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Abstract

Optimization via continuation method is a widely used
approach for solving nonconvex minimization prob-
lems. While this method generally does not provide a
global minimum, empirically it often achieves a supe-
rior local minimum compared to alternative approaches
such as gradient descent. However, theoretical analysis
of this method is largely unavailable. Here, we provide
a theoretical analysis that provides a bound on the end-
point solution of the continuation method. The derived
bound depends on a problem specific characteristic that
we refer to as optimization complexity. We show that
this characteristic can be analytically computed when
the objective function is expressed in some suitable ba-
sis functions. Our analysis combines elements of scale-
space theory, regularization and differential equations.

1 Introduction
Nonconvex energy minimization problems arise frequently
in learning and complex inference tasks. In these prob-
lems, computing the global minima are generally intractable
and as such, heuristic methods are sought. These methods
may not always find the global minimum, but often pro-
vide good suboptimal solutions. A popular heuristic is the
so called continuation method. It starts by solving an easy
problem, and progressively changes it to the actual complex
task. Each step in this progression is guided by the solution
obtained in the previous step.

This idea is very popular owing to its ease of implemen-
tation and often superior empirical performance1 against al-
ternatives such as gradient descent. Instances of this concept
have been utilized by the artificial intelligence community
for more than three decades. Examples include graduated-
nonconvexity (Blake and Zisserman 1987), mean field the-
ory (Yuille 1987), deterministic annealing (Rose, Gurewitz,
and Fox 1990), and optimization via scale-space (Witkin,
Terzopoulos, and Kass 1987). It is widely used in vari-
ous state-of-the-art solutions (see Section 2). Despite that,
there exists no theoretical understanding of the method it-
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1That is finding much deeper local minima, if not the global
minima.

self2. For example, it is not clear which properties of the
problem make its associated optimization easy or difficult
for this approach.

This paper provides a bound on the objective value at-
tained by the continuation method. The derived bound
monotonically depends on a particular characteristic of the
objective function. That is, lower value of the characteristic
guarantees attaining lower objective value by the continua-
tion. This characteristic reflects the complexity of the opti-
mization task. Hence, we refer to it as the optimization com-
plexity. Importantly, we show that this complexity parame-
ter is computable when the objective function is expressed in
some suitable basis functions such as Gaussian Radial Basis
Function (RBF).

We provide a brief description of our main result here,
while the complete statement is postponed to Theorem 7.
Let f(x) be a nonconvex function to be minimized and let
x̂ be the solution discovered by the continuation method.
Let f† be the minimum of the simplified objective function.
Then,

f(x̂) ≤ w1 f
† + w2

√
α , (1)

where w1 > 0 and w2 > 0 are independent of f and α is
the optimization complexity of f . When f can be expressed

by Gaussian RBFs f(x) =
∑K
k=1 ake

− (x−xk)2

2δ2 , then in
Proposition 9 we show that its optimization complexity α

is proportional to
∑K
j=1

∑K
k=1 ajake

−
(xj−xk)2

2(2δ2−ε2) .
Our analysis here combines elements of scale space the-

ory (Loog, Duistermaat, and Florack 2001), differential
equations (Widder 1975), and regularization theory (Girosi,
Jones, and Poggio 1995).

We clarify that optimization by continuation, which traces
one particular solution, should not be confused by homotopy
continuation in the context of finding all roots of a system
of equation3. Homotopy continuation has a rich theory for

2We note that prior “application tailored” analysis is available,
e.g. (Kosowsky and Yuille 1994). However, there is no general and
application independent result in the literature.

3In principle, one may formulate the optimization problem as
finding all roots of the gradient and then evaluating the objective at
those points to choose the lowest. However, this is not practical as
the number of stationary points can be abundant, e.g. exponential
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the latter problem (Morgan 2009; Sommese and Wampler
2005), but that is a very different problem from the opti-
mization setup.

Throughout this article, we use , for equality by defini-
tion, x for scalars, x for vectors, and X for sets. Denote a
function by f(.), its Fourier transform by f̂(.), and its com-
plex conjugate by f̄(.). We often denote the domain of the
function by X = Rd and the domain of its Fourier trans-
form by Ω , Rd. Let kσ(x), for σ > 0, denote the isotropic
Gaussian kernel,

kσ(x) ,
1

(
√

2πσ)d
e−
‖x‖2

2σ2 .

Let ‖ . ‖ indicate ‖ . ‖2, and R++ , {x ∈ R |x >
0}. Finally, given a function of form g : Rd × R++,
∇g(x; t) , ∇xg(x; t), ∇2g(x; t) , ∇2

xg(x; t), and
ġ(x; t) , d

dtg(x; t). Finally, ∆g(x; t) ,
∑d
k=1

∂2

∂x2
k

.

2 Optimization by Continuation
Consider the problem of minimizing a nonconvex objective
function. In optimization by continuation, a transformation
of the nonconvex function to an easy-to-minimize function
is considered. The method then progressively converts the
easy problem back to the original function, while following
the path of the minimizer. In this paper, we always choose
the easier function to be convex. The minimizer of the easy
problem can be found efficiently.

This simple idea has been used with great success for var-
ious nonconvex problems. Classic examples include data
clustering (Gold, Rangarajan, and Mjolsness 1994), graph
matching (Gold and Rangarajan 1996; Zaslavskiy, Bach, and
Vert 2009; Liu, Qiao, and Xu 2012), semi-supervised kernel
machines (Sindhwani, Keerthi, and Chapelle 2006), multi-
ple instance learning (Gehler and Chapelle 2007; Kim and
Torre 2010), semi-supervised structured output (Dhillon et
al. 2012), language modeling (Bengio et al. 2009), robot
navigation (Pretto, Soatto, and Menegatti 2010), shape
matching (Tirthapura et al. 1998), `0 norm minimization
(Trzasko and Manduca 2009), image deblurring (Boccuto
et al. 2002), image denoising (Rangarajan and Chellappa
1990; Nikolova, Ng, and Tam 2010), template matching
(Dufour, Miller, and Galatsanos 2002), pixel correspon-
dence (Leordeanu and Hebert 2008), active contours (Co-
hen and Gorre 1995), Hough transform (Leich, Junghans,
and Jentschel 2004), and image matting (Price, Morse, and
Cohen 2010), finding optimal parameters in computer pro-
grams (Chaudhuri and Solar-Lezama 2011) and seeking the
optimal proofs (Chaudhuri, Clochard, and Solar-Lezama
2014).

In fact, the growing interest in this method has made it
one of the most favorable solutions for the contemporary
nonconvex minimization problems. Just within the past few
years, the method has been utilized for low-rank matrix re-
covery (Malek-Mohammadi et al. 2014), error correction by
`0 recovery (Mohimani et al. 2010), super resolution (Coupe

in number of variables for polynomials.

Algorithm 1 Algorithm for Optimization by Continuation
Method

1: Input: f : X → R, Sequence t0 > t1 > · · · > tn = 0.
2: x0 = global minimizer of g(x; t0).
3: for k = 1 to n do
4: xk = Local minimizer of g(x; tk), initialized at

xk−1.
5: end for
6: Output: xn

et al. 2013), photometric stereo (Wu and Tan 2013), im-
age segmentation (Hong, Lu, and Sundaramoorthi 2013),
face alignment (Saragih 2013), shape and illumination re-
covery (Barron 2013), 3D surface estimation (Balzer and
Morwald 2012), and dense correspondence of images (Kim
et al. 2013). The last two are in fact state of the art solutions
for their associated problems. In addition, it has recently
been argued that some recent breakthroughs in the train-
ing of deep architectures (Hinton, Osindero, and Teh 2006;
Erhan et al. 2009), has been made by algorithms that use
some form of continuation for learning (Bengio 2009).

We now present a formal statement of optimization by the
continuation method. Given an objective function f : X →
R, where X = Rd. Consider an embedding of f into a
family of functions g : X × T , where T , [0,∞), with the
following properties. First, g(x, 0) = f(x). Second, g(x, t)
is bounded below and is strictly convex in x when t tends to
infinity 4. Third, g(x, t) is continuously differentiable in x
and t.

Such embedding g is sometimes called a homotopy, as it
continuously transforms one function to another. The condi-
tions of strict convexity and bounded from below for g( . , t)
with t → ∞ imply that there exists a unique minimizer for
the g( . , t) when t→∞. We call this minimizer x∞.

Define the curve x(t) for t ≥ 0 as one with the fol-
lowing properties. First, limt→∞ x(t) = x∞. Second,
∀t ≥ 0 ; ∇g

(
x(t), t

)
= 0. Third, x(t) is continuous

in t. This curve simply sweeps a specific stationary path of
g originated at x∞, as the parameter t progresses backward
(See Figure 1). In general, such curve neither needs to exist,
nor be unique. However, these conditions can be guaranteed
by imposing extra condition ∀t ≥ 0 ; det(∇2g(x(t); t)) 6=
0 (see e.g. Theorem 3 of (Wu 1996)). Throughout this paper,
it is assumed that x(t) exists.

In practice, the continuation method is used as the follow-
ing. First, x∞ is either derived analytically or approximated
numerically by arg minx g(x; t) for large enough t. The lat-
ter can use standard convex optimization tools as g(x; t) ap-
proaches a convex function in x for large t. Then, the sta-
tionary path x(t) is numerically tracked until t = 0 (See
Algorithm 1). As mentioned in the introduction, for a wide
range of applications, the continuation solution x(0) often
provides a good local minimizer of f(x), if not the global
minimizer.

Although this work only focuses on the use of homotopy

4A rigorous definition of such asymptotic convexity is provided
in the supplementary appendix.
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Figure 1: Plots show g versus x for each fixed time t.

continuation for nonconvex optimization, there is also inter-
est in this method for convex optimization, e.g. to improve
or guarantee the convergence rate (Xiao and Zhang 2012).

3 Analysis
Due to the space limitation, only the statement of results are
provided here. Full proofs are available in a supplementary
appendix.

3.1 Path Independent Analysis

The first challenge we confront in developing a guarantee
for the value of g(x(0); 0) is that g( . ; 0) must be evaluated
at the point x(0). However, we do not know x(0) unless
we actually run the continuation algorithm and see where
it lands at upon termination. This is obviously not an op-
tion for the theoretical analysis of the problem. Hence, the
question is whether it is possible to say something about the
value of g(x(0); 0) without knowing the point x(0).

Here we prove that this is possible and we derive an upper
bound for g(x(0); 0) without knowing the curve x(t) itself.
We, however, require the value of g at the initial point to be
known. In addition, we require a global (curve independent)
inequality to relate g(x; t) and ġ(x; t). Our result is stated
in the following lemma.

Lemma 1 (Worst Case Value of g
(
x(t); t

)
) Given a func-

tion f : X → R and its associated homotopy map g. Given
a point x1 that is the stationary point of g(x; t1) (w.r.t. x).
Denote the curve of stationary points originated from x1 at
t1 by x(t), i.e. ∀t ∈ [0, t1] ; ∇g(x(t), t) = 0. Suppose this
curve exists. Given continuous functions a and b, such that
∀t ∈ [0, t1]∀x ∈ X ; a(t)g(x; t) + b(t) ≤ ġ(x; t). Then,
the following inequality holds for any t ∈ [0, t1],

g
(
x(t); t

)
(2)

≤
(
g
(
x(t1); t1

)
−
∫ t1

t

e
∫ t1
s
a(r) drb(s) ds

)
e−

∫ t1
t a(r) dr .

The proof of this lemma essentially consists of applying
a modified version of the differential form of Gronwall’s in-
equality. This lemma determines our next challenge, which
is finding the a(t) and b(t) for a given f . In order to do
that, we need to be more explicit about the choice of the
homotopy. Our following development relies on Gaussian
homotopy.

3.2 Gaussian Homotopy
The Gaussian homotopy g : X × T → R for a function
f : X → R is defined as the convolution of f with kσ ,
g(x;σ) , [f ? kσ](x) ,

∫
X f(y) kσ(x− y) dy.

In order to emphasize that the homotopy parameter t coin-
cides with the standard deviation of the Gaussian, from here
on, we switch to the notation g(x;σ) for the homotopy in-
stead of previously used g(x; t). A well-known property of
the Gaussian convolution is that it obeys the heat equation
(Widder 1975),

ġ(x;σ) = σ∆g(x;σ) . (3)

This means that in Lemma 1, the condition a(σ)g(x;σ)+
b(σ) ≤ ġ(x;σ) can be replaced by a(σ)g(x;σ) + b(σ) ≤
σ∆g(x;σ). In order to find such a(σ) and b(σ), we first
obtain a lower bound on ∆g(x;σ) in terms of g(x;σ). Then,
we will set a(σ)g(x;σ) + b(σ) to be smaller than the lower
bound.

Gaussian homotopy has useful properties in the context of
the continuation method. First, it enjoy some optimality cri-
terion in terms of the best convexification of f(x) (Mobahi
and Fisher III ). Second, for some complete basis functions,
such as polynomials or Gaussian RBFs, Gaussian convolu-
tion has a closed form expression. Finally, under mild condi-
tions, a large enough bandwidth can make g(x;σ) unimodal
(Loog, Duistermaat, and Florack 2001) and hence easy to
minimize. In fact, the example in Figure 1 is constructed
by Gaussian convolution. Observe how the original function
(bottom) gradually looks more like a convex function in the
figure.

3.3 Lower Bounding ∆g as a Function of g
Here we want to relate ∆g(x;σ) to g(x;σ). Since the dif-
ferential operator is only w.r.t. variable x, we can simplify
the notation by disregarding dependency on σ. Hence, we
work with h(x) , g(x;σ) for some fixed σ. Hence, the
goal becomes lower bounding ∆h(x) as a function of h(x).

The lower bound must hold at any arbitrary point, say x0.
Remember, we want to bound ∆h(x0) only as a function of
the value of h(x0) and not x0 itself. In other words, we do
not know where x0 is, but we are told what h(x0) is. We can
pose this problem as the following functional optimization
task, where h0 , h(x0) is a known quantity.
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y = inf
f,x1

∆f(x1) , s.t. , f(x1) = h0 , f(x) = h(x) .

(4)

Then it follows5 that y ≤ ∆h(x0). However, solving
(4) is too idealistic due to the constraint f(x) = h(x) and
the fact that h(x) can be any complicated function. A more
practical scenario is to constrain f(x) to match with h(x)
in terms of some signatures. These signatures must be easy
to compute for h(x) and allow solving the associated func-
tional optimization in f .

A potentially useful signature for constraining the prob-
lem is function’s smoothness. We quantify the latter for
a function f(x) by

∫
Ω
|f̂(ω)|2

Ĝ(‖ω‖) dω where Ĝ is a decreas-
ing function called stabilizer. This form essentially penal-
izes higher frequencies in f . Functional optimization in-
volving this type of constraint has been studied in the realm
of regularization theory in machine learning (Girosi, Jones,
and Poggio 1995). Deeper mathematical details can be
found in (Dyn et al. 1989; Dyn 1989; Madych and Nel-
son 1990). The smoothness constraint plays a crucial role
in our analysis. We denote it by α for brevity, where
α , (2π)−

d
2

∫
Ω
|ĥ(ω)|2

Ĝ(‖ω‖) dω, and refer to this quantity as the
optimization complexity. Hence, the ideal task (4) can be
relaxed to the following,

ỹ = inf
f,x1

∆f(x1) (5)

s.t. , f(x1) = h0 ,

∫
Ω

|f̂(ω)|2

Ĝ(‖ω‖)
dω = (

√
2π)dα .

Since (5) is a relaxation of (4) (because the constraint
f(x) = h(x) is replaced by the weaker constraint∫

Ω
|f̂(ω)|2

Ĝ(‖ω‖) dω =
∫

Ω
|ĥ(ω)|2

Ĝ(‖ω‖) dω), it follows that ỹ ≤ y.
Since y ≤ ∆h(x0), we get ỹ ≤ ∆h(x0), hence the desired
lower bound.

In the setting (5), we can indeed solve the associated func-
tional optimization. The result is stated in the following
lemma.

Lemma 2 Consider f : X → R with well-defined Fourier
transform. Let Ĝ : Ω → R++ be any decreasing func-
tion. Suppose f(x1) = h0 and ( 1√

2π
)d
∫

Ω
|f̂(ω)|2

Ĝ(ω)
dω = α

for given constants h0 and α. Then inff,x1 ∆f(x1) =
c1∆G(0)− c2∆∆G(0), where (c1, c2) is the solution to the
following system,


c1G(0)− c2∆G(0) = h0

c21
∫

Ω
Ĝ(ω) dω + 2c1c2

∫
Ω
‖ω‖2Ĝ(ω) dω . . .

+c22
∫

Ω
‖ω‖4Ĝ(ω) dω = (

√
2π)dα

. (6)

5If h is a one-to-one map, f(x1) = h0 and f(x) = h(x) imply
that x1 = x0 and hence y = ∆h(x0).

Here ∆∆ means the application of the Laplace operator
twice. The lemma is very general, working for any decreas-
ing function Ĝ : Ω → R++. An interesting choice for
the stabilizer Ĝ is the Gaussian function (this is a famil-
iar case in the regularization theory due to Yuille (Yuille and
Grzywacz 1989)). This leads to the following corollary.
Corollary 3 Consider f : X → R with well-defined

Fourier transform. Let Ĝ(ω) , εde−
ε2‖ω‖2

2 . Suppose

f(x1) = h0 and
∫

Ω
|f̂(ω)|2

Ĝ(ω)
dω = (

√
2π)dα for given con-

stants h0 and α. Then inff,x1
∆f(x1) = −h0+2

√
2
√
α−h2

0

ε2 .

Example Consider h(x) = −e− x
2

2 . Let Ĝ(ω) , e−
ω2

2

(i.e. set ε = 1). It is easy to check that
∫
R
|ĥ(ω)|2

Ĝ(ω)
dω =

√
2π. Hence, α = 1. Let x0 = 0. Obviously, h(x0) =
−1. Using Corollary 3 we have inff,x1

f ′′(x1) = −(−1 +

2
√

2
√

1− (−1)2) = 1. We now show that the worst case
bound suggested by Corollary 3 is sharp for this example.
It is so because h′′(x) = (1 − x2)e−

x2

2 , which at x0 = 0
becomes h′′(x0) = 1.

3.4 Extension to the Smoothed Objective
Corollary 3 applies to any functions f(x) that has well-
defined Fourier transform and any stabilizer of form Ĝ(ω).
This includes any parameterized family of functions and
stabilizer, as long as the parameter(s) and x are indepen-
dent of each other. In particular, one can choose the pa-
rameter to be σ and replace f(x) by g(x;σ) and Ĝ(ω) by

Ĝ(ω;σ) , εd(σ)e−
ε2(σ)‖ω‖2

2 . Note that σ and x are inde-
pendent.

This simple argument allows us to express Corollary 3 in
the the following parametric way.
Corollary 4 Consider f : X → R with well-defined
Fourier transform. Define g(x;σ) , [h ? kσ](x). Let

Ĝ(ω;σ) , εd(σ)e−
ε2(σ)‖ω‖2

2 . Suppose g(x1;σ) =

g0(σ) and
∫

Ω
|ĝ(ω;σ)|2

Ĝ(ω;σ)
dω = (

√
2π)dα(σ) for given val-

ues g0(σ) and α(σ). Then infg( . ;σ),x1
∆g(x1;σ) =

− g0(σ)+2
√

2
√
α(σ)−g20(σ)

ε2(σ) .

3.5 Choice of ε(σ)
For the purpose of analysis, we restrict the choice of ε(σ) >
0 as stated by the following proposition. This results in
monotonic α(σ), which greatly simplifies the analysis.
Proposition 5 Suppose the function ε(σ) > 0 satisfies 0 ≤
ε(σ)ε̇(σ) ≤ σ. Then α̇(σ) ≤ 0.

This choice can be further refined by the following propo-
sition.
Proposition 6 The only form for ε(σ) > 0 that satisfies 0 ≤
ε(σ)ε̇(σ) ≤ σ is,

ε(σ) = β
√
σ2 + ζ , (7)

for any 0 < β ≤ 1 and ζ > −σ2.
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3.6 Lower Bounding σ∆g(x;σ) by
a(σ)g(x;σ) + b(σ)

The goal of this section is finding continuous func-
tions a and b such that a(σ)g(x;σ) + b(σ) ≤
σ∆g(x;σ). By manipulating Corollary 4, one can de-

rive ∆g(x0;σ) ≥ − g(x0;σ)+2
√

2
√
α(σ)−g(x0;σ)2

ε2(σ) , where

(
√

2π)dα(σ) , 1
ε(σ)

∫
Ω
|ĝ(ω;σ)|2 e

ε2(σ) ‖ω‖2
2 dω.

By multiplying both sides by σ (remember
σ > 0) and factorizing α(σ) the above inequal-
ity can be equivalently written as, σ∆g(x0;σ) ≥
−σ g(x0;σ)

ε2(σ) − 2σ
√

2α(σ)

ε2(σ)

√
1− g(x0;σ)2

α(σ) . This inequality

implies ∆g(x0;σ) ≥ −σ g(x0;σ)
ε2(σ) − 2σ

√
2α(σ)

ε2(σ)

( 1+γ
g(x0;σ)√
α(σ)√

1−γ2

)
,

where 0 ≤ γ < 1 is any constant and we use the fact
that ∀(u, γ) ∈ [−1, 1] × [0, 1) ;

√
1− u2 ≤ 1+γu√

1−γ2
(with

g(x0;σ)√
α(σ)

being u). The inequality now has the affine form

σ∆g(x0;σ) ≥ a(σ)g(x0;σ) + b(σ), where

a(σ) = − σ

ε2(σ)
− 2

√
2σ γ

ε2(σ)
√

1− γ2
, b(σ) = −

2σ
√

2α(σ)

ε2(σ)
√

1− γ2
.

(8)
Note that the continuity of ε as stated in (7) implies conti-

nuity of a and b.

3.7 Integrations and Final Bound
Theorem 7 Let f : X → R be the objective function. Given
the initial value g

(
x(σ1);σ1

)
. Then for any 0 ≤ σ ≤ σ1,

and any constants 0 < γ < 1, 0 < β < 1, ζ > −σ2, the
following holds,

g
(
x(σ);σ

)
≤ (

σ2 + ζ

σ2
1 + ζ

)p g
(
x(σ1);σ1

)
+c
√
α(σ)

(
1−(

σ2 + ζ

σ2
1 + ζ

)p
)
,

(9)

where p , 1
2β2 ( 2

√
2 γ√

1−γ2
− 1) and c ,

√
2

2
√

2 γ−
√

1−γ2
.

The proof essentially combines (8) with the fact
ġ(x;σ) = σ∆g(x;σ) (i.e. the heat equation) to obtain
ġ(x;σ) ≥ a(σ)g(x;σ) + b(σ), where a(σ) =

(
2
√

2 γ√
1−γ2

−

1
)

σ
ε2(σ) and b(σ) = − 2σ

√
2α(σ)

ε2(σ)
√

1−γ2
. This form is now

amenable to Lemma 1. Using the form of ε(σ) in (7),∫
a(r) dr can be computed analytically to 1

2β2

(
2
√

2 γ√
1−γ2

−

1
)

log(σ2 + ζ). Finally, using the Holder’s inequality
‖f g‖1 ≤ ‖f‖1 ‖g‖∞, we can separate

√
α(σ) from the re-

maining of the integrand in form of sup
√
α(σ). The latter

further simplifies to
√
α(σ) due to non-increasing property

of α stated in Proposition 5.
We now discuss the role of optimization complexity

α(σ) in (9). For brevity, let w1(σ, σ1) , (σ
2+ζ
σ2
1+ζ

)p, and

w2(σ, σ1) , c
(
1−(σ

2+ζ
σ2
1+ζ

)p
)
. Observe thatw1 andw2 are in-

dependent of f , while g and α depend on f . It can be proved
that w2 is nonnegative (Proposition 8), and obviously so is√
α(σ). Hence, lower optimization complexity α(σ) results

in a smaller objective value g
(
x(σ);σ

)
. Since the optimiza-

tion complexity α depends on the objective function, it pro-
vides a way to quantify the hardness of the optimization task
at hand.

A practical consequence of our theorem is that one may
determine the worst case performance without running the
algorithm. Importantly, the optimization complexity can be
easily computed when f is represented by some suitable ba-
sis form; in particular by Gaussian RBFs. This is the subject
of the next section. Note that while our result holds for any
choice of constants within the prescribed range, ideally they
would be chosen to make the bound tight. That is, the neg-
ative and positive terms respectively receive the large and
small weights.

Before ending this section, we present the following
proposition which formally proves w2 is positive.

Proposition 8 Let c ,
√

2

2
√

2 γ−
√

1−γ2
and p ,

1
2β2 ( 2

√
2 γ√

1−γ2
− 1) for any choice of 0 ≤ γ < 1 and 0 <

β ≤ 1. Suppose 0 < σ < σ1 and ζ > −σ2. Then
c(1− (σ

2+ζ
σ2
1+ζ

)p) > 0

3.8 Analytical Expression for α(σ)

In order to utilize the presented theorem in practice for some
given objective function f , we need to know its associated
optimization complexity α(σ). That is, we must be able
to compute

∫
Ω
|ĥ(ω)|2

Ĝ(ω)
dω analytically. Is this possible, at

least for a class of interesting functions? Here we show that
this is possible if the function f is represented in some suit-
able form. Specifically, here we prove that the integrals in
α(σ) can be computed analytically when f is represented by
Gaussian RBFs.

Before proving this, we provide a brief description of
Gaussian RBF representation. It is known that, under mild
conditions, RBF functions are capable of universal approx-
imation (Park and Sandberg 1991). The literature on RBF
is extensive (Buhmann and Buhmann 2003; Schaback and
Wendland 2001). This representation has been used for in-
terpolation and approximation in various practical applica-
tions. Examples include but are not limited to neural net-
works (Park and Sandberg 1991), object recognition (Pauli,
Benkwitz, and Sommer 1995), computer graphics (Carr et
al. 2001), and medical imaging (Carr, Fright, and Beatson
1997).

Proposition 9 Suppose h(x) ,
∑K
k=1 ake

− (x−xk)2

2δ2 and let

Ĝ(ω) , εde−
ε2‖ω‖2

2 , and suppose ε < δ. Then, the follow-
ing holds,
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∫
Ω

|ĥ(ω)|2

Ĝ(ω)
dω = (

√
2πδ2

ε
√

2δ2 − ε2
)d

K∑
j=1

K∑
k=1

ajake
−

(xj−xk)2

2(2δ2−ε2)

(10)

Observing that when f(x) ,
∑K
k=1 ake

− (x−xk)2

2δ2 , then

g(x;σ) ,
∑K
k=1( δ√

δ2+σ2
)dake

− (x−xk)2

2(δ2+σ2) , the following is
a straightforward Corollary of Proposition 9, which allows
us to compute α(σ) for RBF represented f .

Corollary 10 Suppose f(x) ,
∑K
k=1 ake

− (x−xk)2

2δ2 , so that

g(x;σ) ,
∑K
k=1( δ√

δ2+σ2
)dake

− (x−xk)2

2(δ2+σ2) . Let Ĝ(ω;σ) ,

εd(σ)e−
ε2(σ)‖ω‖2

2 and suppose ε(σ) <
√
δ2 + σ2. Then, the

following holds,

∫
Ω

|ĝ(ω;σ)|2

Ĝ(ω;σ)
dω = (

√
2πδ2

ε(σ)
√

2δ2 + 2σ2 − ε2(σ)
)d

×
K∑
j=1

K∑
k=1

ajake
−

(xj−xk)2

2(2δ2+2σ2−ε2(σ)) .

4 Conclusion & Future Works
In this work, for the first time, we provided a theoretical
analysis of the optimization by the continuation method.
Specifically, we developed an upper bound on the value of
the objective function that the continuation method attains.
This bound monotonically depends on a characteristic of the
objective function that we called the optimization complex-
ity. We showed how the optimization complexity can be
computed analytically when the objective is represented in
some suitable basis functions such as Gaussian RBFs.

Our analysis visited different areas such as scale space,
differential equations, and regularization theory. The opti-
mization complexity depends on the choice of the stabilizer
G. In this paper, we only use Gaussian G. However, extend-
ing G to other choices G can be investigated in the future.
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