
Recursive Best-First Search with Bounded Overhead

Matthew Hatem and Scott Kiesel and Wheeler Ruml
Department of Computer Science

University of New Hampshire
Durham, NH 03824 USA

mhatem and skiesel and ruml at cs.unh.edu

Abstract

There are two major paradigms for linear-space heuristic
search: iterative deepening (IDA*) and recursive best-first
search (RBFS). While the node regeneration overhead of
IDA* is easily characterized in terms of the heuristic branch-
ing factor, the overhead of RBFS depends on how widely the
promising nodes are separated in the search tree, and is harder
to anticipate. In this paper, we present two simple techniques
for improving the performance of RBFS while maintaining
its advantages over IDA*. While these techniques work well
in practice, they do not provide any theoretical bounds on the
amount of regeneration overhead. To this end, we introduce
RBFSCR, the first method for provably bounding the regener-
ation overhead of RBFS. We show empirically that this im-
proves its performance in several domains, both for optimal
and suboptimal search, and also yields a better linear-space
anytime heuristic search. RBFSCR is the first linear space
best-first search robust enough to solve a variety of domains
with varying operator costs.

Introduction
Linear-space search algorithms only require memory that is
linear in the depth of the search. Iterative Deepening A*
(IDA*, Korf 1985) is a linear space analog to A* that does
not keep an open or closed list. If its evaluation function
f is monotonic (f is nondecreasing along every path), then
IDA* expands nodes in best-first order. However, if f is
non-monotonic, IDA* tends to expand nodes in depth-first
order (Korf 1993).

Weighted A* (WA*, Pohl 1973) is a popular bounded
suboptimal variant of A* that uses a non-monotonic eval-
uation function to find w-admissible solutions, solutions
with cost bounded by a specified factor w of an optimal
solution. Weighted IDA* (WIDA*) is the corresponding
bounded suboptimal variant of IDA* and it uses the same
non-monotonic function. Unlike WA*, which converges to
greedy search as its suboptimality bound increases, WIDA*
behaves more like depth-first search, resulting in longer,
more costly solutions and in some cases, longer solving
times than WA*. Thus WIDA* is not an ideal analog for
WA*. Recursive Best-First Search (RBFS, Korf 1993) on
the other hand, is a better linear space analog to WA*. It uses

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the same best-first search order as WA* and returns cheaper
solutions than WIDA*.

Like IDA*, RBFS suffers from node regeneration over-
head in return for its linear space complexity. While the
node regeneration overhead of IDA* is easily characterized
in terms of the heuristic branching factor (Korf 1985), the
overhead of RBFS depends on how widely the promising
nodes are separated in the search tree. Moreover, as we
explain below, RBFS fails on domains that exhibit a large
range of f values. The main contribution of this paper is a
set of techniques for improving the performance of RBFS.
We start with two simple techniques that perform well in
practice but provide no theoretical guarantees on perfor-
mance. We present a third technique that is more complex
to implement but performs well in practice and comes with
a bound on reexpansion overhead, making it the first linear
space best-first search robust enough to solve a variety of
domains with varying operator costs. Because of RBFS’s
best-first search order, it also leads to a better anytime algo-
rithm. While IDA* enjoys widespread popularity, we hope
this work encourages further investigation of linear-space
techniques that maintain a best-first search order.

Previous Work
Iterative Deepening A*
IDA* performs iterations of bounded depth-first search
where a path is pruned if f(n) becomes greater than the
bound for the current iteration. After each unsuccessful iter-
ation, the bound is increased to the minimum f value among
the nodes that were generated but not expanded in the previ-
ous iteration. Each iteration of IDA* expands a superset of
the nodes in the previous iteration. If the size of iterations
grows geometrically, then the number of nodes expanded by
IDA* is O(N), where N is the number of nodes that A*
would expand (Korf 1985).

In domains with a wide range of edge costs, there can
be few nodes with the same f value and the standard tech-
nique of updating the bound to the minimum f value of un-
expanded nodes may cause IDA* to only expand a few new
nodes in each iteration. The number of nodes expanded by
IDA* can be O(N2) in the worst case when the number of
new nodes expanded in each iteration is constant (Sarkar et
al. 1991). To alleviate this problem, Sarkar et al. introduce

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

1151

RBFS(n, B)
1. if n is a goal
2. solution← n; exit()
3. C ← expand(n)
4. if C is empty, return∞
5. for each child ni in C
6. if f(n) < F (n) then F (ni)←max(F (n), f(ni))
7. else F (ni)← f(ni)
8. (n1, n2)← bestF(C)
9. while (F (n1) ≤ B and F (n1) <∞)

10. F (n1)← RBFS(n1, min(B,F (n2)))
11. (n1, n2)← bestF(C)
12. return F (n1)

Figure 1: Pseudo-code for RBFS.

IDA*CR. IDA*CR maintains counts in a histogram using a
fixed number of buckets estimating the distribution of f val-
ues of the pruned nodes during an iteration of search and
uses it to find a good threshold for the next iteration. This
is achieved by selecting the bound that is estimated to cause
the desired number of pruned nodes to be expanded in the
next iteration. If the successors of these pruned nodes are not
expanded in the next iteration, then this scheme is able to ac-
curately double the number of nodes expanded between iter-
ations. If the successors do fall within the bound on the next
iteration, then more nodes may be expanded than desired but
this is often not harmful in practice (Burns and Ruml 2013).
Since the threshold is increased liberally, branch-and-bound
must be used on the final iteration of search to ensure op-
timality. To the best of our knowledge, this algorithm has
never been proven to have bounded overhead, but it appears
to perform well in practice.

Weighting the heuristic in IDA* results in Weighted IDA*
(WIDA*): a bounded suboptimal linear-space search al-
gorithm using the non-monotonic cost function f ′(n) =
g(n)+w·h(n). As the specified weightw increases, WIDA*
prunes large portions of the search space and is often able to
find w-admissible solutions quickly. However, those paths
that are not pruned are searched in depth-first order, resulting
in significantly more expensive solutions and, in some cases,
longer solving times. In contrast, WA* performs more like
greedy search as the bound increases, finding cheaper solu-
tions quickly. Thus WIDA* is not an ideal analog for WA*.

Recursive Best-First Search
Unlike IDA*, RBFS expands nodes in best-first order even
with a non-monotonic cost function and is thus a better
linear-space analog to WA*. Pseudo-code is shown in Fig-
ure 1. Its arguments are a node n to be explored and a bound
B that represents the best f value of an unexplored node
found elsewhere in the search space so far. Each generated
child node is given an f value, the usual g(ni) + h(ni), and
an F value, representing the best known f value of any node
below ni that has not yet been expanded. The F value of a
child node is set to f the first time it is ever generated (line
7). We can determine that a child node is being generated
for the first time by comparing its parent’s f with its par-
ent’s backed-up value F (line 6). If f(n) < F (n) then it

must have already been expanded and the child nodes must
have already been generated. If a child has been generated
previously, its F value is set to the maximum of the F value
of the parent or its own f value. Propagating the backed-
up values down previously explored descendants of n im-
proves efficiency by avoiding the backtracking that would
otherwise be necessary when f decreases along a path.

RBFS orders all child nodes by their current F (line 8)
and expands the child with the lowest value (bestF returns
the best two children according to F). Each child node with
an F that is within B is visited by a recursive call using
an updated threshold min(B,F (n2)), the minimum cost of
a node generated so far but not yet expanded. (If there is
just one child then F (n2) returns∞.) Setting the threshold
this way for each recursive call allows RBFS to be robust
to non-monotonic costs. If F goes down along a path, the
threshold for the recursive calls will be lower than B to pre-
serve a best-first expansion order. If all child costs exceed
the threshold, the search backtracks (lines 9 and 12). When
RBFS backtracks (line 10), it backs up either∞ or the best
f value of a node not yet expanded below node n1, the child
with the currently lowest F . Backing up a value of∞ indi-
cates that there are no fruitful paths below n1 and prevents
RBFS from performing any further search below it.

By tracking the value of the best unexplored node, and
backtracking to reach it when necessary, RBFS achieves the
same search order as WA* (ignoring ties). In contrast to
IDA*, which uses a fixed threshold throughout each iteration
of search, RBFS uses a locally adjusted threshold.

The best-first search order of RBFS has several advan-
tages. Like WA*, RBFS can find w-admissible solutions
that are often well within the suboptimality bound. More-
over, RBFS can concentrate search effort in the areas of
the search space that appear most promising. While IDA*
has to repeat search over all previously expanded nodes at
each iteration, RBFS only needs to backtrack when a more
promising node lies in a different region of the search space.
If the most promising nodes are concentrated, not widely
distributed, then RBFS can dominate IDA* in terms of the
number of node expansions.

The disadvantages of RBFS are largely due to its over-
head. RBFS must sort sibling nodes after each node expan-
sion (lines 8 and 11). This work is not required in standard
IDA*. When node expansion is fast, IDA* can outperform
RBFS even though it performs many more node expansions.
However, if expanding nodes is expensive, then RBFS can
find solutions faster than IDA* by expanding fewer nodes.

Like IDA*, RBFS suffers from node regeneration over-
head in return for its linear space complexity. There are
two different sources of node regeneration overhead in both
algorithms. First, since neither algorithm keeps a closed
list, they are not able to avoid regenerating the same nodes
through multiple paths. This limits IDA* and RBFS to prob-
lems where each state is reachable by relatively few paths.
Second, the algorithms must regenerate the same nodes in
each successive iteration of IDA* or each time a subtree is
revisited in RBFS.

Recall that RBFS backtracks from a node n as soon as all
descendants of n have an F greater than the threshold B.

1152

In the worst case, every node may have a unique f value
with successive values located in alternating subtrees of the
root, in which case RBFS would backtrack at every node
expansion and regenerate all previously generated nodes be-
fore expanding a new node, resulting in O(N2) expansions.
Thus, its overhead depends on how widely promising nodes
are separated in the search tree. This can be hard to antici-
pate, making the algorithm a risky proposition. The contri-
butions we present in the next section address this source of
overhead for RBFS, thereby making it more practical.

RBFS with Controlled Reexpansion
In this section, we present three new techniques for control-
ling the regeneration overhead of RBFS. We start with two
simple techniques that work well in practice but lack any
provable guarantees. The third, more complex technique,
works well in practice and provides a provable guarantee of
bounded overhead, resulting in the first practical version of
RBFS for domains that exhibit a large range of f values.

RBFSε and RBFSkthrt
In RBFSε, the test against the upper bound (at line 9) is re-
placed by F (n1) ≤ B+ ε. Increasing ε relaxes the best-first
search order of RBFS, causing it to persevere in each sub-
tree. Backtracking becomes less frequent and the number
of reexpansions decreases substantially. Because RBFSε re-
laxes the best-first search order, it must perform branch-and-
bound once an incumbent solution is found if optimality is
required. In general, RBFSε can guarantee that its solution
is within a suboptimality bound w by terminating only when
an incumbent goal node n satisfies f(n) ≤ w · B. As we
will see below, this simple change to RBFS works well in
practice. Unfortunately, it does not improve the theoretical
upper bound of O(N2) total expansions. Moreover, the best
choice of ε is likely to be domain or even instance specific.

Taking this idea further, when performing a bounded
suboptimal RBFS, we can both loosen the optimality con-
straint and relax backtracking. For example, we can take the
square root of w, yielding the evaluation function f ′(n) =
g(n)+

√
w·h(n), and multiply the upper boundB by

√
w (at

line 9). (In general, the evaluation function for RBFSkthrt is
f ′(n) = g(n)+w

k−1
k ·h(n) and the thresholdB is multiplied

by w
1
k). Combining a portion of the suboptimality bound

with B reduces the amount of backtracking while combin-
ing the remaining portion with the heuristic results in fewer
node expansions to find aw-admissible solution. The advan-
tage of this technique is that it does not require an additional
user supplied parameter ε or branch-and-bound once a solu-
tion is found. However, it does not apply to optimal search.

Theorem 1 When RBFSkthrt expands a goal node, it is w-
admissible, assuming the heuristic is admissible.

Proof: Let C∗ be the cost of an optimal solution and C be
the cost of the goal returned by RBFSkthrt and assume by
contradiction that C > w · C∗. Let B be the F value of
the next best node on the frontier at the time the goal was
expanded. Since the goal node was expanded it holds that
C ≤ w 1

k ·B. Also, since the optimal goal was not expanded

RBFSCR(n, B, BCR)
1. if f(solution) ≤ B, return (∞,∞)
2. if n is a goal,
3. solution← n; return (∞,∞)
4. C ← expand(n)
5. if C is empty, return (∞,∞)
6. for each child ni in C
7. if f(n) < FCR(n),
8. F (ni)←max(F (n), f(ni))
9. FCR(ni)←max(FCR(n), f(ni))

10. else
11. F (ni)← f(ni)
12. FCR(ni)← f(ni)
13. (nCR1, nCR2)← bestCR(C)
14. (nF1, nF2)← bestF(C)
15. while (FCR(nCR1) ≤ BCR and F (nF1) < f(solution))
16. (B′, B′CR)← (min(B,F (nF2)),min(BCR, FCR(nCR2)))
17. (F (nCR1), FCR(nCR1))← RBFSCR(nCR1, B′, B′CR)
18. (nCR1, nCR2)← bestCR(C)
19. (nF1, nF2)← bestF(C)
20. for each child ni in C
21. if ni is a leaf, add f(ni) to the f -distribution for n
22. else merge the f -distributions of ni and n
23. F ′CR ← select based on f -distribution for n
24. return (F (nF1), F

′
CR)

Figure 2: Pseudo-code for RBFSCR.

then there is some node p that is on the optimal path to that
goal with f ′(p) ≥ B. Therefore:

C ≤ w
1
k ·B ≤ w 1

k · f ′(p)

≤ w
1
k · (g(p) + w

k−1
k · h(p))

≤ w · (g(p) + h(p)) ≤ w · C∗

This contradicts the assumption that C > w · C∗. �
The redeeming feature of RBFSε and RBFSkthrt is that

they are simple to implement and RBFSkthrt does not re-
quire the branch-and-bound of RBFSε. As we will see be-
low, they outperform RBFS on the domains tested, espe-
cially domains with a wide range of f values.

RBFSCR

We can provide provable guarantees of bounded reexpansion
overhead in RBFS using a technique inspired by IDA*CR.
IDA*CR maintains a single histogram of f values of all nodes
pruned during an iteration of IDA*. This is sufficient be-
cause IDA* always starts each iteration at the initial state.
Extending this technique directly to RBFS is not straightfor-
ward because RBFS does not always backtrack to the root
of the search tree before revisiting a subtree. Any visit to a
subtree could consume the rest of the search. A top-down
control strategy seems inappropriate for managing the intri-
cate backtracking of RBFS.

Note that all we need in order to bound regeneration over-
head is to guarantee that at least twice as many nodes are
expanded below any node each time it is revisited. We can
adapt the technique of IDA*CR by tracking the distribution
of f values under each node in the search space. But, rather

1153

than storing a histogram for every node, RBFSCR maintains
linear space complexity by storing one histogram at each
node along the currently explored path, which is still linear
in the depth of the search. In the same way that f costs are
backed up, the histogram counts are propagated to parent
nodes as the search backtracks.

RBFSCR takes a more distributed, bottom-up approach to
reexpansion control than IDA*CR by backing up inflated val-
ues. RBFSCR tracks the distribution of all f values pruned
below any node p expanded during search and uses it to de-
termine the backed up value of p. The value is selected such
that at least twice as many nodes will be expanded below p
the next time it is visited. As we will see, this bounds the
number of times any node is expanded and bounds all node
expansions by O(N), where N is the number of nodes ex-
panded by A*.

The pseudo-code for RBFSCR is given in Figure 2.
RBFSCR stores an additional backed up value FCR for ev-
ery node and uses it as the threshold to perform its best-first
search. For any node n, the value FCR(n) is determined ac-
cording to the histogram of f values of all nodes generated
but not expanded below n (lines 20-24). RBFSCR sorts the
list of child nodes in order to determine the best children ac-
cording to both FCR and F (lines 13,14,18,19). The backed
up FCR is used to control backtracking according to the next
best node not yet explored while the backed up F is used to
guarantee admissibility (line 15). Aside from these differ-
ences, RBFSCR is essentially the same as RBFS.

In our implementation, we propagated f value statistics
up the tree by following parent pointers and updating sepa-
rate histograms at each parent node. In our experiments, this
was more efficient than the alternative of merging the his-
tograms of parent and child nodes as the search backtracks.
We used the same bucketing technique of IDA*CR to imple-
ment the histograms but other implementations are possible
(Burns and Ruml 2013). Like IDA*CR, the backed up val-
ues are selected from the histogram (line 23) such that the
number of nodes expanded on the next visit to node n is es-
timated to grow at least geometrically. We found doubling to
be sufficient in our experiments but other schemes are pos-
sible. Because RBFSCR sets the thresholds liberally, it must
perform branch-and-bound when an incumbent is found in
order to guarantee admissibility. It uses the original F and
B values for this purpose (lines 1-3, 15 and 17).

We will now show that, under certain assumptions, the
overhead of RBFSCR is bounded. We refer to all nodes gen-
erated but not expanded so far during the search as the vir-
tual frontier. The best and next best nodes on the virtual
frontier are represented by nodes along the current search
path with the lowest backed-up values.

Assumption 1 The histograms maintained by RBFSCR ac-
curately reflect the true distributions of f values below each
subtree.

To avoid the proof depending on the accuracy of the his-
togram data structure, we assume that there is no loss in pre-
cision.

Assumption 2 The histograms maintained by RBFSCR al-
ways contain enough counts to select an appropriate

backed-up value.

This same assumption is made by IDA*CR. It is reasonable
since search spaces for which this assumption does not hold,
would not be amenable to linear-space search.

Lemma 1 Consider the search as it enters a subtree rooted
at node p. Let the next best node on the virtual frontier be q.
If FCR(q) ≤ C∗, then only nodes n such that f(n) ≤ C∗ are
expanded below p.

Proof: The proof is analogous to that for Lemma 4.1 in
Korf (1993). FCR(q) bounds the expansions performed in
p. The search backtracks from p once all nodes n below p
such that f(n) ≤ FCR(q) have been expanded and it does
not expand any nodes n such that f(n) > FCR(q). Since
FCR(q) ≤ C∗, then all expanded nodes have f(n) ≤ C∗. �

Lemma 2 Consider any subtree rooted at a node p. The
value FCR(p) always increases monotonically.

Proof: Let F ′CR(p) be the updated value for FCR(p). Only
fringe nodes p′ below p whose f values exceed FCR(p) are
added to p’s histogram and used to set F ′CR(p). Thus, all
of the fringe nodes in the histogram have an f that exceeds
FCR(p). We set F ′CR(p) such that there is at least one fringe
node p with f(p) ≤ F ′CR(p). Therefore, FCR(p) < F ′CR(p).
�

Lemma 3 Consider the search as it enters a subtree rooted
at node p. Every path whose nodes have f values ≤ F (p)
will be explored and nodes that have already been expanded
will be reexpanded once before reaching the frontier.

Proof: Let the next best node on the virtual frontier be
q. The value FCR(q) bounds the expansions performed in
p. The best-first search order guarantees that FCR(p) ≤
FCR(q). The search will not backtrack from the subtree
until all paths below p with nodes p′ such that f(p′) ≤
FCR(p) have been expanded. Note that all such nodes
p′ below p that were already expanded previously have
FCR(p

′) = max(FCR(p), f(p
′)) (lines 7-9) and all recur-

sive calls below node p have the form RBFSCR(p,B) for
some B, where FCR(p) ≤ FCR(p

′) ≤ B. Since FCR(p) ≤
FCR(p

′) and FCR(p
′) is guaranteed to increase for each call

to RBFSCR(p
′, B) by Lemma 2, it follows that any node p′

below p will not qualify for reexpansion until the search
reaches the frontier. �
Because RBFSCR sets B liberally, we will need to make an
assumption on the number of extra nodes that qualify for
expansion.

Assumption 3 The number of unique nodes n such that
C∗ < f(n) ≤ f(q) is O(N) where q is the node with the
largest f generated during a best-first search and N is the
number of nodes expanded by A* when no duplicates are
pruned and with worst-case tie-breaking.

This assumption is reasonable, for example, in domains in
which g and h values are computed in terms of the costs
of a fixed set of operators. This often implies that f values
increase by bounded amounts and that the number of nodes
in successive f layers are related by a constant (known as
the heuristic branching factor (Korf and Reid 1998)).

1154

Lemma 4 : The total number of unique nodes visited dur-
ing search is bounded by O(N).

Proof: Consider all nodes n expanded by the search and
let node q be the generated node with the highest f value.
Either f(n) ≤ C∗ or C∗ < f(n) ≤ f(q). The total number
of unique nodes n with f(n) ≤ C∗ is at most N . The total
number of unique nodes with C∗ < f(n) ≤ f(q) is O(N)
by Assumption 3. Thus, the total number of unique nodes
visited by the search is N +O(N) = O(N). �

Lemma 5 At least as many nodes are expanded below a
subtree p as we anticipated when selecting FCR(p).

Proof: Let F ′CR(p) be the newly backed up value the next
time node p is expanded. When p is expanded with F ′CR(p)
we will expand all the nodes expanded when pwas expanded
with FCR(p) (by Lemma 3 and F (p) ≤ FCR(p)). Further-
more, the fringe nodes p′, whose f values were added to the
distribution last time and were used to compute F ′CR(p), and
that we anticipated would fall below FCR(p), will be initial-
ized with FCR(p

′) = f(p′) in line 12. Thus, they will pass
the test in line 15 and be expanded in the call at line 17. �

Lemma 6 RBFSCR terminates with a solution if one exists.

Proof: From Lemma 2 and Lemma 5 the bound at each sub-
tree is always increasing and all nodes below the bound are
expanded during search. Eventually the bound when explor-
ing any subtree is larger than or equal to the cost of a solution
and a goal node is expanded. �

Theorem 2 If solution exists and A* expands N nodes
before terminating with a solution, then RBFSCR expands
O(N) nodes before terminating with a solution.

Proof: From Lemma 6 we already proved completeness so
we need only show an upper bound on reexpansion over-
head. FCR(p) is set when backtracking to cause twice as
many nodes to be expanded the next time p is expanded and
by Lemma 5 at least this many nodes will be expanded. This
implies at least doubling the number of nodes expanded each
time we visit a subtree. Then by Lemma 3 each node previ-
ously expanded below p is expanded one more time before
reaching the frontier when we renter the subtree at p. Note
that this implies that we can’t expand a node a second time
without expanding at least one new node for the first time.
Further, when we expand a node that had been expanded
twice for a third time, we also expand all the nodes below
it that had been expanded once for a second time, and then
expand a number of nodes for the first time that is at least the
sum of the number of nodes expanded for a third or second
time. In general, let si be the set of nodes that have been
expanded i times and let ni = |si|. The sizes of these sets
form a series in which ni+1 ≤ ni/2.

Because every unique node expanded is expanded some
number of times, the total number of unique nodes expanded
equals

∑∞
i ni. The total number of expansions (including

reexpansions) is:∑∞
i=1 i(ni) ≤ 1(n1) + 2(n1

2) + 3(n1

4) + 4(n1

8) + ...

≤
∑∞
i=1 i(n1/2

(i−1))
≤ 2n1

∑∞
i=1 i(2

−i) < 4n1

Time Exp. Exp./Sec. Reopened
IDA*CR 18,394 2,044m 112k 2,042m
RBFSCR 1,824 188m 103k 87m
RBFSε=1 3,222 472m 147k 4m
RBFSε=2 1,795 251m 140k 5m
RBFSε=3 1,094 154m 141k 14m

Table 1: Solving all Dockyard instances optimally. Times
reported in seconds.

By Lemma 4, n1 = O(N), so the total number of expan-
sions is also O(N). �

Experiments
We compared the new algorithms to standard RBFS and
WIDA* (and WIDA*CR) on a variety of domains with dif-
ferent edge costs. All algorithms were written in Java and
compiled with OpenJDK 1.6.0.24. All of our experiments
were run on a machine with a dual-core CoreDuo 3.16 GHz
processor and 8 GB of RAM running Linux.

Sliding-Tile Puzzle
First, we evaluated RBFSε, RBFSkthrt and RBFSCR on
Korf’s 100 15-puzzles (Korf 1985) using unit edge costs and
the Manhattan distance heuristic. Our techniques have no
advantage over standard RBFS or WIDA* on this domain.
WIDA* does not have to sort child nodes at each node ex-
pansion and is thus 4 times faster than the RBFS-based al-
gorithms on average. However, the RBFS-based algorithms
always return cheaper solutions.

To demonstrate the advantage of our techniques, we
change the domain slightly. The cost to move a tile is now
the square root of the number on the face of the tile. This
provides a wide range of edge costs. Standard WIDA* and
RBFS are unable to solve instances in a reasonable amount
of time, motivating IDA*CR and RBFSCR. In this setting
RBFSCR solves all instances at all suboptimality bounds
tested (1.5-4) and is just 3.8 times slower than IDA*CR.
However, RBFSCR expands fewer nodes than all other al-
gorithms and provides significantly cheaper solutions than
IDA*CR. RBFSε with ε = 16 and RBFSkthrt with k = 5 are
1.7 times faster than RBFSCR on average because they have
less overhead and also return cheaper solutions than IDA*CR.

Dockyard Robot Planning
To evaluate the performance of RBFSCR on a domain where
node expansion is slow, we implemented a planning domain
inspired by the dockyard robot example used throughout the
textbook by Ghallab, Nau, and Traverso (2004). In this do-
main, containers must be moved from their initial locations
to their destinations via a robot that can carry only a single
container at a time. The containers at each location form
a stack and only the top container can be moved by using
a crane. Actions in this domain have real-valued costs and
provide a wide range of f values. We conducted these exper-
iments on a configuration with 5 locations, cranes, piles and
8 containers. Unlike the sliding-tile puzzle, this domain has
many paths to the same state, making algorithms that do not

1155

15-Puzzle (unit w=4.0)

CPU Time
0 8 16 24

S
o

lu
ti

o
n

 Q
u

al
it

y

0

0.3

0.6

0.9

RBFS-cr
RBFS

15-Puzzle (sqrt w=4.0)

CPU Time
0 6 12 18

S
o
lu

ti
o

n
 Q

u
al

it
y

0

0.3

0.6

0.9

RBFS-cr
RBFS

25 Pancake (sqrt w=1.2)

CPU Time
0 80 160 240

S
o
lu

ti
o

n
 Q

u
al

it
y

0

0.3

0.6

0.9

RBFS-cr
RBFS

Figure 3: Anytime Search Profiles for the 15-Puzzle and the Pancake Puzzle.

keep a closed list impractical. One popular technique is to
combine IDA* with a transposition table which stores a por-
tion of the closed list and can significantly improve the per-
formance of IDA* on domains with many duplicate states.
For these experiments we combined IDA*CR and RBFSCR

with a transposition table. We used an admissible and con-
sistent heuristic and an unlimited table, thus avoiding the pit-
falls reported by Akagi, Kishimoto, and Fukunaga (2010).

Table 1 summarizes the results for dockyard robots. These
results show that IDA*CR has a slightly faster node ex-
pansion rate; however, it performs more than 10 times as
many node expansions, leading to significantly slower solv-
ing times. In the last column, we show the number of times
a node was reopened. A node is reopened when the search
regenerates an expanded state through a better path. IDA*CR

suffers from having to reopen the same nodes more often
because its search order is depth first. The RBFS-based al-
gorithms are best-first and often generate nodes through an
optimal path first, avoiding the cost of reopening them.

Anytime Heuristic Search
Hansen and Zhou (2007) propose a simple method for con-
verting a suboptimal heuristic search into an anytime algo-
rithm: simply continue searching after finding the first solu-
tion. They show positive results for using RBFS as an any-
time algorithm. We compared the anytime profiles of RBFS
and RBFSCR. Each algorithm was given a total of 5 min-
utes to find and improve a solution. In Figure 3 the x-axis is
CPU time and the y-axis is solution quality. Each data point
is computed in a paired manner by determining the best so-
lution found on each instance by any algorithm and divid-
ing this value by the incumbent solution’s cost at each time
value on the same instance (Coles et al. 2012). Incumbents
are initialized to infinity, which allows for comparisons be-
tween algorithms at times before all instances are solved.
The lines show the mean over the instance set and the error
bars show the 95% confidence interval on the mean.

We used the same Korf 100 15-Puzzle instances with unit
and square root cost. The left plot in Figure 3 summarizes
the results for unit costs. An initial suboptimality bound of
4.0 was selected to minimize time to first solution for both
algorithms. RBFS and RBFSCR are able to find solutions
quickly. However, because RBFSCR is not strictly best-first,

it finds solutions of worse quality than RBFS and is slow
to improve. RBFSCR has no advantage over RBFS in this
unit-cost setting. The middle plot in Figure 3 summarizes
the results for sqrt costs with the same initial suboptimality
bound of 4.0. In this plot we clearly see that RBFSCR finds
higher quality solutions faster than RBFS.

The right plot shows similar results for a third domain, the
pancake puzzle. In this domain we must order a permutation
of {1, ..., N}, where N is the number of pancakes, by re-
versing a contiguous prefix. We used a stack of 25 pancakes
with a similar sqrt cost function and adapted the gap heuris-
tic for sqrt costs. The gap heuristic is a landmark heuristic
that counts the number of non-adjacent pancakes or “gaps”
for each pancake in the stack (Helmert 2010). We used an
initial bound of 1.2. Again, we clearly see that RBFSCR out-
performs standard RBFS, making it a more robust algorithm
in an anytime setting with non-unit costs.

Conclusion

We presented three techniques for controlling the overhead
caused by excessive backtracking in RBFS. RBFSε and
RBFSkthrt are simple although they do not provide prov-
able guarantees on performance. RBFSCR is a more complex
technique that provides provable guarantees of bounded re-
expansion overhead. We showed that these new algorithms
perform well in practice, finding solutions faster than RBFS
on non-unit cost domains and solutions that are significantly
cheaper than WIDA*. RBFSCR is the first linear space best-
first search capable of solving problems with a wide variety
of f values, especially when node expansion is expensive
or when cheap solutions are useful, as in anytime search.
While IDA* enjoys widespread popularity, we hope this
work encourages further investigation of linear-space tech-
niques that maintain a best-first search order.

Acknowledgments

We gratefully acknowledge support from the NSF (grant
1150068). We thank Rich Korf, Arial Felner and Roni Stern
for helpful discussions that started us on this path of re-
search.

1156

References
Akagi, Y.; Kishimoto, A.; and Fukunaga, A. 2010. On trans-
position tables for single-agent search and planning: Sum-
mary of results. In Proceedings of the Symposium on Com-
binatorial Search (SoCS-10).
Burns, E., and Ruml, W. 2013. Iterative-deepening search
with on-line tree size prediction. Annals of Mathematics and
Artificial Intelligence S68:1–23.
Coles, A.; Coles, A.; Olaya, A. G.; Jiménez, S.; López,
C. L.; Sanner, S.; and Yoon, S. 2012. A Survey of the
Seventh International Planning Competition. AI Magazine
33(1):83–88.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. San Francisco, CA: Morgan
Kaufmann.
Hansen, E. A., and Zhou, R. 2007. Anytime heuristic search.
Journal of Artificial Intelligence Research 28:267–297.
Helmert, M. 2010. Landmark heuristics for the pancake
problem. In Proceedings of the Symposium on Combinato-
rial Search (SOCS-10).
Korf, R., and Reid, M. 1998. Complexity analysis of admis-
sibe heuristic search. In Proceedings of the National Con-
ference on Artificial Intelligence, 305–310.
Korf, R. E. 1985. Depth-first iterative-deepening: An opti-
mal admissible tree search. Artificial Intelligence 27(1):97–
109.
Korf, R. E. 1993. Linear-space best-first search. Artificial
Intelligence 62(1):41–78.
Pohl, I. 1973. The avoidance of (relative) catastrophe,
heuristic competence, genuine dynamic weighting and com-
putation issues in heuristic problem solving. In Proceedings
of IJCAI-73, 12–17.
Sarkar, U.; Chakrabarti, P.; Ghose, S.; and Sarkar, S. D.
1991. Reducing reexpansions in iterative-deepening search
by controlling cutoff bounds. Artificial Intelligence 50:207–
221.

1157

