
Lagrangian Decomposition Algorithm for Allocating Marketing Channels

Daisuke Hatano, Takuro Fukunaga, Takanori Maehara, Ken-ichi Kawarabayashi
National Institute of Informatics

JST, ERATO, Kawarabayashi Large Graph Project
{hatano,takuro,maehara,k keniti}@nii.ac.jp

Abstract
In this paper, we formulate a new problem related to the
well-known influence maximization in the context of com-
putational advertising. Our new problem considers allocating
marketing channels (e.g., TV, newspaper, and websites) to ad-
vertisers from the view point of a match maker, which was not
taken into account in previous studies on the influence maxi-
mization. The objective of the problem is to find an allocation
such that each advertiser can influence some given number of
customers while the slots of marketing channels are limited.
We propose an algorithm based on the Lagrangian decom-
position. We empirically show that our algorithm computes
better quality solutions than existing algorithms, scales up to
graphs of 10M vertices, and performs well particularly in a
parallel environment.

1 Introduction
A major decision in a marketing plan deals with the alloca-
tion of a given budget among marketing channels, such as
TV, newspaper, and websites, in order to maximize the im-
pact on a set of potential customers. This problem can be
formulated as follows. Suppose that we have estimates for
the extent to which marketing channels can influence cus-
tomer decisions and convert potential customers into loyal
buyers, and that we would like to market a new product that
will possibly be adopted by a large fraction of the customers.
How should we choose a few influential marketing channels
that can provoke a cascade of influence?

This problem is closely related to the well-known “in-
fluence maximization” problem that finds a small set of the
most influential individuals in a social network so that their
aggregated influence in the network is maximized. The
seminal work by (Kempe, Kleinberg, and Tardos 2003)
provides the first systematic study of influence maximiza-
tion as a combinatorial optimization problem. The influ-
ence maximization problem further motivated the research
community to conduct extensive studies on various aspects
of these problems (e.g., (Chen, Wang, and Wang 2010;
Chen, Wang, and Yang 2009; Borgs et al. 2014; Romero,
Meeder, and Kleinberg 2011; Du et al. 2013)).

The above-mentioned problem for marketing channels
was first considered by (Alon, Gamzu, and Tennenholtz
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2012) who proposed the influence maximization problem
with budget constraints (which is called a (source-node) bi-
partite influence model). Specifically, we may model the
problem as a bipartite graph in which one side is the set of
possible marketing channels and the other side is the set of
customers. An edge between a channel i and a customer j
indicates that i may influence j with some probability that
depends on the budget allocated to i. There are a few more
constraints in this model, and we shall provide more details
in the next subsection. This model was extended by (Soma
et al. 2014).

In this paper, we consider a different problem. In the con-
text of computational advertising, three participants come
into play; namely advertisers, customers, and publishers (=
marketing channels, who make money by showing adver-
tisements). The purpose of advertisers is to maximize the
influence on customer decisions and then convert potential
customers into loyal buyers, subject to budget constraints.
However in practice, the slots for publishers are limited
and moreover publishers need to increase impressions/clicks
from users (so they want to display many different advertise-
ments). Therefore a “match maker,” who allocates the slots
to advertisers appropriately, is desperately needed for these
three participants. This fact motivates numerous previous
studies on advertisement allocations (e.g., (Feldman et al.
2010; Goel et al. 2010)). However, in the (bipartite) influ-
ence maximization problem, this aspect was not previously
taken into account; therefore, our purpose here is to model
the above-mentioned problem in terms of a “match maker.”
Specifically, we consider the following conditions;

1. In order for all advertisers to be satisfied, we seek to guar-
antee that each advertiser will convert some given number
of customers into loyal buyers in expectation.

2. In order to allocate some very “influential” marketing
channel to advertisers as fairly as possible, for each mar-
keting channel, we impose some “upper bound” of budget
for each advertiser.

3. We limit the number of available slots for each marketing
channel.

Our purpose is to find a solution satisfying the above three
conditions. To the best of our knowledge, this is the first time
the influence maximization problem has been considered in
terms of a “match maker.” Let us now formulate our problem
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more precisely.

Bipartite influence model
Let us first define our bipartite influence model. We de-
note the sets of non-negative integers and non-negative re-
als by Z+ and R+, respectively. For i ∈ Z+, let [i] denote
{1, . . . , i}. The bipartite influence model is defined as fol-
lows. Let (S, T ;E) be a bipartite graph, where (S, T ) is a
bipartition of the vertex set andE ⊆ S×T is the edge set of
the graph. Vertices in S and T are called source vertices and
target vertices, respectively. Source vertices correspond to
marketing channels, and target vertices represent customers.
Each source vertex s is associated with c(s) ∈ Z+, which
represents the number of available slots of the marketing
channel corresponding to s. Each st ∈ E is associated with
a probability p(st) ∈ [0, 1], which means that putting an
advertisement to a slot of s activates customer t with proba-
bility p(st).

We now explain the constraints that are necessary for our
model. Assuming that there are k players, we consider al-
locating all available slots to them. Suppose that player i is
allocated xi(s) slots of each s ∈ S. An upper-bound vector
ui ∈ ZS+ is given for each player i, and we have a constraint
that xi ≤ ui (i.e., x(s) ≤ ui(s) for all s), which implies that
we cannot allocate more than ui(s) slots of s to player i. By
putting the advertisements to the allocated slots, each player
i seeks to activate target vertices. We assume that the activa-
tion events are independent. Hence the expected number of
target vertices activated by player i is

f(xi) =
∑
t∈T

{
1−

∏
st∈E

(1− p(st))xi(s)

}
. (1)

We let θi ∈ R+ denote the expected number of target ver-
tices which player i wishes to activate. Having defined
this model, our goal is to find x1, . . . , xk ∈ ZS+ such that∑k
i=1 xi(s) ≤ c(s) for each s ∈ S, and f(xi) ≥ θi and

xi ≤ ui for each i ∈ [k]. Here, these three constraints cor-
respond to the three conditions mentioned at the end of the
previous subsection.

However, it possibly happens that no solution satisfies all
of the conditions. Indeed, when the capacities are small and
θi is large, we cannot satisfy f(xi) ≥ θi even if we allo-
cate all slots to player i. Hence, we instead consider an
alternative optimization problem that is obtained by relax-
ing the second constraint, where the objective is to min-
imize the total violation on the relaxed constraints (i.e.,∑k
i=1 max{θi−f(xi), 0}). Note that this objective is equiv-

alent to maximizing
∑k
i=1 min {f(xi), θi}. In summary, the

optimization problem is formulated as follows:

Maximize
∑k
i=1 min {f(xi), θi}

subject to
∑k
i=1 xi(s) ≤ c(s) for each s ∈ S,

xi ≤ ui for each i ∈ [k],
x1, . . . , xk ∈ ZS+.

(2)

Submodular influence model
Let g : ZS+ → R+ be a function defined on an integer lattice
wherein each dimension is indexed by a source vertex. For

x, y ∈ ZS+, we let x∧y and x∨y denote the coordinate-wise
minima and maxima, respectively. A function g is denoted
as monotone if g(x) ≤ g(y) for any x, y ∈ ZS+ with x ≤ y,
and g is called submodular (over an integer lattice) if g sat-
isfies g(x)+g(y) ≥ g(x∧y)+g(x∨y) for any x, y ∈ ZS+. It
is known that the function f defined in (1) is monotone sub-
modular (see (Soma et al. 2014)). Moreover, if g is a mono-
tone submodular function and θ ∈ R+ is an arbitrary real
number, the function g′ defined by g′(x) = min{g(x), θ}
for x ∈ ZS+ is also monotone submodular. Hence (2) can
be extended to the following problem defined from given
monotone submodular functions g1, . . . , gk:

Maximize
∑k
i=1 gi(xi)

subject to
∑k
i=1 xi(s) ≤ c(s) for each s ∈ S,

xi ≤ ui for each i ∈ [k],
x1, . . . , xk ∈ ZS+.

(3)

Besides the functions defined from f and θi, the class of
monotone submodular functions includes various important
functions, and hence (3) has many other applications. We
refer to (Soma et al. 2014) for examples of such applica-
tions. If c ≡ 1 (i.e., c(s) = 1 for all s ∈ S) and ui ≡ 1 for
each i ∈ [k], (3) is known as the submodular welfare maxi-
mization (Lehmann, Lehmann, and Nisan 2006), which was
introduced with motivation in combinatorial auctions. Thus
(3) is an extension of the submodular welfare maximization
to an integer lattice setting.

For α ∈ [0, 1], we say that an algorithm is an α-
approximation or achieves an approximation ratio α if it
always computes a feasible solution whose objective value
is not smaller than α times the optimal value. (Khot et al.
2008) showed that the submodular welfare maximization ad-
mits no polynomial-time algorithm of an approximation ra-
tio better than 1 − 1/e unless P = NP. Since (3) extends the
submodular welfare maximization, this hardness result can
be also applied to (3).

Our contribution
We first reveal the basic properties of the newly formulated
problems (2) and (3). In particular, we discuss the approx-
imability of these problems. Regarding (2), we first ob-
serve that, since (2) is a special case of (3), the (1 − 1/e)-
approximation hardness may not be applied to (2). Indeed,
(2) has a useful property that is not possessed by (3) in
general. Let es denote the S-dimensional vector such that
es(s

′) = 1 if s′ = s, and es(s′) = 0 otherwise. We say
that a function g satisfies the diminishing marginal return
property if g(x+ es)− g(x) ≥ g(x+ 2es)− g(x+ es) for
any x ∈ ZS+ and s ∈ S. All monotone submodular functions
over integer lattices do not necessarily have this property, but
it is known and is easy to check that the function f defined
by (1) does.

Having mentioned this fact, our main theoretical contri-
bution is to show that, if g1, . . . , gk have the diminishing
marginal return property, (3) can be regarded as an instance
of maximizing a submodular set function defined on a set of
size

∑k
i=1

∑
s∈S ui(s) subject to partition constraints (refer

to Section 2 for its definition). We also observe that it is NP-
hard to achieve better than a 15/16-approximation for (2),
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and that a natural continuous relaxation of (2) is a convex
programming problem

For the submodular function maximization subject to
partition constraints, (Călinescu et al. 2011) proposed a
(1 − 1/e)-approximation algorithm. We can actually ex-
tend their algorithm to give (1− 1/e)-approximation for (2)
and (3) with submodular functions satisfying the diminish-
ing marginal return property. However, this is not practical
because it requires substantial computational time. There
are two reasons for this computational expense: First, the
size of the instance of the submodular function maximiza-
tion depends on

∑k
i=1

∑
s∈S ui(s), and therefore it is large

when working with large capacities. Second, the (1− 1/e)-
approximation algorithm solves a non-convex programming
problem using a continuous greedy algorithm, that works
very slowly.

To overcome these technical difficulties, we propose a
new algorithm. Our algorithm is motivated by the fact that
greedy algorithms achieve good approximation ratios for
various submodular function maximization problems (e.g.,
(Nemhauser, Wolsey, and Fisher 1978; Sviridenko 2004)).
This implies that, if the submodular objective function can
be separated from the capacity constraints, we can expect
that a greedy algorithm gives good solutions. Now the La-
grangian decomposition comes into play.

The Lagrangian decomposition is a technique, which has
been widely used in various optimization problems (e.g.,
(Hirayama 2006; Komodakis, Paragios, and Tziritas 2007;
Hatano and Hirayama 2011; Rush and Collins 2014)). Its
key idea is to decompose the problem into several subprob-
lems by introducing auxiliary variables and a Lagrangian re-
laxation of the problem. In our case, we replace variables in
the capacity constraints with auxiliary variables y1, . . . , yk,
imposing the equality constraint xi = yi for each i ∈ [k].
The problem remains equivalent even after this modification.
We then relax the equality constraints to obtain a Lagrangian
relaxation problem. Since the objective function and the ca-
pacity constraints share no common variables in the relax-
ation problem, it is possible to decompose the problem into
subproblems, for which greedy algorithms perform well.

Our algorithm is equipped with the following useful fea-
tures:

• It proceeds in iterations. The first iteration computes
a feasible solution, and subsequent iterations improve
the quality of solutions while preserving their feasibility.
Therefore, except for the first iteration, our algorithm al-
ways keeps a feasible solution.

• Each iteration solves k instances of the submodular func-
tion maximization problem using a greedy algorithm, and
integrates the obtained solutions. Therefore, each itera-
tion does not require heavy computation and is easy to
implement in parallel.

We demonstrate that our algorithm is practical through
computational experiments in Section 4. We empirically
prove that our algorithm scales up to graphs of 10M ver-
tices, whereas the (1 − 1/e)-approximation algorithm does
not scale to even graphs of 1K vertices.

2 Basic properties of the problems
One purpose of this paper is to reveal the basic properties
of the problems (2) and (3) that we introduced in this paper.
Here are our contributions on this issue:
• If g1, . . . , gk have the diminishing marginal return prop-

erty, (3) can be regarded as an instance of maximiz-
ing a submodular function defined on a set of size∑k
i=1

∑
s∈S ui(s) subject to partition constraints. Under

this circumstance, if we tolerate the computational time
depending on

∑k
i=1

∑
s∈S ui(s), by extending the exist-

ing 1/2- and (1−1/e)-approximation algorithms (Fisher,
Nemhauser, and Wolsey 1978; Călinescu et al. 2011),
there are approximation algorithms that can achieve the
same approximation ratios for (3). As mentioned before,
this is best possible because, unless P = NP, the submodu-
lar welfare maximization problem admits no polynomial-
time algorithm of an approximation ratio better than (1−
1/e) (Khot et al. 2008), and therefore (3) also admits no
such approximation algorithm even if c ≡ 1.

• The function f defined in (1) is concave if its domain is
extended to real vectors. Therefore, a continuous relax-
ation of (2) is a convex programming problem, and we
can solve the relaxed problem using generic convex pro-
gramming solvers.

• (2) includes several NP-hard problems such as the parti-
tion problem, the set k-cover problem, and the hypergraph
max cut problem. (Abrams, Goel, and Plotkin 2004)
showed that it is NP-hard to achieve approximation ra-
tio better than 15/16 for the set k-cover problem. Hence
(2) admits no polynomial-time 15/16-approximation al-
gorithm unless P=NP. In addition to this, we present sev-
eral hardness results for (2).
In this section, we present only the first result. We omit

the other results in this paper due to the space limitation.
Given a monotone submodular set-function h : 2S → Z+

on a finite set S (i.e., h(X)+h(Y ) ≥ h(X∩Y )+h(X∪Y )
for X,Y ∈ 2S , and h(X) ≥ h(Y ) for X,Y ∈ 2S with
X ⊇ Y ), the problem of finding a subset U of S that
maximizes h(U) is called the monotone submodular set-
function maximization. Let {S1, . . . , Sm} be a partition
of S (i.e., Si ∩ Sj = ∅ for i 6= j and

⋃m
i=1 Si = S),

and w : {1, . . . ,m} → Z+. The constraints |U ∩ Si| ≤
w(i), i = 1, . . . ,m are called the partition constraints.
For the monotone submodular set-function maximization
subject to partition constraints, (Fisher, Nemhauser, and
Wolsey 1978) showed that a greedy algorithm achieves a
1/2-approximation ratio, and (Călinescu et al. 2011) pro-
posed a (1 − 1/e)-approximation algorithm. We explain
that (3) can be reduced to the submodular set-function max-
imization subject to partition constraints when g1, . . . , gk
have the diminishing marginal return property. In the re-
duction, the submodular set function is defined on a set
of size

∑k
i=1

∑
s∈S ui(s). Therefore, it does not give a

polynomial-time approximation algorithm, but a pseudo-
polynomial time one.
Theorem 1. Suppose that g1, . . . , gk satisfy the diminish-
ing marginal return property. If the submodular set-function
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maximization subject to partition constraints admits an α-
approximation polynomial time algorithm, then (3) admits
an α-approximation pseudo-polynomial time algorithm.

Proof. Define S̃ as {(s, i, l) : s ∈ S, i ∈ [k], l ∈ [ui(s)]}.
For each U ∈ 2S̃ and i ∈ [k], we let χU,i ∈ ZS+ denote the
vector such that χU,i(s) = |U ∩ {(s, i, l) : l ∈ [ui(s)]}| for
each s ∈ S. Define g̃i : 2S̃ → R+ as a function such that
g̃i(U) = gi(χU,i) for U ∈ 2S̃ . Then, (3) is equivalent to

Maximize
∑k
i=1 g̃i(U)

subject to
∑k
i=1 χU,i ≤ c,

U ∈ 2S̃ .

(4)

g̃ =
∑k
i=1 g̃i is a monotone submodular set-function. Each

element in S̃ does not appear in more than one capacity con-
straint in (4). In summary, (4) is a submodular set-function
maximization subject to partition constraints.

We briefly illustrate how the above approximation algo-
rithms for the submodular set-function maximization sub-
ject to the partition constraints compute solutions to (4).
Given a current solution set U , the greedy algorithm selects
(s, i, l) ∈ S̃ such that U ∪ {(s, i, l)} is a feasible solution
of (4) and has the maximum gain g̃(U ∪ {(s, i, l)})− g̃(U),
and adds it to U . The algorithm iterates this operation until
no such (s, i, l) exists, and then outputs the final solution set
U . (Fisher, Nemhauser, and Wolsey 1978) showed that this
greedy algorithm achieves a 1/2-approximation ratio.

The algorithm of (Călinescu et al. 2011) needs more com-
plicated computation. The multilinear extension of g̃ is the
function g̃′ : [0, 1]S̃ → R+ defined by g̃′(x) = E[g̃(U)] for
each x ∈ [0, 1]S̃ , whereU is the set that contains (s, i, l) ∈ S̃
with probability x(s, i, l). The algorithm first relaxes (4)
to a non-linear programming problem by replacing g̃ with
its multilinear extension g̃′. (Călinescu et al. 2011) proved
that a continuous greedy algorithm computes a (1 − 1/e)-
approximate solution for the non-linear programming prob-
lem; starting from the all-zero vector, the continuous greedy
algorithm repeatedly updates the current solution x ∈ [0, 1]S̃

to x + δv, where δ ∈ [0, 1] is a sufficiently small step size,
and v ∈ [0, 1]S̃ is a vector that satisfies the given partition
constraints and maximizes v> 5 g̃′(x). After computing
the solution for the non-linear programming problem, the
algorithm transforms it into a feasible solution to (4) by us-
ing the pipage rounding, which was invented by (Ageev and
Sviridenko 2004). (Călinescu et al. 2011) showed that this
rounding step does not decrease the objective value of the
solution.

An advantage of this algorithm of (Călinescu et al. 2011)
is to have the tight theoretical approximation guarantee.
On the other hand, a disadvantage is its substantial com-
putational time. There are two sources of this computa-
tional burden. One source is the reduction to the sub-
modular set-function maximization. Since the size of S̃ is∑
s∈S

∑k
i=1 ui(s), even if an algorithm runs in polynomial-

time for the submodular set-function maximization, it re-
quires a pseudo-polynomial time for (3). The other source

is the continuous greedy algorithm. To obtain a (1 − 1/e)-
approximate solution for the non-linear programming prob-
lem, the continuous greedy algorithm requires many itera-
tions. In addition, v is decided from5g̃′(x), but computing
5g̃′(x) requires numerous samplings because 5g̃′(x) has
no compact description evaluated in polynomial time.

3 Lagrangian decomposition algorithm
In this section, we propose an algorithm for (3) based on the
Lagrangian decomposition approach introduced by (Guig-
nard and Kim 1987). We first transform (3) into an-
other equivalent problem by introducing auxiliary variables
y1, . . . , yk:

Maximize
∑k
i=1 gi(xi)

subject to
∑k
i=1 yi(s) ≤ c(s) for each s ∈ S,

xi = yi ≤ ui for each i ∈ [k],
x1, . . . , xk, y1, . . . , yk ∈ ZS+.

(5)

This transformation aims to decompose the problem struc-
ture. Indeed, the objective function and the capacity con-
straints in (5) share no common variables, and they are com-
bined through the equality constraints xi = yi, i ∈ [k].

We then relax the equality constraints by introducing La-
grangian multipliers λ1, . . . , λk ∈ RS . The problem is re-
duced to the following:

Maximize
∑k
i=1 gi(xi)−

∑k
i=1 λ

>
i (xi − yi)

subject to
∑k
i=1 yi(s) ≤ c(s) for each s ∈ S,

xi ≤ ui for each i ∈ [k],
yi ≤ ui for each i ∈ [k],
x1, . . . , xk, y1, . . . , yk ∈ ZS+.

(6)

The constraints on y1, . . . , yk in (6) are same as those on
x1, . . . , xk in (3). Hence, y1, . . . , yk forms a feasible so-
lution to (3) if they are a part of a feasible solution to (6).
Moreover, by the duality of the Lagrangian relaxations, the
optimal value of (6) upper-bounds that of (3) for any set of
Lagrangian multipliers λ1, . . . , λk. If a solution to (6) sat-
isfies xi = yi for each i ∈ [k], then its objective value in
(6) is equal to

∑k
i=1 gi(yi), which is the objective value at-

tained by y1, . . . , yk in (3). These relationships imply that
an α-approximate solution to (6) satisfying the equality con-
straints also achieves α-approximation ratio for (3).

Our algorithm iteratively solves (6) by varying the val-
ues of the Lagrangian multipliers. Each iteration consists
of three steps: (i) fixing y1, . . . , yk and λ1, . . . , λk, solve
(6) with respect to x1, . . . , xk; (ii) fixing x1, . . . , xk and
λ1, . . . , λk, solve (6) with respect to y1, . . . , yk; (iii) update
λ1, . . . , λk for the next iteration. In Steps (i) and (ii), the
algorithm tries to obtain near-optimal solutions for (6) by
greedy algorithms. We cannot provide a theoretical guar-
antee on their solution qualities, but we can expect that the
greedy algorithm outputs good solutions (see later). In Step
(iii), the algorithm adjusts the Lagrangian multipliers so that
the solutions computed in Steps (i) and (ii) minimize the vi-
olations of the equality constraints.

We now explain Step (i) in detail. Since y1, . . . , yk are
fixed in this step, the problem is decomposed into k disjoint
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subproblems, each of which corresponds to player i ∈ [k]:

Maximize gi(xi)− λ>i xi subject to xi ≤ ui, xi ∈ ZS+. (7)

The objective function of (7) is submodular if gi is so. Hence
(7) is a submodular function maximization problem with a
simple upper-bound constraint. However, since the objective
function possibly takes negative values, the problem is more
difficult than maximizing non-negative submodular func-
tions. (Kleinberg, Papadimitriou, and Raghavan 2004) and
(Feige et al. 2013) analyzed greedy algorithms for this max-
imization problem, and presented approximation guarantees
parameterized by difficulty of the problem instances. We
solve (7) by the greedy-rate algorithm, which was proven
in (Feige et al. 2013) to achieve the tight approximation
guarantee. The greedy-rate algorithm first initializes xi to
the zero vector, and iterates the following greedy improve-
ment; It computes s ∈ S and δ ∈ {1, . . . , ui(s)−xi(s)} that
maximizes (∆ − δλi(s))/∆ where ∆ is the gain of gi(xi)
when xi(s) is increased by δ; If ∆−δλi(s) > 0, it increases
xi(s) to xi(s) + δ, and otherwise it terminates the iteration.

In Step (ii), the problem is given by

Maximize
∑k
i=1 λ

>
i yi

subject to
∑k
i=1 yi(s) ≤ c(s) for each s ∈ S,

yi ≤ ui for each i ∈ [k],
y1, . . . , yk ∈ ZS+.

(8)

The optimal solution of (8) can be obtained as follows. For
each s ∈ S, we first sort 1, . . . , k into i1, . . . , ik so that
λi1(s) ≥ · · · ≥ λik(s). Let k′ ∈ [k] be the largest integer
such that λik′ (s) ≥ 0. We then assign c(s) units greedily to
yi1(s), . . . , yik′ (s), i.e., we first assign ui1(s) units to yi1(s),
and then assign ui2(s) units to yi2(s), and so on. We con-
tinue this process until all units are assigned, or all capacity
constraints for (i1, s), . . . , (ik′ , s) get tight. This gives the
optimal solution for (8).

Finally, in Step (iii), we update λi by λi ← λi+η(xi−yi)
for each i ∈ [k], where η ∈ R+ denotes a specified step size.
In this paper, we update η in a conventional way as follows.
Let UB indicate an upper bound

∑k
i=1 maxxi gi(xi) of the

objective value of (3); When gi(xi) = min{f(xi), θi}, we
set UB to

∑k
i=1 θi. Let LB be the maximum objective value

of the solutions found in the earlier iterations of the algo-
rithm. Given a convergence sequence α1, α2, . . ., we set
η = ατ (UB− LB)/(

∑k
i=1 ‖xi − yi‖2) in the τ -th itera-

tion. This setting is called subgradient optimization method,
and is known to guarantee that the Lagrange multiplier con-
verges to the dual optimal under some conditions (Held,
Wolfe, and Crowder 1974; Bertsekas 1999). In our imple-
mentation of the algorithm, we used ατ = 2/

√
τ , which

yielded the best convergence in our experiments.
For each iteration, our algorithm performs greedy

algorithms for solving k instances of (7), and one
instance of (8). Each greedy algorithm runs in
O(|S|

∑k
i=1

∑
s∈S ui(s)) time. Accordingly, the entire al-

gorithm requires O(k|S|
∑k
i=1

∑
s∈S ui(s)) time. We em-

phasize that our algorithm has an advantage in scalabil-
ity because the subproblems (7) can be solved in parallel;

if M processors are available, the runtime is reduced to
O(bk/Mc|S|

∑k
i=1

∑
s∈S ui(s)).

4 Experiments
In this section, we present experimental results to evaluate
our Lagrangian decomposition algorithm in terms of the so-
lution quality, scalability, and parallel performance. To clar-
ify the performance, we compare the Lagrangian decompo-
sition algorithm with other algorithms. As we mentioned,
the continuous greedy algorithm requires substantial com-
putation time whereas it has the best theoretical guarantee
on the solution quality. Indeed, our implementation of the
continuous greedy algorithm cannot be applied to larger in-
stances due to the time limitation. Furthermore, our ad-
ditional experiments indicate that the solution quality of
the greedy algorithm is not inferior to that of the contin-
uous greedy algorithm in practice. Because of these rea-
sons, we present only the experimental results comparing
the Lagrangian decomposition algorithm with the greedy al-
gorithm in the following subsections.

Setting of experiments
We conducted experiments on a CentOS server with Intel
Xeon E5-2670@2.6GHz and 512GB of memory. The al-
gorithms are implemented in Java and compiled with JDK
1.7.0 55. We applied our implementations to (2).

We prepared three kinds of bipartite graphs: regular
graphs, power law graphs, and real dataset graphs. Since
the former two kinds of graphs are constructed artificially,
we can control their sizes as we wish. The third kind of
graphs are constructed from open-advertising-dataset (https:
//code.google.com/p/open-advertising-dataset/) of query-
click logs, which captures a certain situation in computa-
tional advertising. Since the dataset includes two logs, we
constructed two real dataset graphs from them, one con-
sists of 541 source vertices, 4,271 target vertices, and 5,510
edges, and the other consists of 757 source vertices, 5,062
target vertices, and 8,146 edges.

As for the capacities, ui(s) was set to 1 for each i ∈ [k]
and s ∈ S. We defined four sets of the source capacity c,
which we call random, low, middle, and high settings, re-
spectively. In the random setting, for each s ∈ S, we chose
µ uniformly at random from {0.1, 0.2, . . . , 0.9}, and defined
c(s) as k×µ. In the low, middle, and high settings, we chose
µ from {0.1, 0.2, 0.3}, {0.4, 0.5, 0.6}, and {0.7, 0.8, 0.9},
respectively. Similarly, we constructed four sets of the tar-
gets θi, i ∈ [k]. In each set, we chose µ randomly and set
θi to f(c) × µ for each i ∈ [k]. Since we constructed four
source capacity sets and four target sets, we have 16 pairs of
the source capacity sets and the target sets.

Solution quality and scalability
In this subsection, we report experimental results to compare
the solution quality (objective value achieved by solutions)
and the scalability of algorithms.

We used three types of instances: small-, middle-, and
large-scale instances. Small- and large-scale instances are
constructed from regular graphs. We also had experiments
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Figure 1: Solution quality over small- (left), middle- (center) and large-scale instances (right).
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Figure 2: Parallel performance: average runtime against the number of cores (left) and runtime for each instance (right).

on small-scale instances constructed from power law graphs.
Since they showed the same tendency as for regular graphs,
we will report them in the full version.

We created 32 instances for each set of parameters k, |S|,
and |T |; we have 16 pairs of capacity and target sets as men-
tioned above, and we created two regular graphs for each
parameter set (this is for preparing the same number of in-
stances as the real dataset graphs). In the small-scale in-
stances, |S| was set to 100 or 200, and |T | was set to 1, 000
or 10, 000. In the large-scale instances, |S| was set to 100,
and |T | was set to 1, 000, 000. Middle-scale instances are
created from the real dataset graphs; since we have two real
dataset graphs and 16 pairs of source capacity and target
sets, we also have 32 middle-scale instances. We set the
number of iterations in the Lagrangian decomposition algo-
rithm to 20. By preliminary experiments, we conclude that
20 iterations suffice for the Lagrangian decomposition algo-
rithm to output good quality solutions.

The results on the solution quality are shown in Figure 1.
An instance is labeled by “Regular k |S| |T |” if its graph
is a regular graph and it is constructed from parameters k,
|S|, and |T |. The instances constructed from the dataset
graphs are labeled by “Dataset1” or “Dataset2.” The qual-
ity denotes the ratio of the objective value achieved by the
computed solution to

∑k
i=1 θi. Since

∑k
i=1 θi does not ex-

ceed the optimal objective value, the quality takes a value
in [0, 1], and the solution is better as its quality approaches
1. In the figure, x- and y-axis denote the solution qualities
achieved by the Lagrangian decomposition and the greedy
algorithms, respectively. Data plotted below the line indi-
cates that the Lagrangian decomposition algorithm outper-
forms the greedy algorithm for an instance.

The results show that the Lagrangian decomposition al-

gorithm computes solutions of equivalent or better qual-
ity compared with the greedy algorithm in most of the in-
stances. As the quality achieved by the algorithms is higher,
an instance has a solution satisfying target values for more
players. We can observe that the Lagrangian decomposi-
tion algorithm particularly outputs better solutions than the
greedy algorithm in many such instances. Moreover, it is
noteworthy that the Lagrangian decomposition algorithm
outputs solutions of quality nearly equal to one in many in-
stances with the real dataset graphs. Since the real dataset
graphs were constructed from real datasets in computational
advertising, this result shows that our algorithm is practical.

We compare the runtime of the algorithms to investigate
their scalability. The average runtime of the Lagrangian de-
composition algorithm was 1.3 seconds, 88.4 seconds, and
4590 seconds on the small-, middle-, and large-scale in-
stances, respectively. On the other hand, that of the greedy
algorithm was 17.8 seconds, 253.4 seconds, and 11553 sec-
onds on the small-, middle-, and large-scale instances, re-
spectively. We can observe that the Lagrangian decomposi-
tion algorithm runs faster than the greedy algorithm even if
it outputs better solutions.

In addition to these experiments, we also verified that
the Lagrangian decomposition algorithm solves an instance
with a regular graph, k = 10, |S| = 100, and |T | =
10, 000, 000. The runtime was 186480 seconds, while the
one for the greedy algorithm was 434247 seconds, and the
solution quality was 0.94 and 0.92, respectively. Since the
number of customers can be huge in a context of computa-
tional advertising, it is important that the algorithm scales to
graphs of this size.
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Parallel performance
Finally, we evaluate the parallel performance of the La-
grangian decomposition algorithm. As noted in Section 3,
the Lagrangian decomposition algorithm is easy to paral-
lelize. We observed how the runtime of the algorithm is re-
duced as more cores are used. We created five graphs with
k = 10, |S| = 100, and |T | = 1000, for each pair of the
capacity and the target sets; We have 80 instances in total.
The number of iterations in the algorithm was set to 20.

The results are shown in Figure 2. The left panel of Fig-
ure 2 shows the average runtime against the number of cores.
The right panel shows the runtime for each instance, where
instances are sorted in the increasing order of the runtime,
and the height of the plot represents the runtime for the i-th
instance when the x-coordinate is i. From the results illus-
trated in the right panel, we can observe that the Lagrangian
decomposition algorithm is faster than the greedy algorithm
in most of the instances even with two cores.

5 Conclusion
Extending the influence maximization problem, we formu-
lated a new optimization problem, that allocates market-
ing channels to advertisers from the view point of a match
maker. We revealed the complexity of this problem, and
proposed a new algorithm based on the Lagrangian decom-
position approach. An advantage of our algorithm is that
it can produce a feasible solution quickly, it scales to large
instances, and it can be easily parallelized. We empiri-
cally confirmed these advantages by comparing our algo-
rithm with existing algorithms.
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