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Abstract

During the Vienna Summer of Logic, the first FLoC Olympic
Games were organized, bringing together a dozen compe-
titions related to logic. Here we present the highlights of
the Satisfiability (SAT) and Answer Set Programming (ASP)
competitions.

Introduction
The SAT Competitions, organized since 2002, have been the
driving force of SAT solver development. The performance
of contemporary SAT solvers is incomparable to those of a
decade ago. As a consequence, SAT solvers are used as the
core search engine in many utilities, including tools for hard-
ware and software verification. In 2014, the SAT Competi-
tion was organized for the ninth time. As in earlier editions,
SAT Competition 2014 consisted of three categories: in-
dustrial, hard-combinatorial, and random benchmarks. Sim-
ilarly, the ASP Competition has a great impact on system
development in ASP. Unlike the SAT Competition, its em-
phasis lies on modeling and tracks reflecting different lan-
guage fragments with an increasing level of expressiveness.

What’s Hot in SAT
The SAT Competition 2014 (SC14) was larger than any of
its earlier editions: 79 participants from 14 countries sub-
mitting a total of 137 solvers. The number of participating
solvers was restricted to 70 by limiting the number of solvers
per (co-)author. A large timeout of 5,000 seconds was used
for each solver/benchmark pair. SC14 consumed 400,000
hours of CPU time, which were executed in only five days
on the Lonestar cluster at Texas Advanced Computing Cen-
ter (TACC) at The University of Texas at Austin.

The big winner of SC14 was Armin Biere, whose tools
lingeling (sequential) and plingeling (parallel) (Biere 2014)
solved most industrial benchmarks and also performed well
on hard-combinatorial instances. The crucial difference be-
tween lingeling and most other top solvers is inprocess-
ing (Järvisalo, Heule, and Biere 2012): applying preprocess-
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ing techniques during search. Roughly speaking, lingeling
and plingeling alternate each second between a conflict-
driven clause learning (CDCL) engine and inprocessing.

Since SAT Competition 2013, it is mandatory for solvers
participating in the unsatisfiability tracks to emit refutation
proofs to ensure that the results are correct. A new proof
format for refutations, called DRAT, introduced this year
supports expressing all techniques used in state-of-the-art
solvers compactly. Some solvers, such as lingeling, use tech-
niques that cannot be expressed using resolution and can-
not be expressed in the SAT Competition 2013 formats.
One technique that cannot be expressed using resolution,
but is used in some top solvers, is bounded variable addi-
tion (Manthey, Heule, and Biere 2013). The DRAT format
facilitates expressing this (and other techniques) compactly,
and DRAT proofs were efficiently checked during SC14 us-
ing the DRAT-trim tool (Wetzler, Heule, and Hunt 2014).

The results on random benchmarks were exciting this year
as the (single core) solver dimetheus (Gableske 2014a) by
Oliver Gableske outperformed all other solvers, even paral-
lel ones (which ran on twelve cores), on random benchmarks
with a huge margin. dimetheus consists of two engines,
one based on Message Passing (MP) (Gableske 2014b) and
one based on Stochastic Local Search (SLS) (Balint and
Schöning 2012). The MP engine is used to initialize the
SLS engine with an “almost satisfying” assignment. None
of the other solvers that participated in SC14 used an MP
engine, but the success of dimetheus might change that in
future competitions.

There are several challenges regarding SAT solvers. First,
just a few years ago, parallel versions of top-tier SAT solvers
frequently performed worse than the sequential versions
(measured in wall-clock time). The last two years, parallel
SAT solver performance clearly improved, the gains on a
12-core machine are still modest. This holds for both CDCL
and SLS solvers. Second, the unsatisfiability results of par-
allel SAT solvers cannot be validated efficiently, in contrast
to checking the results of sequential SAT solvers. Bridging
this gap would increase the trust in the results of parallel
SAT solvers. Third, although we witnessed a huge perfor-
mance boost of a local search solver on random benchmarks
this year, SLS solvers still perform poorly on most industrial
benchmarks. Achieving similar speed-ups by SLS solvers on
industrial benchmarks will be a big challenge.
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What’s Hot in ASP
ASP is a multi-faceted Boolean constraint solving paradigm
due to its strong roots in Knowledge Representation and
Reasoning. First of all, ASP comes with a rich yet simple
first-order modeling language that features object variables,
classical and default negation, cardinality and weight con-
straints, (multi-criteria) optimization directives, and notably
recursion. As a consequence, the ASP solving process con-
sists of two phases, an initial grounding phase in which first-
order problem representations are translated into a propo-
sitional format, followed by the actual solving phase, com-
puting the (stable) models of the obtained propositional rep-
resentation. While modern ASP grounders are Turing com-
plete, since they allow for dealing with function symbols in
an unrestricted way, ASP solvers allow for solving problems
at the second level of the polynomial hierarchy (when opti-
mizing problems even go up to ∆P

3 ). The high expressive-
ness is motivated by modeling needs, where deterministic
parts are (implicitly) addressed by the grounder, and the ac-
tual search is left to the solver.

This richness is also reflected by the series of interna-
tional ASP Competitions that was started at two Dagstuhl
meetings on ASP in 2002 and 2005 (Borchert et al. 2004)
and led in 2007 to the official competition series (Gebser et
al. 2007). Usually, each competition features two principal
tracks: a model-and-solve as well as a systems track. The
latter is similar to the approach pursued in SAT but prob-
lems are not expressed in a machine readable format but
in a human readable one; problem instances are then pro-
cessed by both a grounder and a solver. With the competition
in 2013, the ASP community adopted a common language
standard (Calimeri et al. 2012). This standard is supported
by the grounders of the gringo 4 (and clingo 4) series, and
(soon) the grounder of dlv (dlv). Unlike the systems track,
the language of the model-and-solve track is left open in or-
der to welcome non ASP systems as well. For instance, apart
from genuine ASP systems, model expansion, Prolog, as
well as planning systems participated in previous ASP com-
petitions. The model-and-solve competition then consists in
solving problems given in natural language along with some
fixed instance format. At the occasion of this year’s Vienna
Summer of Logic an online variant was added (following
the customary Prolog competitions hosted by the ICLP con-
ference series). Teams of one to three members, using one
computer, had 90 minutes to model and solve five problems.
This competition was won by Mario Alviano, Carmine Do-
daro, and Wolfgang Faber.

The ASP competitions are usually held biannually in
odd years. The extraordinary competition during the Vienna
Summer of Logic resulted in a reduced field of 16 participat-
ing ASP systems featuring only the above mentioned online
variant along with the usual systems track. The competition
consisted of two categories, allocating one or multiple pro-
cessors to each system, respectively. To reflect the variety of
ASP, each category was structured in four tracks:

Basic Decision Encodings: normal logic programs, simple
arithmetic and comparison operators.

Advanced Decision Encodings: full language with queries,

excepting optimization statements and non-HCF disjunc-
tion.1

Optimization Encodings: full language with optimization
statements, excepting non-HCF disjunction.

Unrestricted Encodings: full language.
The language’s expressiveness along with its associated

complexity is meant to increase over the tracks. All but one
track were won by the native ASP solver clasp (potassco);
the (single processor) Advanced Decision track was won by
the translation-based solver lp2normal2+clasp (lp2normal)
using clasp with a dedicated preprocessor.
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