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Abstract

Minimum Vertex Cover (MinVC) is a well known
NP-hard combinatorial optimization problem, and local
search has been shown to be one of the most
effective approaches to this problem. State-of-the-art
MinVC local search algorithms employ edge weighting
techniques and prefer to select vertices with higher
weighted score. These algorithms are not robust and
especially have poor performance on instances with
structures which defeat greedy heuristics. In this paper,
we propose a vertex weighting scheme to address this
shortcoming, and combine it within the current best
MinVC local search algorithm NuMVC, leading to a
new algorithm called TwMVC. Our experiments show
that TwMVC outperforms NuMVC on the standard
benchmarks namely DIMACS and BHOSLIB. To the
best of our knowledge, TwMVC is the first MinVC
algorithm that attains the best known solution for all
instances in both benchmarks. Further, TwMVC shows
superiority on a benchmark of real-world networks.

Introduction
A vertex cover of a graph is a set of vertices such that
each edge of the graph is incident to at least one vertex
of the set. The Minimum Vertex Cover (MinVC) problem
is to find the minimum sized vertex cover in a graph.
MinVC is a prominent NP-hard combinatorial optimization
problem with many applications, such as network security,
VLSI design and industrial machine assignment. It is
also closely related to Maximum Clique (MaxClq) and
Maximum Independent Set (MaxIS) problems. Algorithms
for MinVC can be directly used to solve the MaxClq
problem, which has many applications from computer vision
to social networks. Due to their hardness and importance
to many real-world applications, even a small progress in
solving these three problems can have a significant impact
in practice.

MinVC as well as MaxClq and MaxIS are all NP-
hard and the associated decision problems are NP-complete
(Garey and Johnson 1979). Furthermore, it is NP-hard to
approximate MinVC within any factor smaller than 1.3606
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(Dinur and Safra 2005); and state-of-the-art approximation
algorithms can only achieve an approximation ratio of 2 −
o(1) (Karakostas 2005). Besides, both MaxClq and MaxIS
are not approximable within |V |1−ε for any ε > 0, unless
NP=P (Zuckerman 2006).

However, the hardness of these problems are based on
worst case complexity analysis. In practice, we can develop
algorithms to tackle these problems efficiently in most cases.
Practical algorithms for these three problems mainly fall into
two types: exact ones mainly including branch-and-bound
algorithms and heuristic ones mainly including local search
algorithms. Exact algorithms guarantee the optimality of the
solutions they find, but may fail to give a solution within
reasonable time for large instances. Local search algorithms
cannot guarantee the optimality of their solutions, but they
can find optimal or near-optimal solutions for large and hard
instances within reasonable time.

A huge amount of effort has been devoted to local search
algorithms for these three problems, e.g., (Battiti and Protasi
2001; Pullan 2006; Richter, Helmert, and Gretton 2007;
Andrade, Resende, and Werneck 2008; Cai, Su, and Sattar
2011; Benlic and Hao 2013; Cai et al. 2013), to name a
few. Most of the algorithms are designed to solve MinVC or
MaxClq. Recently, local search algorithms for MinVC have
been shown to be more efficient than those for MaxClq and
MaxIS, based on experiments with the standard benchmarks
namely DIMACS and BHOSLIB. Especially, the very recent
algorithm NuMVC (Cai et al. 2013) dominates other MinVC
local search algorithms on both DIMACS and BHOSLIB
benchmarks, and significantly outperforms state-of-the-art
MaxClq local search algorithms such as PLS1 (Pullan 2006),
with an exception on the brock family.

State-of-the-art MinVC local search algorithms, including
NuMVC, employ edge weighting techniques and prefer to
select vertices with higher weighted score. A disadvantage
of such edge-weighting greedy search algorithms is that,
they are not robust and have poor performance on certain
types of instances (such as those with structures which
defeat greedy heuristics).

In this paper, we propose a vertex weighting scheme

1PLS is a milestone of MaxClq local search, and still competes
very well with the most recent MaxClq local search algorithms
(Benlic and Hao 2013).
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to address this shortcoming. The main idea is to penalize
vertices when they are not in the current candidate solution
C, and force the algorithm to select those vertices with great
penalties to add into C; at the same time, we also decrease
the penalty when a vertex is chosen thanks to its penalty, in
order to prevent a vertex being selected over and over again
because of its penalty (i.e., vertex weight). We combine
the vertex weighting scheme within the NuMVC algorithm,
leading to a new algorithm called TwMVC (Two weighting
local search for Minimum Vertex Cover).

We carry out experiments to compare TwMVC with
NuMVC on standard benchmarks including DIMACS and
BHOSLIB benchmarks, as well as a real-world benchmark
of web link networks. Experimental results show that
TwMVC outperforms NuMVC on most DIMACS instances
and almost all BHOSLIB instances. As far as we know,
TwMVC is the first MinVC algorithm that attains the best
known results for all DAIMCS and BHOSLIB instances.
Note that it is known that for a single heuristic, it is very
difficult to perform well on all these instances (Pullan,
Mascia, and Brunato 2011). Furthermore, TwMVC performs
better than NuMVC on real-world web link networks.

The following section introduces some necessary back-
ground knowledge, and Section 3 reviews NuMVC. We
propose the vertex weighting scheme in Section 4 and
describe the TwMVC algorithm in Section 5. Experimental
evaluations of TwMVC are presented in Section 6. Finally,
we give some concluding remarks.

Preliminaries
Basic Definitions and Notation
An undirected graph G = (V,E) consists of a vertex set V
and an edge set E where each edge is a 2-element subset
of V . A simple graph is an unweighted, undirected graph
containing no graph loops or multiple edges. For an edge
e = {u, v}, we say that vertices u and v are the endpoints
of edge e. Two vertices are neighbors if and only if they both
belong to some edge.

Given a simple graph G = (V,E), a candidate solution
for MinVC is a subset of vertices. An edge e ∈ E is
covered by a candidate solution X if at least one endpoint
of e belongs to X . Usually, MinVC local search algorithms
maintain a current candidate solution during the search. For
convenience, in the rest of this paper, we use C to denote the
current candidate solution. The state of a vertex v is denoted
by sv ∈ {1, 0}, such that sv = 1 means v ∈ C, and sv = 0
means v /∈ C. The age of a vertex is the number of steps
since its state was last changed.

In edge weighting local search algorithms for MinVC,
each edge e ∈ E is associated with a non-negative integer
number w(e) as its edge weight. Given a candidate solution
X , the cost of X , denoted by cost(X), is defined as the
total weight of edges uncovered by X . MinVC local search
algorithms search for candidate solutions with lower cost.
For a vertex v, score(v) = cost(C) − cost(C ′) where
C ′ = C\{v} if v ∈ C, and C ′ = C ∪ {v} otherwise,
measuring the benefit of changing the state of vertex v.

A Local Search Framework for MinVC

Most local search algorithms for MinVC, including COVER
(Richter, Helmert, and Gretton 2007), EWLS (Cai, Su, and
Chen 2010), EWCC (Cai, Su, and Sattar 2011) and NuMVC,
solve the MinVC problem by iteratively solving its decision
version — given a positive integer number k, searching for a
k-sized vertex cover. A basic framework for such algorithms
is shown in Algorithm 1, as described below.

Algorithm 1: A Local Search Framework of MinVC

construct C until it is a vertex cover;1
while not reach terminate condition do2

if C covers all edges then3
C∗ := C;4
remove a vertex from C;5

perform an exchanging step;6

return C∗;7

In the beginning, a vertex cover is constructed to initialize
the current candidate solution C, usually using a greedy
construction procedure. During the search, whenever the
algorithm finds a k-sized vertex cover, one vertex is removed
from C and the algorithm goes on to search for a (k − 1)-
sized vertex cover. The step to a neighboring candidate
solution consists of exchanging a pair of vertices: a vertex
u ∈ C is removed from C, and a vertex v /∈ C is put into C.
Such a step is called an exchanging step. When the algorithm
terminates, it outputs the smallest vertex cover it has found.

Review of NuMVC

This section reviews the NuMVC algorithm. NuMVC
adopts the framework in Algorithm 1, and here we only
introduce its exchanging step.

We first introduce the configuration checking (CC)
strategy, which is an important strategy in NuMVC. Initially
introduced in (Cai, Su, and Sattar 2011), the CC strategy
aims to avoid cycling during local search. A vertex is
configuration changed if and only if after its last removal
from C, at least one of its neighboring vertices has changed
its state. According to the CC strategy, only configuration
changed vertices are allowed to be added into C. It has
been proved that for any uncovered edge, at least one of its
endpoints is configuration changed (Cai et al. 2013).

NuMVC performs an exchanging step in two stages.
First, it picks a vertex u ∈ C with the greatest score to
remove, breaking ties in favor of the oldest one. Then, it
chooses a random uncovered edge e and picks one of e’s
endpoints to add into C as follows: if only one endpoint
of e is configuration changed, then that vertex is selected;
if both endpoints are configuration changed, then the one
with greater score is selected, breaking ties in favor of
the older one. At the end of each step, NuMVC increases
weights of all uncovered edges by one, and if the averaged
weight achieves a threshold, all edge weights are decreased
by multiplying a positive real number that is smaller than 1.
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Vertex Weighting for MinVC
In this section, we propose a vertex weighting scheme
and illustrate its usage in TwMVC. We also explain the
differences of the proposed vertex weighting scheme with
existing weighting schemes.

The Vertex Weighting Scheme
From an abstract perspective, the vertex weighting scheme
in TwMVC includes two folds of meanings: first, it
diversifies the search by forcing the algorithm to select
those vertices that stay too often outside C to add into C;
on the other hand, a vertex should not benefit too many
times from its vertex weight. Although we expect this
vertex weighting scheme effective for most instances, we
conjecture it is particularly effective for instances where
some vertices would not be selected for very long time using
greedy heuristics. As we will see, there are experimental
evidences for this conjecture.

The vertex weighting scheme works as follows. Each
vertex v is associated with a non-negative integer number
wv(v) as its weight, which is initialized to 0. At the end
of each exchanging step, for each vertex v /∈ C, wv(v) is
increased by one, to measure the frequency that it is outside
C. Vertex weights are also decreased by one periodically.
The vertex weights are used and updated if necessary when
selecting a vertex to add into C. We note that TwMVC
always picks a vertex from an uncovered edge to add into
C. For the selected edge, if one endpoint’s vertex weight is
significantly greater than the other’s, then it is chosen into
C (when two vertices have similar weights, we ignore their
weight difference), and also its vertex weight is decreased
using the formula wv(v) := wv(v) · β, where β ∈ [0, 1].

While it is quite intuitive to increase vertex weights
for vertices when they are not in C, we here explain the
idea in the weight decreasing mechanism. For the sake of
diversification, it is reasonable to force the algorithm to pick
the vertex with significantly greater weight to add into C.
However, if the weight of a vertex gets too high, then the
vertex will be selected intoC over and over again in a period
of time, usually shortly after it is removed from C. This
is because for such a high-weight vertex v, it needs some
time for its neighbors to increase their weights to match with
it. Before that, whenever TwMVC picks an uncovered edge
containing v, v will be selected to add into C thanks to its
high weight, regardless of its score. Thus the algorithm is
likely misled during this period of time. In fact, a significant
vertex weight can be regarded as a privilege of the vertex,
which assures it to be selected into C. In order to avoid
a vertex with significant weight to be added over and over
again, this privilege should not be used too many times. A
solution is thus to decrease the vertex weight of a vertex after
it is selected into C via this privilege.

Differences with Previous Weighting Schemes
As a popular form of diversification, weighting techniques
have been widely used in local search algorithms for
constraint search problems. However, the vertex weighting
scheme in this work is different from existing weighting
schemes in three important aspects.

First, our vertex weighting scheme decreases weight for
only one vertex, while existing weighting schemes each
time decrease weights for many elements. Some weighting
methods decrease weights for all elements, such as the
SAPS scheme for SAT (Hutter, Tompkins, and Hoos 2002)
and the edge weighting scheme in NuMVC (Cai et al.
2013); others decrease weights for elements whose weights
are greater than one, such as the PAWS scheme for SAT
(Thornton et al. 2004) and the weighting scheme in DLS-
MC for MaxClq (Pullan and Hoos 2006). In spirit, previous
weighting schemes decrease weights in order to focus on
recent weighting decisions, while our vertex weighting
scheme decreases weight for a vertex to avoid the vertex
using its weight as a privilege too many times.

Second, our vertex weighting scheme decreases weight
when a vertex uses its weight as a privilege to be selected,
while previous weighting schemes do so depending on
other conditions. For instance, PAWS (Thornton et al. 2004)
and DLS-MC (Pullan and Hoos 2006) decrease weights
periodically, SAPS decreases weights based on a probability
(Hutter, Tompkins, and Hoos 2002), while SWT (Cai and Su
2013) and the weighting scheme in NuMVC do so when the
averaged weight reaches a threshold.

Finally, we would like to note that the way we utilize the
vertex weights (i.e., focusing on whether two vertices have
significant vertex weight difference) is novel.

A recent MinVC algorithm VEWLS, which is modified
from NuMVC, also uses edge and vertex weights (Fang et
al. 2014). However, the vertex weights are only simply used
in the restart phase. Results in (Fang et al. 2014) shows
that VEWLS has slight improvement over NuMVC on about
70% of the instances but a little worse on others.

The TwMVC Algorithm
In this section, we develop a local search algorithm called
TwMVC, which is obtained from NuMVC by applying the
vertex weighting scheme in the preceding section.

We outline the TwMVC algorithm in Algorithm 2. The
initialization is trivial: all vertex weights are initialized
to 0, all edge weights are initialized to 1, and scores
of vertices are computed accordingly; then the current
candidate solution C is constructed by adding a vertex with
the greatest score iteratively until it becomes a vertex cover.

At each step, TwMVC first picks a vertex u ∈ C with the
greatest score to remove2, breaking ties in favor of the oldest
vertex. Then, it selects a random uncovered edge e, and
chooses one of e’s endpoints to add into C according to the
chooseAddV ertex function. At the end of each step, edge
weights of uncovered edges are increased by one, and all
edge weights greater than one are decreased by one each γ
(a parameter) steps. Also, vertex weights of vertices outside
C are increased by one, and all vertex weights greater than
one are decreased by one each 100 steps.

The chooseAddV ertex function (Algorithm 3) in
TwMVC chooses a vertex to add into C from an uncovered

2Note that in C, a vertex with the greatest score is the one
has the minimum absolute value of score, as all these scores are
negative.
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edge . We denote the input edge as e, and its two endpoints
as vi1 and vi2 . If only one endpoint of e is configuration
changed, then the function returns that configuration
changed vertex. Otherwise, the function selects a vertex
from vi1 and vi2 depending on whether the two vertices
have significant weight difference, or formally, whether
|wv(vi1) − wv(vi2)| > δ, where δ is an integer parameter.
If this is the case, then the function returns the vertex with
greater weight, and also decreases its weight by multiplying
a factor β ∈ (0, 1). If not, the function returns the vertex
with greater score, breaking ties by preferring the older one.

Algorithm 2: TwMVC
Input: graph G = (V,E), the cutoff time
Output: vertex cover of G
begin1

step := 0;2
initialize edge weights and vertex weights;3
construct C greedily until it is a vertex cover;4
while elapsed time < cutoff do5

if C covers all edges then6
C∗ := C;7
remove a vertex with the greatest score from C;8
continue;9

choose a vertex u ∈ C with the greatest score,10
breaking ties in favor of the oldest one;
C := C\{u};11
choose an uncovered edge e randomly;12
v := chooseAddV ertex(e);13
C := C ∪ {v};14
w(e)+=1 for each uncovered edge e;15
if step%γ=0 then for each w(e) > 1, w(e)-=1 ;16
wv(v)+=1 for each v /∈ C;17
if step% 100=0 then for each wv(v) >1, wv(v)-=1;18
step+=1;19

return C∗;20
end21

Algorithm 3: chooseAddVertex(e)
Input: an uncovered edge e = {vi1 , vi2}
Output: a vertex
if only one endpoint of e is configuration changed then1

return v∗ ∈ e such that v∗ is configuration changed;2

if |wv(vi1)− wv(vi2)| > δ then3
v∗ := v ∈ e with greater vertex weight;4
wv(v

∗) := wv(v
∗) · β;5

return v∗;6
else7

return v∗ ∈ e with greater score, breaking ties in favor8
of the older one;

Empirical Results
In this section, we first compare TwMVC with NuMVC on
standard benchmarks in the literature, i.e., the DIMACS and
BHOSLIB benchmarks. Then, we compare TwMVC and
NuMVC on a real-world benchmark of web link networks.
Since NuMVC clearly outperforms other MinVC local

search algorithms (Cai et al. 2013), we do not compare
TwMVC with other MinVC local search algorithms. Finally,
we also compare TwMVC with state-of-the-art exact
MaxClq solvers.

The Benchmarks
The DIMACS benchmark is taken from the Second
DIMACS Implementation Challenge for the Maximum
Clique problem (1992-1993)3. Thirty seven graphs were
selected by the organizers for a summary to indicate
the effectiveness of algorithms, comprising the Second
DIMACS Challenge Test Problems. These instances were
generated from real world problems and random graphs
in various models. The DIMACS benchmark remains the
most popular benchmark and has been widely used for
evaluating MinVC and MaxClq algorithms. Note that as
the DIMACS graphs were originally designed for the
MaxClq problem, MinVC algorithms are tested on their
complementary graphs.

The BHOSLIB4 (Benchmarks with Hidden Optimum
Solutions) instances were generated in the phase transition
area according to model RB (Xu et al. 2007). This
benchmark is famous for its hardness and has been widely
used to evaluate recent local search solvers to MinVC,
MaxClq and MaxIS.

The web link networks5 were generated from web
pages online. Here, vertices are web-pages and edges are
hyperlinks between pages. Some instances are not simple
graphs and thus not included in our experiment. These
real-world instances have much larger sizes than those in
DIMACS and BHOSLIB benchmarks, and has recently been
used in testing MaxClq and Coloring algorithms (Rossi et al.
2013; Rossi and Ahmed 2014; Rossi et al. 2014).

Experimental Preliminaries
TwMVC is programmed in C++, on the basis of source
codes of NuMVC6. Both algorithms are complied by g++
(version 4.4.5) with the ’-O2’ option. For NuMVC, we
adopt the parameter setting reported in (Cai et al. 2013).
The parameters in TwMVC are tuned manually based on
experiments, and are set as follows.

Setting β and δ: We tune β by testing values in [0.6,0.9]
with step of 0.05 (values outside this interval are essentially
worse); δ is tuned similarly. We find that TwMVC is not
sensitive to β and δ. For example, when β varies in [0.7,0.9]
TwMVC has similar performance on most instances. This
makes it easy to find a good setting for these two parameters.
For all instances: β = 0.8 and δ = 100000.

Setting γ: Recall that TwMVC increases edge weights
every step but decreases edge weights each γ steps. Thus,
it is intuitive that γ should be linear to |E|. That is, for
instances with more edges, the decreasing delay should be
longer so that we have sufficient edge weights to guide the

3ftp://dimacs.rutgers.edu/pub/challenges
4http://www.nlsde.buaa.edu.cn/˜kexu/benchmarks/graph-

benchmarks.htm
5http://www.graphrepository.com/networks.php
6Available from http://lcs.ios.ac.cn/~caisw/MVC.html
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search. Experiments suggest that |E|/k is a good form for
γ. Finally, γ is set to |E|/7 for most instances, except for
C instances (where γ = |E|/15), MANN instances (where
γ = |E|/3.3) and web instances (where γ = |E|/10).

Although the above setting can already yield good
performance on brock instances, we observe a much better
setting for brock instances is: β = 1, delta = 10000 and
γ = 1500, which is adopted in our experiment.

Each algorithm is executed 50 independent runs with
different random seeds on each instance. The time limit is
set to be half an hour for each run. All experiments are
carried out on a machine under Linux, using an Intel(R)
Core(TM) 2.8 GHz CPU and 4 GB RAM. To execute the
DIMACS machine benchmarks7, this machine requires 0.22
CPU seconds for r300.5, 1.32 CPU seconds for r400.5 and
4.67 CPU seconds for r500.5.

DIMACS Benchmark Results
Experimental results on the DIMACS benchmark are
presented in Table 1. Most DIMACS instances are so easy
that they are solved by both solvers with 100% success rate
within 2 seconds, and thus are not reported.

For each instance we report optimal (or minimum known)
vertex cover size (“VC∗”); success rate (“suc rate”), i.e., the
number of successful runs divided by the number of total
runs, where a run is successful if a solution of size VC∗ is
found; and the penalized averaged run time in CPU seconds
over all runs (“time”), where run time of a successful run is
the time to find the V C∗ solution, and that of a failed run
is considered to be an hour. If there are no successful runs,
the “time” column is marked with “n/a”. The results in bold
indicate the best performance for an instance.

Table 1: Comparison of NuMVC and TwMVC on the DIMACS
benchmark. The VC∗ column marked with an asterisk means that
the minimum known vertex cover size has been proved optimal.

Graph NuMVC TwMVC
Instance V C∗ suc rate time suc rate time

brock400_2 371∗ 90% 954 100% 18
brock400_4 367∗ 100% 6.17 100% 0.64
brock800_2 776∗ 0% n/a 6% 3451
brock800_4 774∗ 0% n/a 50% 2156

C2000.9 1920 0% n/a 6% 3483
C4000.5 3982 100% 282 100% 238
keller6 3302 100% 4.32 100% 4.41

MANN_a45 690∗ 100% 115 100% 85
MANN_a81 2221 16% 3263 26% 2614

p_hat1500-1 1488∗ 100% 4.36 100% 6.28

TwMVC outperforms NuMVC on these DIMACS in-
stances, except for keller6 and p_hat1500-1 where
the two solvers have similar performance. The performance
of TwMVC is significantly better than that of NuMVC on
brock instances and the two putatively hardest instances
C2000.9 and MANN_a81 (Richter, Helmert, and Gretton
2007; Grosso, Locatelli, and Pullan 2008; Cai, Su, and Sattar

7ftp://dimacs.rutgers.edu/pub/dsj/clique/

2011; Cai et al. 2013). Remarkably, TwMVC finds a 1920-
sized vertex cover (or equivalently a 80-sized clique in the
complementary graph) in 6% runs for C2000.9. Note that
only a few algorithms can locate a 1920-sized vertex cover
(or a clique of 80 vertices for the complementary graph),
and even for those that do, they only succeed in one trial out
of 100 and usually need more time (Grosso, Locatelli, and
Pullan 2008; Pullan, Mascia, and Brunato 2011; Wu, Hao,
and Glover 2012; Cai et al. 2013).

There are two families of instances that are very difficult
for greedy heuristics, including brock instances where
optimal solutions consist of low-degree vertices, and MANN
instances which have a large proportion of plateaus in
search space. Thanks to the vertex weighting scheme,
TwMVC shows significant improvement over NuMVC on
brock and MANN instances. Finally, we note that TwMVC
succeeds in finding the best known solution for all DIMACS
instances, indicating its robustness. Comparatively, NuMVC
fails to find the best known solution for 3 instances.

Table 2: Comparison of NuMVC and TwMVC on the BHOSLIB
benchmark. All these BHOSLIB instances have a hidden optimal
vertex cover, whose size is shown in the VC∗ column.

Graph NuMVC TwMVC
Instance V C∗ suc rate time suc rate time

frb53-24-1 1219 68% 1843 74% 1508
frb53-24-2 1219 100% 284 100% 243
frb53-24-3 1219 100% 75 100% 66
frb53-24-4 1219 100% 422 100% 334
frb53-24-5 1219 100% 75 100% 68
frb56-25-1 1344 94% 780 94% 755
frb56-25-2 1344 84% 1145 90% 992
frb56-25-3 1344 100% 175 100% 138
frb56-25-4 1344 100% 73 100% 53
frb56-25-5 1344 100% 45 100% 37
frb59-26-1 1475 76% 1671 78% 1448
frb59-26-2 1475 22% 3026 40% 2424
frb59-26-3 1475 82% 1177 90% 881
frb59-26-4 1475 60% 1879 46% 2203
frb59-26-5 1475 100% 97 100% 91

BHOSLIB Benchmark Results
Experimental results on the BHOSLIB benchmark are
shown in Table 2. We adopt the same report methodology
used for the DIMACS benchmark. For concentrating on hard
instances, we only present the three groups of large instances
with more than 1200 vertices, which are much more difficult
than those smaller sized ones.

The results illustrate that TwMVC outperforms NuMVC
for these hard BHOSLIB instances in terms of both
success rate and run time. For instances solved by both
algorithms with 100% success rate, TwMVC finds an
optimal solution faster than NuMVC. For other instances,
TwMVC has better success rate than NuMVC except for
frb59-26-4. Indeed, as reported in (Cai et al. 2013),
NuMVC significantly improves the success rate on hard
BHOSLIB instances, and it is challenging to improve such
good success rates. Nevertheless, TwMVC does push this
further by showing better success rates consistently.
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Web Link Benchmark Results
The web link instances are much larger than standard
benchmark instances, and their optimal solutions are still
unknown. For these large instances, we first report the
number of vertices (“|V|”) and the number of edges (“|E|”).
Then, we report the minimum size (“VCmin”) and averaged
size (“VCavg”) of vertex covers found by each algorithm, as
the sizes of vertex covers found by the two algorithms vary
considerably on these instances.

Table 3: Comparison of NuMVC and TwMVC on web link
benchmark.

Instance |V| |E|
NuMVC TwMVC

VCmin VCavg VCmin VCavg

web-BerkStan 12.3K 19.5K 5384 5384 5384 5384
web-arabic05 163.5K 1.7M 114464 114475.36 114435 114438.3
web-edu 3K 6.4K 1451 1451 1451 1451
web-google 1.2K 2.7K 498 498 498 498
web-indochina04 11.3K 47.6K 7300 7300 7300 7300
web-it04 509K 7.1M 414700 414714.52 414699 414714.76
web-polblogs 643 2.2K 244 244 244 244
web-sk-2005 121.4K 334.4K 58198 58206 58173 58173
web-spam 4.7K 37.3K 2297 2297 2297 2297
web-uk-2005 129K 11.7M 127774 127774 127774 127774
web-webbase01 16K 25.5K 2651 2651.96 2651 2651.86

The results on the web link networks are summarized
in Table 3. Overall, TwMVC finds better solutions than
NuMVC on these web link networks. Specially, TwMVC
finds smaller vertex covers that NuMVC cannot reach for
3 instances, and for web-webbase01 where they both can
find vertex covers of 2651 vertices, TwMVC does so with a
better success rate.

For the remaining 7 instances, the two algorithms
find solutions of the same quality consistently. Among
these instances, 4 of them (web-edu, web-google,
web-polblogs and web-spam) are relatively small
and easy, and the run time to reach the solution is usually less
than one second. For the other 3 instances, the averaged run
time of TwMVC to reach such a solution in Table 3 is 62s, 1s
and 71s for Berkstan, indochina and web-uk-2005,
while that of NuMVC is 12s, 16s and 82s.

Comparison with Exact MaxClq Algorithms
Recently, there has been great progress on MaxClq exact
algorithms, mainly thanks to MaxSAT reasoning techniques
(Li and Quan 2010b) and exploitation of graph structures (Li
and Quan 2010a; Li, Fang, and Xu 2013).

For most DIMACS instances, TwMVC finds an optimal
solution very quickly (usually within one second), much
faster than exact algorithms. Also, these exact algorithms are
not evaluated on some open DIMACS instances including
C2000.9, MANN_a81 and keller6, which are too
difficult for exact algorithms (Li and Quan 2010a) and they
cannot find a solution as good as TwMVC finds.

We compare TwMVC with two state-of-the-art exact
solvers namely MaxCLQ (Li and Quan 2010b) and IncMC
(Li, Fang, and Xu 2013) on DIMACS benchmark. The
runtime of the exact solvers are taken from (Li, Fang,

and Xu 2013) (the open instances and small instances are
not reported there), where the time limit is 2000 seconds
and the computing platform is an Intel Xeon CPU E7-
8837@2.67GHz under Linux with 4GB RAM. The results
(Table 4) show that TwMVC outperforms them on most
instances. As for BHOSLIB instances, IncMC is currently
the best exact solver on these instances (Li, Fang, and Xu
2013). Nevertheless, exact solvers still lag far behind local
search solvers on BHOSLIB instances. For example, we
are unaware of any exact MaxClq solver that can solve
frb50-23-3 or any frb59 instance.

Table 4: Comparison of TwMVC and exact solvers on
DIMACS instances

Graph TwMVC MaxCLQdyn IncMC
Instance suc rate time time time

brock400_2 100% 18 130 210
brock400_4 100% 0.64 154 259
brock800_2 6% >2000 >2000 >2000
brock800_4 28% >2000 >2000 >2000

C250.9 100% <0.1 361 333
C500.9 100% 0.1 >2000 >2000
C1000.9 100% 2 >2000 >2000
C2000.5 100% 2 >2000 >2000
C4000.5 100% 238 >2000 >2000

DSJC1000.5 100% 0.5 382 261
keller5 100% <0.1 >2000 177
MANN_a27 100% <0.1 0.16 0.43
MANN_a45 100% 85 25 114

p_hat700-1 100% <0.1 >2000 >2000
p_hat700-2 100% <0.1 6.2 1.3
p_hat700-3 100% <0.1 1383 357
p_hat1500-1 100% 6.28 12.3 5.14
p_hat1500-2 100% <0.1 >2000 >2000
p_hat1500-3 100% <0.1 >2000 >2000

Conclusions and Future Work
This paper proposed a vertex weighting scheme for MinVC
and combined it within the current best MinVC local
search algorithm NuMVC. While previous local search
algorithms for MinVC prefer edge weighting techniques,
this work suggests vertex weighting techniques can improve
the robustness and efficiency of those algorithms. The
resulting algorithm TwMVC outperforms NuMVC on
standard benchmarks DIMACS and BHOSLIB, as well as
a real-world benchmark from web link analysis.

TwMVC has a few instance-dependent parameters. A
direction of future work is to eliminate the parameters in
TwMVC. We would also like to develop more efficient
MinVC and MaxClq algorithms for huge real-world
networks.
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