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Abstract

Rank K Binary Matrix Factorization (BMF) approxi-
mates a binary matrix by the product of two binary ma-
trices of lower rank, K, using either L1 or L2 norm. In
this paper, we first show that the BMF with L2 norm can
be reformulated as an Unconstrained Binary Quadratic
Programming (UBQP) problem. We then review several
local search strategies that can be used to improve the
BMF solutions obtained by previously proposed meth-
ods, before introducing a new local search dedicated to
the BMF problem. We show in particular that the pro-
posed solution is in general faster than the previously
proposed ones. We then assess its behavior on several
collections and methods and show that it significantly
improves methods targeting the L2 norms on all the
datasets considered; for the L1 norm, the improvement
is also significant for real, structured datasets and for the
BMF problem without the binary reconstruction con-
straint.

1 Introduction

Many datasets in scientific or industrial applications are high
dimensional binary matrices. This high dimensionality neg-
atively impacts the performance of traditional data analy-
sis algorithms. Matrix factorization is a way to compress
the data while preserving most of the characteristic pat-
terns found inside, and has been a popular tool for dictio-
nary learning, feature learning and subspace learning. When
the input matrix and the factors are both binary, the opera-
tion is called a Binary Matrix Factorization (BMF). BMF
has been successfully applied to many different contexts
(Zhang et al. 2010; 2007; Meedsa et al. 2006; Li 2005;
Zhang et al. 2007). When the problems considered involve
more than several thousand elements, efficient strategies for
finding better solutions to the matrix factorization problem
in general, and the BMF one in particular, become interest-
ing and challenging. Local search heuristics, as p-opt local
search, can be used to improve the solution, correspond-
ing to a local minimum of the objective function, provided
by standard matrix factorization methods. However, such
heuristics may be slow and any method that can speed them
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up would be interesting. This is exactly the objective of the
present study for the BMF problem.

The general problem of rank K BMF takes the follow-
ing form, given X ∈ {0, 1}M×N and K ∈ N, K <<
min(M,N):
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

argmin
W,H

||X−W ×H||p (p = 1 or p = 2)

subject to W ∈ {0, 1}M×K ,H ∈ {0, 1}K×N

(optional) W ×H ∈ {0, 1}M×N

(1)

where ||.||p denotes either the L1 norm (p = 1) or the L2

norm (p = 2). The optional constraint is here referred to as
the binary reconstruction constraint.

In this study, we show that BMF problem can be reformu-
lated as a UBQP problem (Beasley 1998) when the L2 norm
is considered in Eq. (1). We explore this direction and pro-
pose a new p-opt local search procedure that we prove to be
more efficient for BMF than the UBQP-based approach. The
proposed p-opt can be applied to both the L1 or L2 meth-
ods. With thorough experiments on both synthetic and real
data, we demonstrate that the heuristic we propose signif-
icantly improves the quality of existing methods in a rea-
sonable amount of time. We also show that our local search
procedure performs well when compared to other heuristic
strategies (Kanungo et al. 2002).

2 Related work

The optimization problem (1) can be relaxed as an NMF
(Lee and Seung 1999; 2000) or a SVD problem with addi-
tional binary constraints. One way to do that is to first solve
a standard NMF or SVD problem and then to project the
solution onto the {0, 1} sub-space (Miettinen et al. 2008).
The second approach amounts to integrating the binary con-
straints into the objective function being minimized in NMF
(Zhang et al. 2007; 2010). However, this latter approach
does not generally yield a good approximation since increas-
ing the coefficients of the regularization terms (which im-
poses the binary constraint) will result in high reconstruction
error.

A simple and efficient heuristics to solve problem (1) is
Proximus (Koyuturk, Grama, and Ramakrsihnan 2005). In
this approach, one iteratively solves rank 1 decompositions
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and combines them to form the global solution. In (Shen, Ji,
and Ye 2009), the rank 1 BMF problem is formulated as a
0-1 integer linear program (ILP) which can be solved in a
reasonable amount of time and provides initial solution to
Proximus. These two latter studies are suitable for both L1

and L2 norm minimizations and guarantee all the conditions
in (1). The study recently presented in (Jiang et al. 2014)
shows an original approach for the L1 norm minimization.
In this work, the complete problem (with the binary recon-
struction constraint) is addressed via K−means clustering.
We will go back to this approach in Section 3.2.

The NMF problem as well as the K−means clustering
one are known to be NP-hard (Gillis and Glineur 2008;
Aloise et al. 2009). A related problem to the one consid-
ered here, namely the weighted rank 1 BMF, is also shown
to be NP-complete in (Lu et al. 2011). Problem (1) has been
related to different NP-hard problems and is in general con-
jectured to be NP-hard (as done in e.g. (Shen, Ji, and Ye
2009)) even though we know of no formal proof for this fact
(neither a reduction from a known NP-hard problem nor a
polynomial time algorithm have been provided so far, to the
best of our knowledge).

3 General considerations
We establish in this section a relation between the BMF
problem with L2 norm and the Unconstrained Binary
Quadratic Programming (UBQP) problem. This relation al-
lows one to use the local search procedures designed for
UBQP (Beasley 1998) to improve BMF solutions.

3.1 L2-BMF and UBQP

Standard methods for L2-BMF fix one matrix, W or H, and
solve for the other. The quantity to be minimized in L2-BMF
can be rewritten as:

||X−WH||22 =
M∑
i=1

N∑
j=1

(xij −
K∑

k=1

wikhkj)
2

with:

(xij−
K∑

k=1

wikhkj)
2 = x2

ij+(
K∑

k=1

wikhkj)
2−2xij

K∑
k=1

wikhkj

Fixing e.g. H and solving for W thus amounts to solving
the following problem, ∀i, 1 ≤ i ≤ M (i.e. for all rows of
W):

argminwi.

N∑
j=1

(
K∑

k=1

wikhkj)
2 +

K∑
k=1

wik

N∑
j=1

(−2xijhkj)

(2)
where wi. is the ith row vector of W. The first term in (2),∑N

j=1(
∑K

k=1 wikhkj)
2, can be rewritten as:

K∑
k=1

wik

N∑
j=1

hkj +
K∑

k=1

K∑
k′=k+1

wikwik′2
N∑
j=1

hkjhk′j

Now, let us consider the symmetric, K ×K matrix Q:

qkk =
N∑
j=1

hkj(1− 2xij), qkk′ =
N∑
j=1

hkjhk′j (k �= k′)

The quantity minimized in problem (2) can be rewritten with
Q as follows:

K∑
k=1

w2
ikqkk +

K∑
k=1

K∑
k′=k+1

2wikwik′qkk′ = wT
i.Qwi.

and thus problem (2) can be reformulated as:

argminwi.
wT

i.Qwi. (3)

which corresponds to a UBQP problem (Beasley 1998; Merz
and Freisleben 2002). Applying the same development to H,
when W is fixed, leads to the following property.
Property 1. Iteratively solving the L2-BMF problem by fix-
ing either W or H and solving for the other is equivalent to
iteratively solving UBQP problems of the form:

argminv v
TQv

with:

qkk =
N∑
j=1

hkj(1− 2xij), qkk′ =
N∑
j=1

hkjhk′j (W fixed)

qkk =
M∑
i=1

wik(1− 2xij), qkk′ =
M∑
i=1

wikwik′ (H fixed)

According to this formulation, it is interesting to improve
L2 norm solutions through local search algorithms designed
for UBQP. In the context of BMF, the neighborhood of size
p of a given W (or H) is defined by the set of matrices that
can be obtained from W (or H) by flipping p cells. (Beasley
1998) and (Merz and Freisleben 2002) present such p-opt
local search heuristics for UBQP. The 1-opt local search al-
gorithm proposed in (Merz and Freisleben 2002) looks for
the solution in the neighborhood of size 1 that maximizes
the gain with respect to the current solution and adopts this
solution if the gain is positive. The p-opt local search (which
parallels the Tabu search of (Glover F. 1998) discussed in
(Beasley 1998) and is based on (Kernighan and Lin 1970)
and (Lin and Kernighan 1973)) is similar for the neighbor-
hood of size p, except that, for computational reasons, one
does not look for the solution that maximizes the gain but
only explores a part of the neighborhood looking for a so-
lution that improves the current one. This exploration corre-
sponds to a recursive application of the 1-opt solution.

In general, p-opt local search algorithms are of course
only interesting if the gains can be computed efficiently; the
complexity of the 1-opt local search algorithm (Merz and
Freisleben 2002), when applied to the ith row of W (prob-
lem 3) is O(K2) once the matrix Q, which depends on i, has
been constructed (the limiting factor here is the initial com-
putation of the gains, which can be updated in O(K) op-
erations). The construction of Q has complexity O(K2N)
(here also Q needs only be computed for the first row; it
can then be updated for each row in O(KN) operations).
As a result, the overall complexity of 1-opt for the UBQP
problem is O(K2MN), which may be too high for practi-
cal applications when K is large (the complexity is the same
when a column of H is considered).

In the remainder of the paper, we will refer to the 1-opt
local search proposed for UBQP as 1-opt-UBQP.
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3.2 L1-BMF and K-means

In (Jiang et al. 2014), a K−means-based approach for the
rank K BMF problem with L1 norm minimization has been
introduced. In this approach, first, K initial cluster centers
are selected from column vectors of X; then, each column
vector of X is assigned to the class of the closest center. New
binary center are then computed, and the process is repeated
until the clusters do not evolve. This approach, referred to as
CBMF, solves the rank K binary factorization problem with
the binary reconstruction constraint. A slight modification
of this method, referred to as UBMF, aims at solving the
problem without the binary reconstruction constraint.

Because of its reliance on K-means, CBMF can be im-
proved through local search procedures designed for K-
means. In (Kanungo et al. 2002), such procedure, called
swap procedure, is introduced and that consists, when ap-
plied to our problem, in randomly selecting one of the final
centers of the current CBMF solution and replace it with
one random column of X. The K-means algorithm is then
applied in order to see if the new solution is better than the
previous one; if it is the case, it becomes the current solu-
tion. This process is repeated a certain number of times or
until the time budget has been exhausted.

4 Efficient p-opt local search for BMF

As illustrated in Eq. 2, rows of W (or columns of H) can be
optimized independently. Here, we show how to optimize,
in a neighborhood of size 1, a row of W (the reasoning is
the same for columns of H). We first divide each row of W,
wi., into three sets as follows.

Definition 1. For a given row wi. (1 ≤ i ≤ M) of W and
a given H, we define three sets of column vectors of H:

W 0
i = {h.l | 1 ≤ l ≤ N, xil = 0}

W⊥
i = {h.l | 1 ≤ l ≤ N, xil = 1, < wi.,h.l >= 0}

W �⊥
i = {h.l | 1 ≤ l ≤ N, xil = 1, < wi.,h.l > �= 0}

where h.l represents the lth column of H, xil denotes the
cell of X at row i and column l and < ., . > is the dot
product. We have of course: |W 0

i | + |W⊥
i | + |W �⊥

i | = N
(number of columns in H). The rationale for considering
the three sets above comes from the fact that the number of
mistakes in the ith row of the reconstructed matrix W ×H
can be easily computed from them, as shown in Theorems 1
and 2.

Let ΔE(i, j) = E(i, j)new − E(i, j)old = ||xi. −
wj

i.H||p−||xi.−wi.×H||p, where wj
i. is obtained from wi.

by flipping the jth bit (from 0 to 1 or from 1 to 0), denote
the difference in the reconstruction error before and after
a bit flip. Theorem 1 and 2 provide simple expressions for
ΔE(i, j) for both L1 and L2 norms. These expressions can
be computed efficiently as shown in Theorem 3.

Theorem 1. Let ΔE(i, j; 0 → 1, L2) be the gain obtained
when flipping the jth bit of wi. from 0 to 1 (resp. from 1 to

0), measured by the L2 norm. Then:

ΔE(i, j; 0→ 1, L2) =
∑

h∈W 0
i

(1 + 2 < wi.,h >)hj

+
∑

h∈W �⊥
i

(2 < wi.,h > −1)hj −
∑

h∈W⊥
i

hj

(4)

and:

ΔE(i, j; 1→ 0, L2) =
∑

h∈W 0
i

(1− 2 < wi.,h >)hj

+
∑

h∈W �⊥
i

<wi.,h>hj=1

1 +
∑

h∈W �⊥
i

<wi.,h>hj>1

3− 2 < wi.,h >
(5)

Theorem 2. Similar to Theorem 1, for L1 we have the fol-
lowing gain computations:

ΔE(i, j; 0→ 1, L1) =
∑

h∈W 0
i

hj +
∑

h∈W �⊥
i

hj −
∑

h∈W⊥
i

hj

(6)
ΔE(i, j; 1→ 0, L1) =

∑

h∈W �⊥
i

<wi.,h>hj=1

1−
∑

h∈W 0
i

hj

−
∑

h∈W �⊥
i

<wi.,h>hj>1

1
(7)

We omit the proofs, which are mainly technical, of these
theorems for space reasons.

As mentioned in the previous section, the complexity for
updating one row (say row i) of W through 1-opt-UBQP
(i.e. the 1-opt procedure defined for UBQP and explained in
(Merz and Freisleben 2002)) is O(K2N). A standard pro-
cedure, i.e. computing the gain through the multiplication of
wi. and H, would in fact have the same complexity (as this
multiplication can be done in O(KN) and needs to be done
K times). We show here that the 1-opt procedure defined on
the basis of Theorem 1 and 2, and referred to as 1-opt-BMF
is more efficient.
Theorem 3. We assume a row vector wi. of W and a matrix
H. Furthermore, let d be the density of X and let τ denote
the proportion of columns l of H orthogonal to wi. and such
that xil = 1 (thus τ = |W⊥

i |/N ). Then, the gain in complex-
ity for the 1-opt-BMF procedure based on Theorem 1 and 2
compared to both 1-opt-UBQP and the standard approach
is at least:

• ((1− (d− τ)) + d−τ
K )−1 for the L2 norm;

• min{((d− τ) + 1−d
K )−1,K} for the L1 norm.

Proof (sketch) First note that 0 ≤ τ ≤ d ≤ 1 as the pro-
portion of columns in H corresponding to 1s in xi., i.e. d, is
larger than the proportion of columns in H corresponding to
1s in xi. and orthogonal to wi., i.e. τ . From the definitions of
d and τ , one has: |W 0

i | = (1−d)N, |W⊥
i | = τN, |W �⊥

i | =
(d− τ)N . The complexity of computing Eq. 4 thus amounts
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to: K(1−d)N+KτN+(d−τ)N = KN(1−(d−τ)+(d−
τ)/K) as the first two terms of Eq. 4 involve a dot product
with wi. whereas the last one does not. Similarly, the com-
plexity of Eq. 5 is K(1−d)N +K(d−τ)N = KN(1−τ),
which is lower than the previous one. For 1-opt UBQP (and
for the naive method), the complexity for the same operation
is KN . Dividing this latter quantity with the first one yields
the first part of Theorem 3. The second part is obtained in
a similar way, except that this time the first quantity is not
always larger than the second; it depends on the position of
K wrt d/d− τ . �

For K = 1, the local search procedure based on Theo-
rem 1 and 2 has the same complexity (disregarding multi-
plicative and additive constants) as the standard ones; when
K increases, provided that d−τ is fixed, the advantage of the
local search procedure based on Theorem 1 and 2 with re-
spect to both 1-opt-UBQP and the standard approach should
be more obvious. This advantage is however less clear when
τ is close to d. The results obtained in the experimental sec-
tion confirm these points.

This procedure can naturally be extended to p-opt local
search, either by adopting a greedy approach, in which one
applies p times a 1-opt local search, as done in (Merz and
Freisleben 2002), or by finding the p flips that maximize the
gain. In both cases, the gain of flipping several bits is the
sum of the gain of the individual flips. However, in the lat-
ter approach, the complexity for selecting the best bits to
flip is in O(Kp), which could be very time consuming in
most practical cases (in contrast, the complexity of the p-
opt greedy approach to select the p bits is O(pK)). Lastly,
one should note that the binary reconstruction condition can
be efficiently checked while computing the gains defined in
Theorem 1 and 2.

5 Experiments

5.1 General Settings and Datasets

We evaluated the proposed 1-opt-BMF procedure on dif-
ferent methods and on different datasets. We have retained
here the most widely used methods to solve the BMF prob-
lem: projected NMF, projected SVD, Proximus, CBMF and
UBMF. All the implementations have been done in Matlab
which offers efficient matrix operations. For SVD and NMF,
we used the Matlab built-in functions and for the rest we
have used our own efficient implementations (all the codes
are available from the authors upon request).

For projected NMF and SVD, we found the best projec-
tion points by applying a grid search, with a step size of
0.05. For efficiency reasons, we mainly focus on p = 1 in
the p-opt local search.

As mentioned before, we refer to the method proposed
in this paper as 1-opt-BMF, to the standard implementation
as 1-opt-Standard and to the 1-opt local search associated
with UBQP as 1-opt-UBQP. One should note that the 1-opt-
Standard approach benefits from highly efficient block al-
gorithms available in LAPACK (incorporated in Matlab). In
average, these algorithms are significantly faster than a sim-
ple, naive multiplication.

In addition, we evaluate the swap heuristic described in

(Kanungo et al. 2002) that can be applied over CBMF re-
sults (we call it SCBMF where S stands for ”swap”). We
also consider applying 1-opt-BMF over SCBMF in order to
see if it can further improve the solution. This last approach
is referred to as 1-opt-SCBMF. There are different criteria to
choose the number of swaps in SCBMF. For example, one
can select a fixed number of swaps or a time limit. To be fair
in our comparison, we have adopted here the following strat-
egy: for each dataset we first run our 1-opt algorithm (which
is in general faster) on CBMF and measure its running time
and let the SCBMF procedure run the same amount of time
to improve CBMF results. Like that, one can observe which
method performs best under a given time budget.

The main difference between SCBMF and all 1-opt lo-
cal search procedures is that the former tries to find better
solutions by exploring different parts of the search space
whereas the latter tries to find a better solution in a close
neighborhood of the current solution. Observing the respec-
tive behaviors of these different approaches is thus interest-
ing. Lastly, since SCBMF proceeds via random selections,
we run the SCBMF 10 times for each dataset and report the
average error. In this case, a difference is deemed statisti-
cally significant if it was significant on the majority of the
10 runs. We use here the Wilcoxon sum-rank test at 1% sig-
nificance level to assess whether differences in the results
are significant or not.

We let the rank K vary in the set {1, 20, 40, 60, 80,
100}. As mentioned above, the BMF problem can be solved
with or without the binary reconstruction constraint, with the
L1 norm or with the L2 norm. Accordingly, four classes
of decomposition methods can be considered (Table 1).
Following the methodology used in (Uno, Kiyomi, and

Table 1: Different problem classes
Approach/Norm L1 L2

Constrained CBMF PROXIMUS
Unconstrained UBMF NMF, SVD

Arimura 2005), we examined both real world datasets and
synthetic ones, all available at http://fimi.ua.ac.be/data/ (last
visited 15-Nov-2014). Table 2 shows the sets we used in ad-
dition to some of their characteristics. The first part of the
table shows the real datasets and the second part shows the
synthetic ones, generated by the IBM Data Generator. We
also removed all empty rows and columns from the data.

Table 2: Datasets used in the experiments
Name # Rows # Columns Type

Mushroom 8124 119 sparse
Accidents 340183 468 dense
Connect 67557 129 structured dense
Pumsb 49046 2113 structured dense

T10I4D100K 100000 870 very sparse
T40I10D100K 100000 942 sparse

5.2 Time Comparison

We compare here the proposed 1-opt-BMF with 1-opt-
Standard and 1-opt-UBQP according to their running time
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Figure 1: Time ratio for Proximus (left) and UBMF (right)

Figure 2: Impact of 1-opt-BMF on the L2 norm methods (horizontal and vertical axes show values of K and L2 norm resp.)

(one should note that these three approaches yield the same
solution, namely the one corresponding to the best improve-
ment in a neighborhood of size 1). Note that 1-opt-BMF and
1-opt-Standard can be applied to both L1 and L2 decom-
position methods, whereas 1-opt-UBQP can only be applied
on the L2 decomposition approaches (NMF, SVD and Prox-
imus).

To further illustrate the speed of the different methods,
we display in Figure 1 the ratio: execution time of 1-opt-
Standard divided by execution time of 1-opt-BMF or exe-
cution time of 1-opt-UBQP divided by execution time of 1-
opt-BMF. For space reasons, we only show one of the L1

norm methods (UBMF) and one of the L2 norm methods
(Proximus), but the figures of other decomposition methods
are very similar to the ones shown here. An additional line,
labeled ”Ratio=1”, is added to make the comparison easier:
the proposed 1-opt (i.e. 1-opt-BMF) is faster when the curve
is above this line, and slower otherwise.

As one can see, on 4 out of 6 datasets, 1-opt-BMF is
significantly faster than 1-opt-Standard (Figure 1, right).
The two collections on which this is not observed are
Mushrooms and Connect, which are the two smallest
collections considered here. The 1-opt-Standard procedure
does not need to compute the different sets used by 1-opt-
BMF, and is more efficient when the number of columns,
N , is small. However, as N increases, 1-opt-BMF becomes

faster. Furthermore, the difference increases in favor of 1-
opt-BMF when K increases which is in line with the theo-
retical analysis provided in section 4. For sufficiently large
datasets and sufficiently large values of K, the proposed 1-
opt-BMF can be up to 8 times faster than the standard ap-
proach.

1-opt-BMF is also faster on 5 datasets out of 6 (Figure 1,
left) comparing to 1-opt-UBQP. Here again the advantage
of 1-opt-BMF roughly increases with K. However, this ad-
vantage is not as marked as it is for 1-opt-Standard, which
shows that 1-opt-UBQP is indeed more efficient than a stan-
dard approach for improving a given solution.

By definition, all 1-opt approaches yield the same results
as they explore exactly the same space; the only difference
between them lies in the efficiency with which the neighbor-
hood is explored. In the remainder of the paper, we focus on
1-opt-BMF, the most efficient 1-opt local search procedure.
Lastly, 1-opt-BMF and 1-opt-standard have the same space
complexity and the same access patterns (and thus have sim-
ilar locality properties), while the space complexity of 1-opt-
UBQP is larger as it requires to keep matrix Q in the mem-
ory.

5.3 Impact of 1-opt-BMF for L2-BMF

Figure 2 shows the effectiveness of the 1-opt-BMF strategy
when it is applied on (projected) SVD, (projected) NMF and
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Table 3: Effectiveness of the 1-opt-BMF approach on L1 methods

Dataset k CBMF SCBMF 1-opt-SCBMF UBMF
Standard 1-opt-BMF Standard 1-opt-BMF

Mushroom

20
40
60
80
100

7.5032
4.9601
2.5769
1.4323
0.1917

7.2662
4.4301
2.2591
1.1655
0.1313

7.0481
4.1346
2.4711
1.3449
0.1835

6.7332
3.6278
2.1682
1.1608
0.1500

6.8685
4.4537
2.1958
1.0042
0.1377

6.8685
4.4537
2.1958
1.0042
0.1377

Pumsb

20
40
60
80
100

1.3253
0.9608
0.8719
0.8763
0.7560

1.2895
0.9310
0.8647
0.8467
0.7470

1.3214
0.9608
0.8719
0.8740
0.7560

1.2782
0.9311
0.8647
0.8491
0.7470

1.2177
0.8903
0.8201
0.7638
0.7010

1.2176
0.8903
0.8200
0.7637
0.7010

Connect

20
40
60
80
100

7.9585
4.9624
2.6073
1.7881
0.3537

7.8659
4.9077
2.5850
1.6420
0.3537

7.4513
4.5270
2.4071
1.3584
0.3537

7.3004
4.4728
2.3849
1.3551
0.3537

7.3202
4.1145
1.7336
0.8995
0.3537

7.3202
4.1145
1.7336
0.8995
0.3321

Proximus. For space reasons, we only illustrate 3 datasets
here; the results are similar for other datasets. As one can
note, projected NMF performs generally better than pro-
jected SVD, with a reconstruction error significantly lower.
Projected NMF also yields a lower reconstruction error than
Proximus, but Proximus provides a binary reconstructed ma-
trix, which is not the case for NMF.

To assess whether the improvements obtained by the
1-opt-BMF are significant, we computed p-value of the
Wilcoxon rank-sum test at the 1% significance level. In al-
most all L2 norm cases with K = 1 there is no improvement
with 1-opt-BMF. This can be explained by the fact that the
first dominant factor in the datasets is more easily approxi-
mated by the different methods than the first K factors. For
K > 1 however, in all sets and with all methods, the im-
provements obtained by the 1-opt-BMF are statistically sig-
nificant. In particular, for NMF and SVD, the improvement
can be up to 61% for real sets (as Pumsb), and up to 12 %
for synthetic sets (as T1014D100K).

5.4 Impact of 1-opt for L1-BMF

Table 3 illustrates the improvement that 1-opt-BMF can
make over the L1 methods, namely CBMF, SCBMF and
UBMF. As one can note, the case of K = 1 is removed
from the table since, as mentioned above, no local improve-
ment can be made for the first factor. We only show three
real datasets; the results for other real sets are similar to the
ones shown in the table. We skipped the synthetic data since,
for all methods, there is not much improvement with local
heuristics according to the lack of structure in these datasets.
The table shows the normalized errors in percentage (nor-
malized to the total number of cells). Significant improve-
ments are shown in bold (measured again using Wilcoxon
rank-sum test at the 1% significance level). Note that for
CBMF (resp. UBMF), the 1-opt-BMF error is shown in bold
if it is significantly better than the standard CBMF (resp.
UBMF). SCBMF’s error is shown in bold if it is significantly
better than standard CBMF. For 1-opt-SCBMF, the error is
in bold if it is significantly better than SCBMF.

The 1-opt-BMF strategy consistently yields significant

improvements over the standard CBMF solutions. The most
spectacular case is the Mushroom dataset, where for K =
80 the error value is decreased by more than 18%. This
dataset has a large number of patterns spanning few lines
(Uno, Kiyomi, and Arimura 2005), making it more difficult
for factorization algorithms to compute a good approxima-
tion for high K values. These results show that the 1-opt-
BMF heuristic can help improve the decomposition on such
difficult cases. It is also interesting to see that SCBMF can
only bring one significant improvement for this dataset while
the 1-opt-BMF can make four significant improvements (out
of five cases).

Although Pumsb is a structured dense dataset, it con-
tains very few one cells (only 3.5%). This issue, combined
with the higher number of columns, prevents SCBMF to
find a better solution in the allocated time. However, despite
this difficulty, 1-opt-BMF significantly improves the solu-
tion found by CBMF. (at best 3% for K = 40).

The conclusions for UBMF are more contrasted, as it is
more difficult to improve the results in this case. This can
be explained by the fact that UBMF solves the BMF prob-
lem without the binary reconstruction constraint, and thus
yields solutions with lower reconstruction errors. Neverthe-
less, there are still a few cases where the 1-opt-BMF ap-
proach can provide a significantly better approximation, as
Connect with K = 100.

6 Conclusion

We have first shown that the BMF problem based on L2

norm reconstruction can be reformulated as a UBQP prob-
lem, prior to review several local search strategies that can
be used to improve BMF solutions (for both L1 and L2 norm
reconstruction) obtained by factorization methods. We have
then introduced a new local search method and studied its
complexity with respect to other local search approaches.

Our experiments, conducted with several state-of-the-art
methods, on several collections with different properties,
have confirmed that the proposed 1-opt-BMF procedure is
in general faster than the previously proposed ones. We also
have shown that, given a current solution obtained by any
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matrix factorization method, the 1-opt-BMF local search can
find a significantly better solution in most cases.
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