismatched
transcriptions from crowd workers unfamiliar with Hindi.
We successfully recover more than 85% of the words (and
more than 94% in a 4-best list).

2 Noisy Channel Model for Mismatched
Transcription

Mismatched transcription can be modeled as a noisy chan-
nel as shown in Figure 1. The input to the system is text
in the foreign language, X . It is then encoded into speech,

1See, for example:
http://itre.cis.upenn.edu/∼myl/languagelog/archives/005100.

html
http://en.wikipedia.org/wiki/Homophonic translation
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Figure 1: Noisy channel model for mismatched transcription

A, by a native speaker. This speech gets fed as input to the
“crowd channel” which outputs an English transcription, Y .
In a single invocation of the channel, one individual from
the crowd listens to a segment of speech and writes down
a sequence of English letters which is sent to the decoder.
The decoder is considered to be successful if the output it
produces, X̃ , matches X . Ideally, we would like to use the
maximum likelihood decoding rule2 :

x̃ = argmax
x

p(x|y)

= argmax
x

p(y|x) · p(x) (1)

In practice, one will use learned estimates q(y|x) and q(x)
of p(y|x) and p(x), respectively. Even if we have accurate
estimates of p(y|x) and p(x), this decoder cannot accurately
recover x, since multiple values of x could be mapped to the
same value of y. To get around this, one needs to resort to an
error-correction code (Shannon 1948). However, in our case,
we have limited freedom in designing this code as the orig-
inal text, x, is not directly available for encoding: only the
encoded speech, a, is available to us. Given this restriction,
we resort to the use of a simple, repetition code illustrated in
Figure 2. Note that the channel is invoked k times, once for
each repetition of the speech segment, a, output by the en-
coder. Each of the k channel invocations could potentially
involve a different individual transcriber from the crowd.
In fact, we model the outputs y(1), . . . , y(k), as identically
and independently distributed (i.i.d.) samples produced by
the crowd channel. The maximum likelihood decoder in this
case outputs:

x̃ = argmax
x

p(y(1) . . . y(k)|x) · p(x)

= argmax
x

p(x)
k∏

i=1

p(y(i)|x) (2)

Now, the maximum likelihood decoder can indeed recover
the text message with probability tending to 1 as k →∞, as
long as for every two distinct x and x′ there is some y such
that p(y|x) 6= p(y|x′).

An Information-Theoretic Analysis of the Channel
We can use information-theoretic tools to estimate how ac-
curately the words can be decoded from mismatched tran-
scriptions with the help of multiple labelers. Conditional en-
tropy of the inputs (X) given the outputs of the channel (Y )
captures the amount of information that is lost in transmis-
sion through the channel. We shall estimate an upper-bound

2Here, x̃, x and y are values of the random variables X̃ , X and
Y , respectively.

Figure 2: Noisy channel model for mismatched transcription
with repetition coding

of this conditional entropy using cross entropy, which can in
turn be estimated from a corpus of data. We note that such an
estimate can be computed even without an accurate model
of the channel. However, the gap between conditional and
cross entropy increases with the error in the model. Due to
this gap, we run into the following issue.

In our model, q(y(1) . . . y(k)|x) =
∏k

i=1 q(y
(i)|x) and

hence, errors in our channel model q(y(i)|x) accumulate as
k increases. As a result, the upper bound on conditional en-
tropy becomes less tight with an increase in the number of
repetitions. To counteract this effect, we propose augment-
ing the upper bound analysis using an auxiliary random vari-
able. This random variable could intuitively be thought of as
side channel information, indicating when the model needs
to be corrected.

Let W be the auxiliary random variable, jointly dis-
tributed with (X , Y ). Let W = (Z, Ẑ) where Ẑ is a binary
random variable which is a deterministic function of X,Y
(discussed later) and Z = ε, if Ẑ = 0 and Z = X , if Ẑ = 1.
For brevity, we will use the notation p0 and p1 for P (Ẑ = 0)

and P (Ẑ = 1), respectively.
Using (Z, Ẑ), conditional entropy can be upper-bounded

as follows:

H(X|Y ) = H(X|Y,Z, Ẑ) + I(Z, Ẑ;X|Y )

≤ H(X|Y,Z, Ẑ) +H(Z, Ẑ)

= H(X|Y,Z, Ẑ) +H(Ẑ) +H(Z|Ẑ)
= p0 ·H(X|Y,Z, Ẑ = 0)

+ p1 ·H(X|Y,Z, Ẑ = 1) +H(Ẑ)

+ p0 ·H(Z|Ẑ = 0) + p1 ·H(Z|Ẑ = 1)

= p0 ·H(X|Y,Z, Ẑ = 0) +H(Ẑ)

+ p1 ·H(Z|Ẑ = 1)

= p0 ·H(X|Y, Ẑ = 0) +H(Ẑ) + p1 ·H(Z|Ẑ = 1)

= p0 ·H(X|Y, Ẑ = 0) +H(Ẑ) + p1 ·H(X|Ẑ = 1)

≤ p0 ·H(X|Y, Ẑ = 0) +H(Ẑ) + p1 log |X | (3)

where the first inequality follows from the fact that mutual
information is non-negative. From the definition of Ẑ, we
also have H(X|Y,Z, Ẑ = 1) = 0 and H(Z|Ẑ = 0) = 0.
The last inequality is becauseH(X|Ẑ = 1) ≤ log|X |where
X is the alphabet of X .
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Note that setting Ẑ = 0 always (i.e., p0 = 1) has the effect
of not using an auxiliary random variable which corresponds
to the typical cross-entropy bound. We shall specify a better
choice of Ẑ after describing how the first term in Equation 3
is estimated.

To estimate the quantities in Equation 3, we rely on a data
set with N samples (xi, yi), i = 1 to N . Without loss of
generality, we assume that the first N0 samples have Ẑ = 0

and the rest have Ẑ = 1. Then, p0 is estimated as N0

N . The
first term in Equation 3 is estimated as:

H(X|Y, Ẑ = 0) = E(x,y)∼X,Y |Ẑ=0[− log p(x|y, Ẑ = 0)]

≤ E(x,y)∼X,Y |Ẑ=0[− log q(x|y, Ẑ = 0)]

≈ 1

N0

N0∑

i=1

− log q(xi|yi, Ẑ = 0)

≤ 1

N0

N0∑

i=1

− log q(xi|yi) (4)

where the first inequality follows from the fact that cross-
entropy is an upper bound on entropy. The second inequality
is because for all i ∈ [N0], q(Ẑ = 0|xi, yi) = 1, which
implies q(yi, Ẑ = 0|xi) = q(yi|xi) and then

q(xi|yi, Ẑ = 0) =
q(yi, Ẑ = 0|xi)q(xi)

q(yi, Ẑ = 0)

=
q(yi|xi)q(xi)
q(yi, Ẑ = 0)

≥ q(yi|xi)q(xi)
q(yi)

= q(xi|yi)

where q(xi|yi) is computed using a standard invocation of
the Bayes’ rule:

q(xi|yi) =
q(yi|xi)q(xi)∑
x∈X q(yi|x)q(x)

where q(yi|x) =
∏k

j=1 q(y
(j)
i |x). Substituting Equation 4

in Equation 3, we get:

H(X|Y ) /
1

N

(
(N −N0) log |X |+

N0∑

i=1

− log q(xi|yi)
)

+H2(
N0

N
) (5)

where H2(p) = p log 1
p + (1 − p) log 1

1−p is the binary en-
tropy function.

To complete the description of the bound in Equation 3,
we need to define Ẑ. We recall that Ẑ is a deterministic func-
tion of X,Y . By inspecting Equation 3 and Equation 4, a
natural choice for Ẑ is:

Ẑ(x, y) =

{
1 if − log q(x|y) > log |X |
0 otherwise

(6)

Indeed, if we ignored the termH(Ẑ) in Equation 3 and used
the cross-entropy bound from Equation 4, then this choice
of Ẑ minimizes the bound.

Figure 3: Noisy channel model, q(y|x), implemented using
finite state transducers.

3 Implementation Details

Both the channel and decoding algorithm are efficiently im-
plemented using finite state transducers, as described below.

Estimating the Channel

We observe pairs of training instances, (x, y), where x refers
to a phonetic representation of text in the foreign language
and y is the corresponding English letter sequence pro-
duced by the crowd worker. We then apply maximum like-
lihood training using the Expectation Maximization (EM)
algorithm (Dempster, Laird, and Rubin 1977) to estimate
q(y|x). Such models have been successfully used in machine
transliteration problems (Knight and Graehl 1998).

The channel model is implemented using finite-state
transducers (FSTs). Figure 3 shows a schematic diagram
of our FST representation of the channel. The FST in Fig-
ure 3 probabilistically maps each phone in x to either a sin-
gle English letter or a sequence of two English letters. A
few mappings are shown in Figure 3 for purposes of illustra-
tion only; the FST model we build has transitions from every
phone to every letter and two-letter sequence. The weights
on the arcs of the FST model are negative log probabilities;
these are learned using EM to maximize the likelihood of
the observed data. We used the USC/ISI Carmel finite-state
toolkit3 for EM training and the OpenFst toolkit4 (Allauzen
et al. 2007) for all finite-state operations.

The channel model could be further expanded into a cas-
cade of FSTs using additional domain-specific information.
For example, the errors introduced by the speaker (the en-
coder in Figure 1) can be modeled using an FST based on
distinctive features (Chomsky and Halle 1968) or articula-
tory features (e.g., Livescu 2005). However, in this work, we
restrict ourselves to a simpler model and nevertheless obtain
low error rates for our task of isolated word recovery. We
leave it for future work to build more sophisticated channel
models which might be required for more complex tasks like
continuous speech recovery.

3http://www.isi.edu/licensed-sw/carmel/
4http://www.openfst.org
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i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
y(i) poring puda raab waatap fotup forup puddop pooda puda purap poduck purap poodal foora foodap
IND reporting pad. ā rāhat voting voter foreign padtā pūjā pad. ā pūrā kad. ak pūrā pad. tāl for voting

CUM reporting pad. egā pad. egā pad. egā pratī foreign pad. ā pūrā pūrā pūrā pūrā pūrā pūrā pūrā pūrā

Table 1: An illustrative example showing Turker transcriptions and decoded words for a Hindi word, pūrā. Row labeled y(i)
shows the mismatched transcriptions from the Turkers. IND refers to decoding using only the transcription from the ith Turker.
CUM refers to decoding using the first i Turker transcriptions.

Decoding Rule
The maximum likelihood decoding rule, described in Equa-
tion (2), can be rephrased as:

x̃ = argmax
x

q(x)
k∏

i=1

q(y(i)|x)

= argmin
x
− log(q(x)) +

k∑

i=1

− log(q(y(i)|x)) (7)

In order to evaluate the channel model without a language
model bias, we use a uniform distribution for X: i.e., q(x) is
identical for all x. For a given x, y, − log q(y|x) is approx-
imated as the shortest path with input x and output y in the
channel FST.5 In order to accommodate for the high vari-
ability in the crowd channel, we may modify the decoding
rule using a scaling function, F as follows:

x̃ = argmin
x

k∑

i=1

F(log(q(y(i)|x))) (8)

4 Experiments
Experimental Setup
We gained access to crowd workers using Amazon’s Me-
chanical Turk (MTurk)6 – an online marketplace where
workers (Turkers) perform simple tasks (also called human
intelligence tasks, or HITs) for nominal amounts of money.
We chose Hindi as the foreign language in our experiments
and requested only Turkers unfamiliar with Hindi to attempt
the HITs. A total of 134 Turkers participated in our exper-
iments. 119 of them provided information about the lan-
guages they are familiar with (apart from English). 73 Turk-
ers listed no language other than English; Spanish was the
most frequently listed language (21 Turkers), followed by
French (9), Japanese (8), Chinese (5) and German (5); 12
other languages were listed by 3 or fewer Turkers.

We extracted Hindi speech from Special Broadcast-
ing Service (SBS, Australia) radio podcasts7 consisting of
mostly spontaneous, semi-formal speech. Our data corpus
comprised approximately one hour of speech selected from
the above podcasts, containing speech from five interview-
ers totaling close to 10,000 word tokens. This speech was
then manually transcribed at the phonetic level by a Hindi

5This is a good approximation, as is often the case in similar
models, since one alignment tends to be far more likely than others.

6
http://www.mturk.com

7
http://www.sbs.com.au/podcasts/yourlanguage/hindi/

speaker. A training set and evaluation set were constructed
using short segments of speech extracted from this corpus.
It was ensured that segments of speech used in training did
not overlap with any segments used in the evaluation set.

For the training set, we segmented all our data into short
speech segments, approximately 1 or 2 seconds long. The
reason for choosing short segments was to make the tran-
scription task easier for the Turkers. Indeed, it was observed
in a pilot experiment that longer speech segments tend to re-
sult in transcripts with large proportions of Hindi phones be-
ing deleted. For our evaluation data, we excised 200 isolated
words from our 1 hour corpus, that were well-articulated.
We created a vocabulary comprising all the words in our
data, along with the 1000 most frequent words from Hindi
monolingual text in the EMILLE corpus (Baker et al. 2002).
The total size of our vocabulary was 2444 words.

For the Hindi speech in both the training and evaluation
data sets, the Turkers were asked to provide English text that
most closely matched what they heard; they were urged not
to use valid English words as far as possible. We also con-
ducted an experiment where the Turkers were specifically
asked to provide only valid English words that most closely
matched the Hindi speech.

Each word in the evaluation set was transcribed by 15 dis-
tinct Turkers. Thus, for each word itself, our i.i.d. assump-
tion for the crowd channel is reasonable. However, there is a
correlation across words since we allowed a single Turker to
attempt multiple words. Nevertheless, this correlation is lim-
ited as the HITs completed quickly. And on average, each
Turker provided 22 transcriptions (since 134 Turkers pro-
vided a total of 3000 transcriptions from 15 repetitions for
200 words).

Isolated Word Recovery Experiments

The isolated word recovery problem is a variant of the mis-
matched transcription problem, in which the inputs X cor-
respond to isolated Hindi words drawn from a vocabulary
X . For this problem, the maximum-likelihood decoding rule
(Equation 2) can be implemented by enumerating q(y|x) for
all x ∈ X . As described before, when y = (y(1), . . . , y(k)),
instead of q(y|x) we can use

∑k
i=1 F(log(q(y(i)|x))) as in

Equation 8. As the scaling function F , we use the square
root function, i.e., F(α) = √α.

Table 1 gives an illustrative example of inputs from the
Turkers and the output from our decoder. The second row
(y(i)) shows all fifteen Turker transcripts for a Hindi word,
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Figure 4: N-best error rates for varying number of Turkers
and two different training set sizes. (L) and (S) indicate two
different training set sizes.

pūrā;8 English words occurring in the vocabulary are ital-
icized. The next row shows the result of decoding each of
these Turkers individually. Note that only two of them result
in the correct word (the words pad. ā and voting also appear
twice). The last row shows the result of decoding using the
first i Turker transcriptions. Here, the correct word appears
once we see a sufficiently large set of Turker transcriptions.

Figure 4 shows N -best error rates for channel models
trained on instances from two different training sets: (S) cor-
responds to a training set comprising only the 1-second ut-
terances and (L) consists of both 1-second and 2-second ut-
terances. (S) and (L) contain 3992 and 7720 pairs of Hindi
phone/English letter sequences, respectively. TheN -best er-
ror rate is computed by considering how often the correct
word appears within the top-N scoring words predicted by
our channel model. We refer to the 1-best error rate simply
as the error rate.

We see that the error rates consistently decrease with the
increasing number of Turkers. We note that using transcripts
from a single Turker results in an error rate of more than
50% whereas using all Turkers brings the error rate down
to less than 15%. This plot exhibits a trend of diminishing
returns with the first additional Turker giving the greatest
decrease in error rates.

We note that if the words that appeared in the evaluation
set have a large number of similar sounding words in the
vocabulary, we can expect the task of word recovery to be
harder. To quantify this inherent confusability, we consider
word neighborhood statistics. Two words are said to be t-
neighbors if one can be converted to the other using at most t
edit operations (i.e., phone substitutions, insertions and dele-

8We use the International Alphabet of Sanskrit Transliteration
(IAST) for the Hindi text.
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Figure 5: Estimates of conditional entropy (CE) of X given
Y on the evaluation set for varying number of Turkers.

tions). For each word in the evaluation set, we compute the
size of its t-neighborhood: on average, each word has 142
words that are 3 or less edit operations apart, indicating siz-
able neighborhoods of fairly confusable words.

In order to provide a benchmark for the error rates, we
also describe an oracle baseline system. For every word in
the evaluation set, let us assume an oracle provides its 1-
neighborhood set i.e. the set of most confusable words in the
vocabulary. The oracle baseline system chooses one of the
1-neighborhood words at random as the output word. Such
a system, where the number of candidate words to choose
from is considerably smaller, would still give us an error rate
of 39.5% as opposed to our 1-best system that gives a 14.5%
error rate.

Transcriptions using valid English words Since the
mapping from English letters to phonemes is far from de-
terministic, the pronunciation that the Turker intended to
communicate cannot be exactly determined by our decoding
algorithm. One possible approach to circumventing this is-
sue is to require the transcribers to use a phonetic alphabet.
However, since Turkers cannot be expected to be familiar
with such an alphabet, an alternative is to require the Turk-
ers to provide transcripts in the form of one or more valid
English words that most closely matched the Hindi speech.
This ensures that the Turkers have more accurate informa-
tion about how their transcripts will be interpreted. On the
other hand, the Turkers may not be able to find a valid En-
glish word that is close to what they perceive, and will be
forced to provide words which lose valuable information.

We experimentally determined the effect of this restric-
tion, by repeating our entire experiment, but requiring the
Turkers to use only valid English words in their transcripts.
The English words were then mapped to their respective
pronunciations using the CMU-dictionary (Weide 2007).
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Figure 6: Hindi sounds (phones labeled using IPA symbols)
with probabilistic mappings to English letter sequences.

The channel model was estimated using EM as described
in Section 3, except y was set to be English phone se-
quences instead of letter sequences. The 1-best error rate
increased to 30% in this experiment (from 14.5% when al-
lowing English nonsense syllables). This suggests that the
effect of losing information by restricting the transcription
sequences (to valid English words) overshadows the advan-
tage of a more deterministic phonetic interpretation of the
Turker transcripts.

Conditional Entropy Estimates
As described in Equation 5 of Section 2, we proposed a gen-
eralized upper-bound estimate for conditional entropy (CE)
using an auxiliary random variable. This can be used to get
tighter upper bounds than a straightforward cross-entropy
bound. Figure 5 illustrates the significance of the tighter
upper-bound: the naive upper-bound increases (after an ini-
tial drop) with increasing number of Turkers, contrary to the
fact that more information from larger number of Turkers
can only reduce the conditional entropy. This is because, as
mentioned in Section 2, the cross-entropy bound degrades as
the gap between the channel and its model increases, which
in turn increases as the number of Turkers increase. On the
other hand, our upper bounds using the auxiliary random
variable (defined by Equation 5 with log |X | ≈ 11.26 and
Equation 6) do not suffer from this artifact and are clearly
tighter, as seen in Figure 5.

Channel Characteristics
Figure 6 visualizes the main probabilistic mappings from
Hindi phones (labeled using the International Phonetic Al-
phabet, IPA) to English letter sequences, as learned by EM
with a uniform initialization. We only show Hindi phones
with 1000 or more occurrences in the training data. Map-
pings with conditional probabilities less than 2% are omit-
ted, along with phone deletions. This plot reveals some fairly
systematic patterns of mismatch. For example, unaspirated
voiceless stop phones in Hindi such as “p” and “k” were

Phone Classes (in Hindi) Conditional
Entropy (in bits)

All phones 2.90
All vowels 3.05
All consonants 2.79
Consonants also in English 2.67
Consonants not in English 3.20

Table 2: Conditional entropy of English letters given Hindi
phones for different phone classes, according to our model.

sometimes perceived to be their voiced English counter-
parts, “b” and “g”, respectively. Voiceless stops in Hindi
are unaspirated but are typically aspirated in word-initial or
stressed syllables in English. This causes them to be con-
fused for their voiced counterparts when Hindi speech is
transcribed by English speakers.

To quantitatively analyze the variability in the English let-
ters given Hindi phones, we compute the conditional entropy
H(Y |X) where X is a single Hindi phone and Y is an En-
glish letter sequence of length 1 or 2, according to the model.
We do this for four different classes of phones shown in Ta-
ble 2.9 We see that for the class of Hindi consonants that
do not appear in English, the conditional entropy is highest,
suggesting that Turkers have higher uncertainty about tran-
scribing these sounds. Conversely, the phone class of conso-
nants that appear both in Hindi and English has the lowest
conditional entropy. The vowel class, compared to the class
of all consonants, shows higher variability probably due to
higher variability in spelling vowel sounds.

5 Discussion
In our current experiments, we restricted ourselves to an
isolated word recovery task. However, our techniques are
amenable to being extended to a continuous speech recovery
task, with the help of a language model. Specifically, a lan-
guage model implemented as a weighted FST can be incor-
porated within our decoder, instead of enumerating through
a list of all hypotheses (Mohri, Pereira, and Riley 2002).

This work does not attempt to estimate the reliability
of Turkers by exploiting information about the multiple
tasks completed by the same Turker. While there has been
prior work on reliable crowdsourcing (Karger, Oh, and Shah
2011; 2013; Vempaty, Varshney, and Varshney 2014) which
exploits such information, it has focused on classification
tasks with a small number of classes. In contrast, our set-
ting of isolated word recovery involves a much larger label
space, which becomes exponentially larger if we move to the
continuous speech setting (described in the previous para-
graph). Incorporating reliability estimates in these settings
will require new techniques which we leave for future work.

There has been a significant amount of prior work in lin-
guistics on language-specific perception errors, often within
the context of second language learning (for some early

9A consonant in Hindi is considered to also be present in En-
glish if its IPA symbol appears in the English phonetic alphabet.
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reviews of this work, see (Yamada and Tohkura 1992;
Pisoni and Lively 1995; Akahane-Yamada 1996)). Interest-
ingly, our approach suggests a way to study second language
perception more broadly using noisy channel models.

Our generalized cross-entropy bound from Equation 5
serves as a quantitative measure of how well spoken words
in one language can be communicated by mismatched tran-
scribers in another language. This measure could be used
to evaluate the effect of different features of the spoken
words (e.g., read speech vs. spontaneous speech, fast vs.
slow speech, speech in a tonal language vs. in a non-tonal
language, etc) as well as the compatibility between the spo-
ken language and the transcribers’ native language. For ex-
ample, one could expect tonal languages like Mandarin and
Vietnamese to have a higher conditional entropy than Hindi
for an English transcriber. This could be an interesting di-
rection for future work.

6 Conclusions
This work establishes, for the first time, the possibility of
acquiring speech transcriptions in a foreign language using
crowdsourced workers unfamiliar with that language. On an
isolated word recovery task, we obtain more than 85% ac-
curacy using only the mismatched transcriptions. We also
present an information-theoretic analysis of this problem, in-
cluding a mechanism for estimating the amount of informa-
tion lost in a mismatched transcription channel as a function
of the number of transcriptions sought per utterance. There
are many directions for future work, including extending our
results to continuous speech recovery, experimenting with
other languages and obtaining improved performance by es-
timating reliability statistics for the crowd workers.

We intend to scale our approach to cost-effectively create
training data for developing speech technology in minority
languages, using active learning algorithms (using partially
trained recognition systems to determine which speech data
need transcripts) and semi-supervised learning techniques
(training a recognition system with an initial set of tran-
scribed data and using it to acquire more labels).
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