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Abstract

Model selection and hyperparameter optimization is crucial in
applying machine learning to a novel dataset. Recently, a sub-
community of machine learning has focused on solving this
problem with Sequential Model-based Bayesian Optimization
(SMBO), demonstrating substantial successes in many appli-
cations. However, for computationally expensive algorithms
the overhead of hyperparameter optimization can still be pro-
hibitive. In this paper we mimic a strategy human domain
experts use: speed up optimization by starting from promising
configurations that performed well on similar datasets. The
resulting initialization technique integrates naturally into the
generic SMBO framework and can be trivially applied to any
SMBO method. To validate our approach, we perform exten-
sive experiments with two established SMBO frameworks
(Spearmint and SMAC) with complementary strengths; opti-
mizing two machine learning frameworks on 57 datasets. Our
initialization procedure yields mild improvements for low-
dimensional hyperparameter optimization and substantially
improves the state of the art for the more complex combined
algorithm selection and hyperparameter optimization problem.

Introduction
Hyperparameter optimization is a crucial step in the process
of applying machine learning algorithms in practice. Find-
ing good hyperparameter settings manually is often a time-
consuming, tedious process requiring many ad-hoc choices
by the practitioner. As a result, much recent work in machine
learning has focused on the development of better hyperpa-
rameter optimization methods (Hutter, Hoos, and Leyton-
Brown 2011; Bergstra et al. 2011; Snoek, Larochelle, and
Adams 2012; Bergstra and Bengio 2012).

Recently, Sequential Model-based Bayesian Optimization
(SMBO, see, e.g., Brochu, Cora, and de Freitas (2010) for
an overview) has emerged as a successful hyperparameter
optimization method in machine learning. SMBO has been
conclusively shown to yield better performance than both
grid and random search and matched or outperformed the
state-of-the-art performance for several challenging machine
learning problems (Snoek, Larochelle, and Adams 2012;
Bergstra et al. 2011; Bergstra, Yamins, and Cox 2013). It
has also enabled AutoWEKA (Thornton et al. 2013), which
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performs combined algorithm selection and hyperparameter
optimization in the space of algorithms defined by the WEKA
package (Hall et al. 2009).

However, as a generic function optimization framework,
SMBO requires a substantial number of evaluations to de-
tect high-performance regions when started on a new opti-
mization problem. The resulting overhead is computationally
infeasible for expensive-to-evaluate machine learning algo-
rithms. A promising approach to combat this problem is to
apply meta-learning (Brazdil et al. 2008) to the hyperparam-
eter search problem. The key concept behind meta-learning
for hyperparameter search is to suggest good configurations
for a novel dataset based on configurations that are known
to perform well on similar, previously evaluated, datasets.
We follow this strategy to yield a simple and effective ini-
tialization procedure that applies generically to all variants
of SMBO; we refer to the resulting SMBO approach with
meta-learning-based initialization as MI-SMBO. Importantly,
MI-SMBO does not require any adaptation of the underlying
SMBO procedure. It is hence easy to implement and can be
readily applied to off-the-shelf hyperparameter optimizers.

We empirically studied the impact of our meta-learning-
based initialization procedure on two SMBO variants, using
a comprehensive suite of 57 classification datasets and 46
metafeatures. First, we applied our method to a combined al-
gorithm selection and hyperparameter (CASH) optimization
problem on this benchmark: choosing between three classi-
fiers from the prominent scikit-learn package (Pedregosa et
al. 2011) and simultaneously optimizing their hyperparame-
ters. Second, to demonstrate the generality of our approach,
we applied MI-SMBO to the lower-dimensional problem
of optimizing the 2 hyperparameters of a support vector
machine (SVM) on the same datasets. We found that for
the lower-dimensional problem our MI-Spearmint variant of
Spearmint (Snoek, Larochelle, and Adams 2012) (a state-
of-the-art approach for low-dimensional hyperparameter op-
timization) yielded mild improvements. For the more chal-
lenging CASH problem our MI-SMAC variant of the SMBO
method SMAC (Hutter, Hoos, and Leyton-Brown 2011) (a
state-of-the-art approach for CASH optimization) yielded
substantial improvements, significantly outperforming the
previous state of the art for this problem.

This paper is an improved and extended version of a previous
workshop submission (Feurer, Springenberg, and Hutter 2014)
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Foundations
Before we describe our MI-SMBO approach in detail we
formally describe hyperparameter optimization and SMBO.

Hyperparameter Optimization
Let θ1, . . . , θn denote the hyperparameters of a machine
learning algorithm, and let Θ1, . . . ,Θn denote their respec-
tive domains. The algorithm’s hyperparameter space is then
defined as Θ = Θ1×· · ·×Θn. When trained with θ ∈ Θ on
data Dtrain, we denote the algorithm’s validation error on data
Dvalid as V(θ,Dtrain,Dvalid). Using k-fold cross-validation,
the hyperparameter optimization problem for a given dataset
D is to minimize:

fD(θ) =
1

k

k∑
i=1

V(θ,D(i)
train,D

(i)
valid). (1)

Hyperparameters θi can be numerical (real or integer, as,
e.g., the strength of a regularizer) or categorical (unordered,
with finite domain, as, e.g., the choice between different
kernels). Furthermore, there can be conditional hyperparam-
eters, which are only active if another hyperparameter takes
a certain value; for example, setting the “number of princi-
pal components” is conditioned on the usage of PCA as a
preprocessing method.

The most frequently used hyperparameter optimization
method is grid search, which often performs poorly and does
not scale to high dimensions. Therefore, a large body of
recent work has focused on better-performing methods, in
particular SMBO, which we describe in the following section.

Sequential Model-based Bayesian Optimization
Sequential Model-based Bayesian Optimization (SMBO)
(Jones, Schonlau, and Welch 1998; Brochu, Cora, and de Fre-
itas 2010; Hutter, Hoos, and Leyton-Brown 2011) is a pow-
erful method for global optimization of expensive blackbox
functions f . As described in Algorithm 1, SMBO starts by
querying the function f at the t values in an initial design and
recording the resulting 〈input, output〉 pairs 〈θi, f(θi)〉ti=1.
Afterwards, it iterates the following three phases: (1) fit a
probabilistic modelM to the 〈input, output〉 pairs collected
so far; (2) use the probabilistic modelM to select a promis-
ing input θ to evaluate next by quantifying the desirability
of obtaining the function value at arbitrary inputs θ ∈ Θ
through a so-called acquisition function a(θ,M); (3) evalu-
ate the function at the new input θ.

The SMBO framework offers several degrees of freedom to
be instantiated, including the procedure’s initialization, the ac-
quisition function to use, and the type of probabilistic model.
We discuss three prominent hyperparameter optimization
methods in terms of these components: SMAC (Hutter, Hoos,
and Leyton-Brown 2011), Spearmint (Snoek, Larochelle, and
Adams 2012), and TPE (Bergstra et al. 2011).

The role of the acquisition function a(θ,M) is to trade off
exploration in hyperparameter regions where the modelM is
uncertain with exploitation in regions with low predicted val-
idation error. The most commonly acquisition function (used

Algorithm 1: Generic Sequential Model-based Optimiza-
tion. SMBO(fD, T , Θ, θ1:t)

Input: Target function fD; limit T ; hyperparameter
space Θ; initial design θ1:t = 〈θ1, . . . ,θt〉

Result: Best hyperparameter configuration θ∗ found
1 for i← 1 to t do yi ← Evaluate fD(θi)
2 for j ← t+ 1 to T do
3 M← fit model on performance data 〈θi, yi〉j−1i=1
4 Select θj ∈ arg maxθ∈Θ a(θ,M)

5 yj ← Evaluate fD(θj)

6 return θ∗ ∈ arg minθj∈{θ1,...,θT } yj

by all three SMBO methods we discuss) is the expected posi-
tive improvement (EI) over the best input found so far (Jones,
Schonlau, and Welch 1998):

aEI(θ,M) =

∫ ∞
−∞

max(y∗ − y, 0)pM(y|θ)dy. (2)

Several different model types can be used inside of SMBO.
The most popular choice, used for example by Spearmint, are
Gaussian processes (Rasmussen and Williams 2006) because
they provide good predictions in low-dimensional numeri-
cal input spaces and allow the computation of the posterior
Gaussian process model in closed form. The other popular
model type are tree-based approaches, which are particu-
larly well suited to handle high-dimensional and partially
categorical input spaces. In particular, SMAC uses random
forests (Breiman 2001) modified to yield an uncertainty esti-
mate (Hutter et al. 2014). Another tree-based approach is the
Tree Parzen Estimator (TPE) (Bergstra et al. 2011), which
constructs a density estimate over good and bad instantiations
of each hyperparameter.

The final degree of freedom in SMBO is its initialization.
A classic approach is to initialize SMBO with a space-filling
design (Jones, Schonlau, and Welch 1998). While this can
greatly improve the quality of the model, the correspond-
ing function evaluations are also costly and for expensive
hyperparameter optimization problems a cheaper solution
is needed. To date, this initialization component has not re-
ceived much attention, and it is typically instantiated in a
fairly ad-hoc manner: Spearmint evaluates f at the first two
points of a Sobol sequence, SMAC evaluates it at a user-
defined ‘default’ input, and TPE evaluates 20 points selected
at random according to a user-defined prior distribution. It is
this initialization component that our MI-SMBO approach
improves by starting from a list of hyperparameter configura-
tions suggested by meta-learning.

Initializing SMBO With Configurations
Suggested by Meta-Learning

Building on the foundations from the previous section we
now describe our proposed MI-SMBO method.

The core idea behind MI-SMBO is to follow the common
practice machine learning experts employ when applying a

1129



Algorithm 2: SMBO with Meta-Learning Initialization.
MI-SMBO(DN+1, fDN+1 , D1:N , θ̂1:N , d, t, T , Θ)

Input: new dataset DN+1; target function fDN+1 ;
training datasets D1:N = (D1, . . . , DN ); best
configurations for training datasets,
θ̂1:N = θ̂1, . . . , θ̂N ; distance metric d; number
of configurations to include in initial design, t;
limit T ; hyperparameter space Θ

Result: Best hyperparameter configuration θ∗ found
1 Sort dataset indices π(1), . . . π(N) by increasing

distance to DN+1, i.e.:
(π(i) ≤ π(j))⇔ (d(DN+1, Di) ≤ d(DN+1, Dj))

2 for i← 1 to t do θi ← θ̂π(i)

3 θ∗ ← SMBO(fD, T , Θ, θ1:t)
4 return θ∗

known machine learning method to a new dataset DN+1:
they first study DN+1, relating it to datasets they previously
experienced. When manually optimizing hyperparameters
for DN+1, they would begin the search with hyperparameter
configurations that were optimal for the most similar pre-
vious datasets (see, e.g., Dahl, Sainath, and Hinton (2013);
Goodfellow et al. (2013)). Our MI-SMBO method automates
this approach and uses it to initialize an SMBO method.

Formally, MI-SMBO can be stated as follows. Let
θ̂1, . . . , θ̂N denote the best known hyperparameters for the
previously encountered datasets D1, . . . , DN , respectively.
These may originate from an arbitrary source, e.g., a man-
ual search or the application of an SMBO method during
an offline training phase. Further, let DN+1 denote a new
dataset, let d denote a distance metric between datasets, and
let π denote a permutation of (1, . . . , N) sorted by increas-
ing distance between DN+1 and Di (i.e., (π(i) ≤ π(j))⇔
(d(DN+1, Di) ≤ d(DN+1, Dj))). Then, MI-SMBO with an
initial design of t configurations initializes SMBO with
configurations θ̂π(1), . . . , θ̂π(t). Algorithm 2 provides pseu-
docode for the approach.

We would like to highlight the fact that MI-SMBO is agnos-
tic of the SMBO algorithm used, as long as the algorithm’s
implementation accepts an initial design as input or can be
warmstarted with a given list of performance data 〈θi, yi〉ti=1.
All of SMAC, TPE, and Spearmint fulfill these criteria. Fur-
thermore, in contrast to existing approaches that initialize di-
rect search algorithms via meta-learning (Gomes et al. 2012;
Reif, Shafait, and Dengel 2012), SMBO is a particularly good
match for initialization with meta-learning as it can make
effective use of all performance data it receives as input. In
practice, this procedure replaces SMACs and Spearmints ini-
tialization and delays the start of the actual SMBO procedure
until all configurations θ̂π(1), . . . , θ̂π(t) are evaluated.

The last component needed to implement MI-SMBO is
the definition of a distance metric between datasets. This
problem was, to our knowledge, first discussed by Soares and
Brazdil (2000). For the purpose of this work we assume that
each dataset Di can be described by a set of F metafeatures

mi = (mi
1, . . . ,m

i
F ). We discuss the metafeatures we used

in the next section. In practice, we precompute the metafea-
tures for all training datasetsD1, . . . , DN , along with the best
configurations (θ̂1, . . . , θ̂N ). Given a new dataset DN+1, we
then measure its distances to all previous datasets Di using a
distance measure d : D ×D → R.

We experimented with two different instantiations of this
distance measure d(·, ·). The first measure (denoted as dp) we
used is the commonly-used p-norm of the difference between
the datasets’ metafeatures:

dp(Di, Dj) = ‖mi −mj‖p. (3)

Next to this standard metric we aimed for a metric that reflects
how similar the datasets are with respect to the performance
of different hyperparameter settings. The measure we use
(in the following denoted as dc) is the negative Spearman
correlation coefficient between the ranked results of a fixed
set of n hyperparameter configurations on both datasets1:

dc(Di, Dj) = 1− Corr([fDi(θ1), . . . , fDi(θn)],

[fDj (θ1), . . . , fDj (θn)]).
(4)

Of course, this distance measure cannot be computed di-
rectly for the new dataset DN+1 since we have not yet eval-
uated fDN+1(θ1), . . . , fDN+1(θN ). However, we can com-
pute dc(Di, Dj) for all 1 ≤ i, j ≤ N and use regression to
learn a function R : RF × RF → R, mapping from pairs of
meta-features 〈mi,mj〉 to dc(Di, Dj).

Using this pre-trained regressor the distance metric can
then be approximated as

dc(DN+1, Dj) ≈ R(mN+1,mj). (5)

In our experiments, we implementedR using a random forest
because of its robustness and speed.

Implemented Metafeatures
To evaluate our approach in a realistic setting we imple-
mented 46 metafeatures from the literature; they are listed
in Table 1. Based on their types and underlying assumptions,
these metafeatures can be divided into at least five groups:
• Simple metafeatures, such as the number of features, pat-

terns or classes, describe the basic dataset structure (Michie
et al. 1994; Kalousis 2002)

• PCA metafeatures (Bardenet et al. 2013) compute various
statistics of the datasets principal components.

• The information-theoretic metafeature measures the class
entropy in the data (Michie et al. 1994).

• Statistical metafeatures (Michie et al. 1994) characterize
the data via descriptive statistics such as the kurtosis or the
dispersion of the label distribution.

• Landmarking metafeatures (Pfahringer, Bensusan, and
Giraud-Carrier 2000) are computed by running several
fast machine learning algorithms on the dataset. Based on
their learning scheme they can capture different properties
of the dataset, like e.g. linear separability.
1In practice, we used all n hyperparameter configurations for

which we had results available on all training datasets.
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Simple metafeatures: Statistical metafeatures:
number of patterns min # categorical values
log number of patterns max # categorical values
number of classes mean # categorical values
number of features std # categorical values
log number of features total # categorical values
number of patterns with missing values kurtosis min
percentage of patterns with missing values kurtosis max
number of features with missing values kurtosis mean
percentage of features with missing values kurtosis std
number of missing values skewness min
percentage of missing values skewness max
number of numeric features skewness mean
number of categorical features skewness std
ratio numerical to categorical
ratio categorical to numerical PCA metafeatures:
dataset dimensionality pca 95%
log dataset dimensionality pca skewness first pc
inverse dataset dimensionality pca kurtosis first pc
log inverse dataset dimensionality
class probability min Landmarking metafeatures:
class probability max One Nearest Neighbor
class probability mean Linear Discriminant Analysis
class probability std Naive Bayes

Decision Tree
Information-theoretic Decision Node Learner
metafeature: Random Node Learner
class entropy

Table 1: List of implemented metafeatures

For each dataset, metafeatures are only computed on the
training set. In our experiments, for each dataset this required
less than one minute and less than the average time it took to
evaluate one hyperparameter configuration on that dataset.

Application to Machine Learning Algorithms
We now discuss the machine learning algorithms and their
hyperparameters we optimized, as well as the datasets we
used in our experiments.

ML Algorithms and Hyperparameters
We empirically evaluated our MI-SMBO approach to opti-
mize two practically relevant machine learning frameworks.

We focused on supervised classification because it is the
most widely studied problem in metalearning, with a large
body of literature and readily available metafeatures and
datasets.2

The large configuration space for our main experiment
is spanned by a range of machine learning algorithms from
scikit-learn (Pedregosa et al. 2011). We combined all algo-
rithms into a single hierarchical optimization problem using
the Combined Algorithm Selection and Hyperparameter opti-
mization (CASH) setting by Thornton et al. (2013): we used

2We note, however, that in principle, our procedure is applicable
to every optimization problem that is concerned with minimizing a
measurable objective and has a set of metafeatures describing the
problem. For example, one possible use in the field of unsupervised
learning could be representation learning, with reconstruction error
as the objective.

Component Hyperparameter Values # Values

Main θclassifier {RF, SVM, LinearSVM} 3
Main preprocessing {PCA, None} 2
SVM log2(C) {−5,−4, . . . , 15} 21
SVM log2(γ) {−15,−14, . . . , 3} 19
LinearSVM log2(C) {−15,−14, . . . , 15} 21
LinearSVM penalty {L1, L2} 2
RF min splits {1, 2, 4, 7, 10} 5
RF max features {1%, 4%, . . . , 100%} 10
RF criterion {Gini, Entropy} 2
PCA variance to keep {80%, 90%} 2

Table 2: Hyperparameters for the CASH problem in scikit-
learn. All hyperparameters except θclassifier and preprocessing
are conditional. Hyperparameters not mentioned were set to
their default value.

one top-level hyperparameter θclassifier for choosing between
classification algorithms, and set all hyperparameters of clas-
sification algorithm Ai as conditional on θclassifier being set to
Ai. This CASH problem is of high practical relevance since
it describes precisely the problem an end user faces when
given a new dataset.3 To keep the computation bearable and
the results interpretable, we only included three classifica-
tion algorithms: an SVM with an RBF kernel, a linear SVM,
and random forests. Since we expected noise and redundan-
cies in the training data, we also allowed the optimization
procedure to use Principal Component Analysis (PCA) for
preprocessing; with the number of PCA components being
conditional on PCA being applied. In total this lead to 10
hyperparameters, as detailed in Table 2. We discretized these
10 hyperparameters to obtain a manageable number of 1 623
hyperparameter configurations that allowed the exhaustive
precomputation of classification errors for the entire grid.

We performed a second experiment to test the suitability
of our method for a low-dimensional hyperparameter op-
timization problem: optimizing the complexity penalty C
and the kernel width γ of an SVM using an RBF kernel. As
above, we discretized these two hyperparameters to a grid of
19 · 21 = 399 combinations; these constitute a subset of the
configurations considered in the CASH problem above.

Datasets and Preprocessing
For our experiments, we aimed for a large number of
high-quality classification datasets. We found the OpenML
project (Vanschoren et al. 2013) to be the best source of
datasets and used the 60 classification datasets it contained
in April 2014. For computational reasons we had to exclude
three datasets, leaving us with a total of 57. We first shuf-
fled each dataset and then split it in stratified fashion into
2/3 training and 1/3 test data. Then, we computed the val-
idation performance for Bayesian optimization by ten-fold
crossvalidation on the training dataset.

To use the same dataset for each classification algorithm,

3We note the existence of previous work on CASH variants
for scitkit-learn (Hoffman, Shahriari, and de Freitas 2014; Komer,
Bergstra, and Eliasmith 2014).
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dataset: liver-disorders dataset: heart-h dataset: hepatitis

Figure 1: Difference in validation error between hyperparameters found by SMBO and the best value obtained via full grid search
for three datasets with scikit-learn. (20,d,X) stands for MI-SMAC with an initial design of t = 20 configurations suggested by
meta-learning with distance measure d using metafeatures X.

we coded categorical features using a one-hot (aka 1-in-k)
encoding, replacing each categorical feature f with domain
{v1, . . . , vk} by k binary variables, only the i-th of which
is set to true for data points where f is set to vi. To retain
sparsity, we replaced any missing values with zero. Finally,
we scaled numerical features linearly to the range [0, 1].

Experiments
Experimental Setup
We precomputed the 10-fold crossvalidation error on all 57
datasets for each of the 1 623 hyperparameter configurations
in our CASH problem. Because the configurations for the
SVM benchmark form a subset of these configurations, the
corresponding results were reused for the second experi-
ment. Although the classification datasets were no larger
than medium-sized (< 20 000 data points), calculating the
grid took up to three days per dataset on a modern CPU.
This extensive precomputation allowed us to run all our ex-
periments in simulation, by using a lookup table in lieu of
running an actual algorithm.

We evaluated our MI-SMBO approach in a leave-one-
dataset-out fashion: to evaluate it on one dataset, we assumed
knowledge of the other 56 datasets and their best hyperpa-
rameter settings. Because Bayesian optimization contains
random factors, we repeated each optimization run ten times
on each dataset. In total, we thus executed each optimization
procedure 570 times.

Our meta-learning initialization approach has several free
design choices we had to instantiate for our experiments.
These are: the distance metric d, the used metafeatures
(we experimented with several subsets suggested in the lit-
erature (Pfahringer, Bensusan, and Giraud-Carrier 2000;
Bardenet et al. 2013; Yogatama and Mann 2014)) and the
number t ∈ {5, 10, 20, 25} of configurations used for initial-
izing SMBO. In total, we evaluated 40 different instantia-
tions of our meta-learning procedure. Due to space restric-
tions, we only report results for the best of these instantia-
tions; for more results, please see the supplementary material:
www.automl.org/aaai2015-mi-smbo-supplementary.pdf

Concerning distance measures, we found the results with
dp and dc distance to be qualitatively similar, with slightly
better results for the dc measure. We thus restrict the plots

to dc in several experiments to avoid clutter in the plots. Our
experiments with different metafeatures showed that there
is no general best set of metafeatures; thus, we only report
results using all metafeatures.

Warmstarting SMAC for Optimizing scikit-learn
We now report our results for solving the CASH problem
in scikit-learn. First, we evaluated the base performance of
the hyperparameter optimization procedures random search,
TPE, and SMAC (note that for TPE the prior distributions
were uniform) on all 57 datasets and then added meta-
learning-initialization to the best of these. Due to the condi-
tional hyperparameters in the scikit-learn space we excluded
Spearmint, which – without modification – is known to per-
form poorly in their presence (Eggensperger et al. 2013).

Figure 1 presents the qualitative performance of all opti-
mizers on three representative datasets. The plots show the
mean of the best function values for one optimizer obtained
up to a given number of function evaluations. Overall, we
found SMAC to outperform both TPE and random search
for this large hyperparameter space, confirming the results
of Eggensperger et al. (2013). We thus applied our meta-
learning initialization to SMAC, but would also expect TPE
to benefit from it.

Figure 1 also compares qualitative results of MI-SMAC
to the three baselines. In the left plot, the meta-learning sug-
gestions were reasonable and thus lead to MI-SMAC suc-
cessively improving them over time. In the middle plot the
second configuration suggested by meta-learning was already
the best, leaving no room for improvement by SMAC. The
right plot highlights the fact that meta-learning can also fail
and decrease SMAC’s performance.

Next, we analyzed MI-SMAC’s performance using the
same ranking-based evaluation as Bardenet et al. (2013) to
aggregate over datasets. For each dataset and each function
evaluation, we computed the ranks of the three baselines and
the two MI-SMAC variants. More precisely, since we had 10
runs of each of the five methods available for each dataset
(which give rise to 105 possible combinations), we drew a
bootstrap sample of 1000 joint runs of the five optimizers and
computed the average ranks across these runs. We then further
averaged these average ranks across the 57 datasets and show
the results in Figure 2. We remind the reader that the rank
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Figure 2: Ranks of various optimizers averaged over all
datasets for the CASH problem in scikit-learn.

Figure 3: Ranks of SMAC and various MI-SMAC variants
averaged over all datasets for the CASH problem in scikit-
learn.

is a measure of performance relative to the performance of
the other optimizers; thus, a method’s rank can increase over
time (with larger function evaluation budgets), even though
its error decreases, if the other methods achieve greater error
reductions. Furthermore, we note that the ranks do not reflect
the magnitude of the difference between raw function values.

As Figure 2 shows, the two variants of MI-SMAC per-
formed best, converging to similar ranks with larger function
evaluation budgets; and meta-learning yielded dramatically
better results for very small function evaluation budgets. We
also note that even after 50 function evaluations no SMBO
method had fully caught up to the MI-SMBO results. This
indicates that meta-learning initialization provided not only
good performance with few function evaluations but also a
good basis for SMAC to improve upon further.

To demonstrate the effect of varying the number of initial
configurations t selected by meta-learning, we plotted the
ranks of different instantiations of MI-SMAC in Figure 3.
We observe that within the range of t we studied MI-SMAC
performs better with more initial configurations.

To complement the above ranking analysis, Figure 4 (top)
quantifies on how many datasets MI-SMAC with a learned
distance performed significantly better than the other methods
according to a two-sided t-test, while Figure 4 (bottom) shows

the statistically significant losses. Both of these quantities are
plotted over time, as the function evaluation budget increases.

Compared to the optimizers without meta-learning, MI-
SMAC performed much better from the start. Even after 50
iterations, it performed significantly better than TPE on 28%
of the datasets (in 11% worse), better than SMAC on 35% of
the datasets (in 7% worse), and better than random search on
43% of the datasets (in 9% worse). We would like to point
out that the improvement MI-SMAC yielded over SMAC is
larger than the improvement that SMAC yielded over ran-
dom search (in 20% better). We attribute this success to the
large search space for this problem, which not even SMAC
can effectively search in as little as 50 function evaluations.
Leveraging successful optimizations from previous datasets
clearly helped SMAC in this complex search space.

Warmstarting Spearmint for Optimizing SVMs
To test the generality of our approach we performed an addi-
tional experiment on a lower dimensional problem; optimiz-
ing the hyperparameters of an SVM on all 57 datasets using
Spearmint. We expected Spearmint to yield the best results
for this problem as it is known to perform well in cases where
the hyperparameters are few and real-valued (Eggensperger
et al. 2013). A statistical analysis using a two-sided t-test on
the performances for each of the 57 datasets confirms this
hypothesis, as Spearmint indeed significantly outperformed
TPE, SMAC, and random search in 32%, 44%, and 52% of
the datasets, respectively, and only lost in 7%, 8%, and 9%
of the cases, respectively.

The ranking plot in Figure 5 shows the performance
of Spearmint and two MI-Spearmint variants compared to
SMAC, TPE and random search. As this plot shows, the three
variants of Spearmint performed best, converging to a similar
rank with larger function evaluation budgets. While meta-
learning yielded considerably better results for small func-
tion evaluation budgets, after about 10 evaluations Spearmint
caught up.

As for the scikit-learn benchmark, we also evaluated the
effect of using different values of t and plotted these in Figure
6. In contrast to the results for scikit-learn, for this benchmark
it was better to use less configurations suggested by meta-
learning. In both benchmarks, however, MI-SMBO yielded
substantial performance gains over SMBO during the first
function evaluations.

Related Work and Possible Extensions
Existing work on using meta-learning for hyperparameter
optimization roughly follows two different directions of re-
search. Firstly, Leite, Brazdil, and Vanschoren (2012) devel-
oped Active Testing, a method similar to SMBO that reasons
across datasets. In contrast to SMBO, Active Testing is a
pure algorithm selection method which does not model the
effect of hyperparameters (and algorithms) on the results
and is limited to a finite number of algorithms. Secondly,
meta-learning was used to initialize model-free hyperparame-
ter optimization methods with configurations that previously
yielded good performance on similar datasets (Reif, Shafait,
and Dengel 2012; Gomes et al. 2012). While similar to our
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Figure 4: Percentage of wins of MI-SMAC with an initial design of t = 20 configurations suggested by meta-learning using
the learned distance on all metafeatures. The upper plot shows the number of significant wins of MI-SMAC over competing
approaches according to the two-sided t-test while the lower plot shows the statistically significant losses.

Figure 5: Ranks of various optimizers averaged over all
datasets for optimizing the SVM.

work, these methods were limited by their search mechanism
and did not improve the state of the art in hyperparameter
optimization.

There also exist first attempts to formalize SMBO across
several datasets. These collaborative SMBO methods (Bar-
denet et al. 2013; Swersky, Snoek, and Adams 2013; Yo-
gatama and Mann 2014) address the knowledge transfer di-
rectly in the SMBO procedure. However, to date they are
limited to small-scale problems with few continuous hyper-
parameters and a handful of meta-features. In contrast to
MI-SMBO they are dependent on the specific SMBO im-
plementation and cannot be readily applied to off-the-shelf
hyperparameter optimizers.

Our method’s generality opens several avenues for future
work. Here, we evaluated MI-SMBO on small and medium-
sized hyperparameter optimiziation problems, and an im-
portant open research question is to extend it to even larger
configuration spaces, such as those of Auto-WEKA (Thorn-
ton et al. 2013) and Hyperopt-Sklearn (Komer, Bergstra, and
Eliasmith 2014). We also plan to extend collaborative SMBO
methods to overcome their limitation to small-scale prob-
lems. Finally, it would be interesting to extend our work to
general algorithm configuration (Hutter, Hoos, and Leyton-
Brown 2011) and to the life-long learning setting (Gagli-
olo and Schmidhuber 2005; Hutter and Hamadi 2005;

Figure 6: Ranks of Spearmint and various MI-Spearmint
variants averaged over all datasets for optimizing the SVM.

Arbelaez, Hamadi, and Sebag 2010).

Conclusion
We have presented a simple, yet effective, method for improv-
ing Sequential Model-based Bayesian Optimization (SMBO)
by leveraging knowledge from previous optimization runs.
Our method combines SMBO with configurations suggested
by a meta-learning procedure. It is agnostic of the actual
SMBO method used and can thus be applied to the method
best suited for a particular problem.

We demonstrated MI-SMBO’s efficacy by improving the
initialization of two SMBO methods on a collection of 57
datasets. For a low-dimensional hyperparameter optimization
problem, for small optimization budgets MI-Spearmint im-
proved upon the current state of the art algorithm Spearmint.
For a large configuration space describing a CASH problem
in scikit-learn, MI-SMAC substantially improved over the
current state of the art CASH algorithm SMAC (and all other
tested optimizers), showing the potential of our approach
especially for large-scale hyperparameter optimization.
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