
Incremental Weight Elicitation for Multiobjective State Space Search

Nawal Benabbou and Patrice Perny
Sorbonne Universites, UPMC Univ Paris 06, UMR 7606, LIP6

CNRS, UMR 7606, LIP6, F-75005, Paris, France
4 Place Jussieu, 75005 Paris, France

nawal.benabbou@lip6.fr, patrice.perny@lip6.fr

Abstract

This paper proposes incremental preference elicitation
methods for multiobjective state space search. Our ap-
proach consists in integrating weight elicitation and
search to determine, in a vector-valued state-space
graph, a solution path that best fits the Decision Maker’s
preferences. We first assume that the objective weights
are imprecisely known and propose a state space search
procedure to determine the set of possibly optimal solu-
tions. Then, we introduce incremental elicitation strate-
gies during the search that use queries to progressively
reduce the set of admissible weights until a nearly-
optimal path can be identified. The validity of our algo-
rithms is established and numerical tests are provided to
test their efficiency both in terms of number of queries
and solution times.

Introduction
Preference-based search is an active topic in Artificial In-
telligence with various applications to constraint satisfac-
tion, planning, search, resource allocation and electronic
commerce (see e.g. (Boutilier et al. 2004; Brafman and
Domshlak 2009; Domshlak et al. 2011)). Although many
algorithmic contributions focus on the elaboration of effi-
cient algorithms to determine a best solution given a pref-
erence model, some others concern preference elicitation
strategies so as to best fit the decision model to Decision
Maker’s (DM) preferences. In this paper, we address both
aspects simultaneously. We study the potential of incremen-
tal elicitation methods (White III , Sage, and Dozono 1984;
Wang and Boutilier 2003; Braziunas and Boutilier 2007) in
the framework of multiobjective state space search (Stewart
and White III 1991; Mandow and De la Cruz 2005). This is
a decision context where solutions are very numerous and
defined implicitly. Hence usual elicitation methods based on
systematic pairwise comparisons are often ineffective.

Elicitation on combinatorial domains is a challenging is-
sue that recently motivated several contributions in various
contexts, e.g. in constraint satisfaction problems (Boutilier
et al. 2006), in Markov Decision Processes (Regan and
Boutilier 2011; Weng and Zanuttini 2013), in stable match-
ing problems (Drummond and Boutilier 2014) and in mul-

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tiattribute spaces (Gonzales and Perny 2004; Braziunas and
Boutilier 2007; Koriche and Zanuttini 2010). In the context
of multiobjective state space search, our aim here is to pro-
pose a new approach integrating preference elicitation and
search. We consider a state space graph endowed with q
evaluation criteria, i.e. q cost functions to be minimized (e.g.
time, distance, energy, risk). Each path is therefore valued by
a cost vector and preference over paths are inherited from
the preference over their cost vectors. Preference over cost
vectors are defined using a parameterized aggregation func-
tion fω : Rq+ → R+ defining the overall cost (or disutility)
fω(x) attached to any cost vector x∈Rq+, where ω is a vector
of preference parameters (weights) representing the relative
importance of criteria. We want to find a path from an initial
node to a goal node that minimizes the overall cost func-
tion fω that represents the DM’s preferences. However, for
the elicitation purpose, we assume that ω is not known pre-
cisely, and we intend to elicit the weights during the search
so as to determine the best possible solution path.

The elicitation of criteria weights defining ω can be per-
formed in different ways. The first way, quite standard, con-
sists in scanning the space of weights and repeatedly select-
ing a vector ω to generate an fω-optimal solution until one
meets the satisfaction of the DM; see e.g. (Zionts and Walle-
nius 1976; Vanderpooten and Vincke 1997). In multiobjec-
tive state space search, when fω is linear (i.e. fω(x) = ω ·x)
the generation of an fω-optimal solution at every step of
the exploration can simply be performed by a standard A∗
search (Hart, Nilsson, and Raphael 1968) after a prelimi-
nary scalarization of costs using fω . When fω is not lin-
ear, other algorithms have been proposed, more complex, to
solve the optimization problem for various classes of aggre-
gation functions, e.g. multiattribute utility functions (Das-
gupta, Chakrabarti, and DeSarkar 1995), weighted Tcheby-
cheff norms (Galand and Perny 2006), and Choquet integrals
(Galand and Perny 2007). They can be used to generate the
current solution in an interactive exploration method.

A second way of performing preference elicitation in mul-
tiobjective combinatorial problems, less explored, consists
in integrating an incremental elicitation method into the
search procedure. In our case, starting with an initial set of
possible weights, it consists in generating preference queries
during the search so as to progressively reduce the set of ad-
missible parameters until an optimal path can be determined

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

1093



or approximated with some guarantees. This is the line we
explore in this paper. Assuming that fω is a linear model and
that ω is not known, we first propose a state space search
procedure to determine the set of possibly fω-optimal solu-
tions. Then, we introduce incremental elicitation strategies
into the search so as to progressively reduce the set of ad-
missible weights until a nearly-optimal path is found.

The General Framework
Let G= (N,A) be a state space graph where N is the finite
set of nodes representing the states and A is the set of arcs
representing the feasible state transitions. More precisely,
A = {(n, n′) : n ∈ N,n′ ∈ S(n)} where S(n) ⊆ N is the
set of all successors of n. We consider a finite set of criteria
gi : A → R+, i∈Q= {1, . . . , q}. We assume that gi’s are
cost functions to be minimized. Hence, graph G is endowed
with a vector valuation function g : A→ Rq+ which assigns
to each arc a ∈ A the cost vector g(a)=(g1(a), . . . , gq(a)).
A path between n and n′ is characterized by a list of nodes
of type 〈n, . . . , n′〉 and ◦ is the path appending operator. The
set of all paths linking n to n′ is denoted P (n, n′) and the
set of all paths linking n to any goal node γ ∈ Γ is denoted
P (n,Γ); thus, the set of solution paths, starting at the source
node s ∈ N , is denoted P (s,Γ). The cost vector of a path
p is denoted g(p) and is the sum of the cost vector of its
constituent arcs. The set of feasible cost vectors is denoted
X = {g(p) : p ∈ P (s,Γ)}. It represents the image of all
solution paths in the space of criteria.

We assume that the DM’s preferences are represented by
a linear function fω(x) = ω ·x measuring the overall cost
of paths. Since ω is not known precisely, we consider a set
Ω containing all normalized weighting vectors compatible
with the observed preference statements. By default, Ω is
initially defined as the simplex {ω∈ int(Rq+) :

∑q
i=1 ωi=1}

where int represents the interior of the cone Rq+ (this pre-
vents to have any zero in the weighting vector and guar-
antees the Pareto-optimality of fω-optimal cost vectors).
Due to the linearity of fω , any preference statement of type
“x is at least as good as y” induces a linear constraint
fω(x) − fω(y) ≤ 0 over the simplex. Hence, throughout
the paper, we assume without loss of generality that Ω is
a convex polyhedron. Given the uncertainty set Ω, we first
consider the problem of determining the set POΩ(X ) of pos-
sibly fω-optimal cost vectors inX , i.e. the set of cost vectors
x ∈ X that minimize fω for some ω ∈ Ω. Formally:
Definition 1. ∀X⊆Rq+, POΩ(X)=

⋃
ω∈Ω

arg min
x∈X

fω(x).

When X is a set of cost vectors associated to paths in G,
the subset of paths having their cost vector in POΩ(X) is
called the set of possibly optimal paths. We first address the
computation of POΩ(X), for a finite set of vectors X⊂Rq+
given in extension. Then we will propose an adaptation of
MOA∗ search so as to construct POΩ(X ).

Determination of Possibly Optimal Elements
Let X = {x1, . . . , xm} ⊂Rq+ be a non-empty and finite set
of vectors. Let us introduce the Ω-dominance relation ≺Ω

defined on subsets of vectors by:

Definition 2 (Ω-dominance). For all Y, Z ⊆ Rq+:
Z ≺Ω Y if and only if ∀y ∈ Y,∀ω ∈ Ω,∃z ∈ Z, ω ·z < ω ·y
This relation is useful to determine POΩ(X) due to the fol-
lowing proposition.

Proposition 1. If there exists Y,Z ⊆X such that Z ≺Ω Y
then Y ∩ POΩ(X) = ∅.

Proof. Consider Y,Z⊆X such that Z ≺Ω Y . By Definition
2, we know that, for all y ∈ Y , for all ω ∈ Ω, there exists
z ∈Z ⊆X such that ω ·z < ω ·y. Hence no element y ∈ Y
is fω-optimal for some ω ∈ Ω. Therefore no element of Y
belongs to POΩ(X), which establishes the result.

This proposition enables us to propose the following al-
gorithm to compute POΩ(X):

Algorithm 1: Ω-Filter(X)
Input: Ω; X = {x1, . . . , xm}; σ: permutation of {1, . . . ,m}
Output: Xσ

m

1 Xσ
0 ← X

2 for i = 1 . . .m do
3 if Xσ

i−1≺Ω{xσ(i)} then Xσ
i ← Xσ

i−1\{xσ(i)}
4 else Xσ

i ← Xσ
i−1

Before establishing the validity of Algorithm 1, let us re-
mark that it builds nested setsXσ

i , i = 1 . . .m, by iteratively
testing whether Xσ

i−1≺Ω{xσ(i)} and discarding xσ(i) if the
test succeeds, where σ is a given permutation of {1, . . . ,m}.
Since Ω is described by a (reasonably small) set of linear
constraints (at most one per preference statement obtained
from the DM), testing whether Xσ

i−1≺Ω{xσ(i)} can be per-
formed by solving maxω∈Ω minx∈Xσi−1

ω·(x−xσ(i)) due to
the following proposition:

Proposition 2. For all Y,Z ⊆ Rq+:

Z ≺Ω Y ⇔
[
∀y∈Y,max

ω∈Ω
min
z∈Z

ω · (z − y) < 0

]
Proof. Let Y, Z⊆Rq+ such that Z ≺Ω Y . Let y∈Y . For all
ω ∈ Ω, there exists z ∈ Z such that ω ·z < ω ·y (Definition
2). Hence, we have minz∈Z ω · (z−y) < 0 for all ω ∈ Ω
and in particular, we have maxω∈Ω minz∈Z ω ·(z−y)< 0.
Reciprocally, let Y,Z ⊆ Rq+ such that for all y ∈ Y ,
maxω∈Ω minz∈Z ω · (z−y) < 0. Let y ∈ Y . Then, for all
ω ∈ Ω, we have minz∈Z ω ·(z−y)< 0 and so there exists
z∈Z such that ω·z < ω·y. ThusZ≺Ω Y (Definition 2).

Hence, Algorithm 1 requires to solve only m linear pro-
grams of bounded size and therefore is polynomial in the
size of X . Now, to establish the validity of Algorithm 1, we
first establish Lemma 1 showing that the output of Algo-
rithm 1 is independent of the permutation σ.

Lemma 1. For any two permutations σ1 and σ2, the two sets
Xσ1
m andXσ2

m are equal, whereXσ1
m (resp.Xσ2

m ) denotes the
output of Algorithm 1 obtained from σ1 (resp. σ2).

1094



Proof. Let σ1 and σ2 be two permutations of {1, . . . ,m}.
Let us prove (by contradiction) thatXσ1

m⊆Xσ2
m . Let xi∈Xσ1

m
and assume xi 6∈Xσ2

m . First, let j ∈ {1, . . . ,m} be the itera-
tion step such that i = σ1(j). Since xi ∈ Xσ1

m , we neces-
sarily have not(Xσ1

j−1≺Ω{xi}), i.e. there exists ω′∈Ω such
that ω′·x≥ ω′·xi for all x ∈Xσ1

j−1 (Definition 2). Then, let
k ∈ {1, . . . ,m} be the iteration step such that i = σ2(k).
Since xi 6∈Xσ2

m , we necessarily have Xσ2

k−1≺Ω{xi}, i.e. for
all ω ∈ Ω, there exists x ∈ Xσ2

k−1 such that ω · x < ω · xi
(Definition 2); hence, the set X ′= {x ∈ X : ω′·x < ω′·xi}
is not empty since we have Xσ2

k−1 ⊆ X by construction.
Then, by definition of ω′, we have X ′∩ Xσ1

j−1 = ∅. Hence
X ′∩ Xσ1

m = ∅ since Xσ1
j−1 ⊇ Xσ1

m by construction. There-
fore, for all l ∈ {1, . . . ,m} such that xσ1(l) ∈ X ′, we nec-
essarily have xσ1(l)∈Xσ1

l−1 and xσ1(l) 6∈Xσ1

l . Hence, letting
L denote the largest iteration step l such that xσ1(l)∈ X ′,
we have X ′ ∩Xσ1

L−1 = {xσ1(L)}. Then, since we know that
xσ1(L) 6∈ Xσ1

L , we necessarily have Xσ1

L−1≺Ω{xσ1(L)} and
so there exists x′∈Xσ1

L−1 such that ω′· x′<ω′· xσ1(L) (Def-
inition 2). Moreover, since X ′ ∩Xσ1

L−1 ={xσ1(L)}, we also
know that x′ 6∈X ′. Finally, since xσ1(L) ∈X ′ by definition,
we have ω′·x′<ω′·xσ1(L)<ω′·xi which contradicts the fact
that x′ 6∈X ′; hence xi ∈Xσ2

m . Finally, since σ1 and σ2 can
be any two permutations, we conclude that Xσ1

m =Xσ2
m .

Thus, Algorithm 1 returns the same subset of X whatever
the permutation σ of {1, . . . ,m}.
Theorem 1. Algorithm 1 returns exactly the set POΩ(X).

Proof. Let Xm denote the output of Algorithm 1. First, let
us prove that POΩ(X)⊆Xm. Let xi∈POΩ(X). By Defini-
tion 1, there exists ω′∈Ω such that xi∈arg minx∈X ω

′·x, i.e.
ω′· x ≥ ω′· xi for all x∈X . Hence we have not(X≺Ω{xi})
by Definition 2. Thus, we have not(Xσ

1−1≺Ω{xσ(1)}) for
any permutation σ of {1, . . . ,m} such that σ(1)= i and then
we have xi ∈Xσ

m by construction; therefore, we have xi ∈
Xm by Lemma 1. Now, let us prove that Xm ⊆ POΩ(X).
Let xi∈Xm. Let σ be a permutation of {1, . . . ,m} such that
σ(1) = i. Since xi ∈Xm, we have xi ∈Xσ

m by Lemma 1.
Then, by construction of Xσ

m, we have not(Xσ
1−1≺Ω{xi}),

i.e. not(X ≺Ω{xi}). Therefore, by Definition 2, there ex-
ists ω′ ∈ Ω such that ω′ · x ≥ ω′ · xi for all x ∈ X , i.e.
xi∈arg minx∈X ω

′·x. Thus, we have xi∈POΩ(X).

Algorithm 1 assumes that X is given explicitly. It cannot
directly be applied on X which is only implicitly known as
the image of all solution paths in the space of criteria. In-
stead, we propose now a search procedure directly focusing
on possibly optimal cost vectors.

Search of Possibly Optimal Paths
Preference-based search methods in multiobjective opti-
mization are often based on the exploration of the set of
Pareto-optimal solutions. The so-called MOA∗ algorithm
(Stewart and White III 1991; Mandow and De la Cruz
2005) is a multiobjective extension of A∗ (Hart, Nilsson,

and Raphael 1968) that determines ND(X ) ⊆ X the set
of Pareto non-dominated cost vectors attached to paths in
P (s,Γ) and returns one path for each element. Formally
ND(X ) = {x ∈ X : ∀y ∈ X , not(y ≺P x)} where ≺P is
the Pareto dominance relation on cost vectors, i.e. x ≺P y
(read x Pareto-dominates y) if and only if xi ≤ yi for all
i ∈Q and xk < yk for some k ∈Q. At some point, we will
also consider the weak Pareto dominance, i.e. x-P y (read
x weakly Pareto-dominates y) if and only if xi ≤ yi for all
i∈Q. Since all preference models considered in multicrite-
ria analysis are compatible with Pareto dominance or weak
Pareto dominance, the MOA∗ algorithm is a useful basis to
develop more specific preference-based search procedures.
To obtain POΩ(X ), a two-stage procedure consisting first in
using MOA∗ to determine the set of Pareto-optimal feasible
vectors ND(X ) and then in applying Algorithm 1 to deter-
mine POΩ(X ) would be admissible. However, it would not
be very efficient due to the possibly large size of ND(X )
(which can be exponential in the number of nodes in G). We
introduce now a variant of MOA∗ to directly determine the
set POΩ(X ) and one path for each of its elements.

In the multiobjective case, there possibly exists several
optimal paths with different cost vectors to reach a given
node. Therefore, the basic graph exploration procedure con-
sists in iteratively expanding labels attached to subpaths
rather than nodes, like in MOA∗ (Mandow and De la Cruz
2005). Labels are of the form ` = [n`, p`, g`] where p` de-
notes a path from s to n` and g` = g(p`) denotes its cost.
At any iteration of the algorithm, a label is selected for ex-
pansion. The expansion of a label `∗ generates the set of
its successors {[n, p`∗ ◦ n, g(p`∗ ◦ n)] : n ∈ S(n`∗)}. The
set of generated labels is divided into two disjoint sets: a
set C of closed labels (yet expanded) and a set O of open
labels (candidate to expansion). The set C (resp. O) re-
stricted to labels ` such that p` ∈ P (s, n) attached to node
n is denoted C(n) (resp. O(n)). Moreover, the expanded
labels corresponding to the current possibly optimal solu-
tion paths are stored in a set denoted S. Another feature im-
ported from MOA∗ is that, for each generated label `, a set
F (`) = {g` + h : h ∈ H(n`)} of cost vectors is computed
to estimate the cost vectors of the solution paths extending
p`, where H(n`) is a set of heuristic costs estimating the set
{g(p) : p ∈ P (n`,Γ)}. The main differences with MOA∗

lie in the definition of pruning rules that use sharper condi-
tions than those based on Pareto-dominance tests. Our ap-
proach relies on the following property of Ω-dominance:

Proposition 3 (Additivity).
∀X,Y, Z ⊆ Rq+, X ≺Ω Y ⇒ X + Z ≺Ω Y + Z

where B +C = {b+ c : b ∈ B, c ∈ C} for all B,C ⊆ Rq+.

Proof. Let X,Y ⊆ Rq+ be such that X≺ΩY . Let Z ⊆ Rq+.
Let u∈Y +Z. Since u∈Y +Z, there exists y∈Y and z∈Z
such that u = y+z. Let ω ∈ Ω. Since X≺ΩY , there exists
x∈X such that ω ·x<ω ·y. Then ω ·x+ω ·z < ω · y+ω ·z
by the addition property of inequalities, i.e. ω·(x+z)<ω·u.
Finally, since x+z∈X+Z, the result is established.

Hence, we establish two propositions enabling the identi-

1095



fication of labels corresponding to subpaths that cannot be
extended into a possibly fω-optimal solution path.

Proposition 4. At any node n∈N , if there exists `′∈O(n)
and a set L ⊆ O(n)∪C(n) such that {g` : ` ∈ L}≺Ω{g`′},
then path p`′ is not part of a possibly optimal solution path.

Proof. Consider n∈N , `′∈O(n) and L⊆O(n)∪C(n) such
that {g` :`∈L}≺Ω{g`′}. Let p∈P (n,Γ). We want to prove
that g(p`′◦ p) 6∈POΩ(X ). Since ≺Ω is additive (Proposition
3), we have {g` : ` ∈ L} + {g(p)}≺Ω{g`′} + {g(p)}, i.e.
{g` + g(p) : ` ∈ L}≺Ω{g`′ + g(p)}. Therefore, we have
{g(p`◦p) :`∈L}≺Ω{g(p`′◦p)}. Finally, since g(p`′◦p)∈X
and {g(p` ◦ p) : `∈L}⊆X , we have g(p`′ ◦ p) 6∈POΩ(X )
by Proposition 1.

This proposition says that we can discard any label `′∈O(n)
during the search whenever {g` : ` ∈ L}≺Ω{g`′} for some
subset L ⊆ O(n) ∪ C(n). In practice, there is no need to
enumerate and test all subsets L to discard `′. It is indeed
sufficient to make the test for L=O(n)∪C(n) by definition
of Ω-dominance. Then, the elimination of labels in O(n)
based on Proposition 4 is performed by a single call to Ω-
Filter (see Algorithm 1) on the input O(n)∪C(n) and we
intersect the output with O(n) so as to obtain the labels that
deserve further development. To summarize, we will use the
following pruning rule:

Rule R1. Discard the labels in O(n) that do not belong to
Ω-Filter(O(n) ∪ C(n)).

The second pruning rule we are going to introduce assumes,
as in MOA∗, that heuristic H is admissible (i.e. H provides
an optimistic evaluation of solution paths to the goal). This
assumption is formalized as follows: for all n ∈ N , for all
p ∈ P (n,Γ), there exists h ∈ H(n) such that h-P g(p).
Under this assumption, the following proposition holds:

Proposition 5. At any n∈N , if there exists `′ ∈O(n) and
L⊆S ∪

⋃
γ∈ΓO(γ) such that {g` :`∈L}≺Ω {g`′}+H(n),

then path p`′ is not part of a possibly optimal solution path.

Proof. Consider n∈N , `′∈O(n) and L⊆S ∪
⋃
γ∈ΓO(γ)

such that {g` : `∈L}≺Ω{g`′}+H(n). For any p∈P (n,Γ)
we want to prove that g(p`′ ◦ p) 6∈ POΩ(X ). Since H is
admissible, there exists h∈H(n) such that h-P g(p). Then
we have g`′+h-P g`′+g(p) =g(p`′ ◦ p). Therefore, for all
ω∈Ω, we have ω · (g`′+h)≤ω · g(p`′◦p) since ω is a vector
of positive weights. Then, since {g` :`∈L}≺Ω{g`′}+H(n),
for all ω∈Ω, there exists x ∈ {g` : `∈L} such that ω · x <
ω · (g`′+ h); hence ω ·x < ω ·g(p`′ ◦ p) by transitivity of
inequalities. Therefore, we have {g` :`∈L}≺Ω{g(p`′◦ p)}.
Finally, since g(p`′ ◦ p)∈ X and {g` : `∈L}⊆X , we have
g(p`′ ◦ p) 6∈ POΩ(X ) by Proposition 1.

As for rule R1, there is no need to test all subsetsL to discard
`′. It is sufficient to make the test for L = S ∪

⋃
γ∈ΓO(γ).

Hence we will use this second rule.

Rule R2. Discard `′∈ O(n) if {g` :`∈L}≺Ω {g`′}+H(n)
where L = S ∪

⋃
γ∈ΓO(γ).

Algorithm 2: POΩ(X ) computation
Input: G = (N,A); s; Γ; H; Ω
Output: S

1 foreach n ∈ N do
2 O(n)← ∅; C(n)← ∅
3 O(s)← {[s, 〈s〉, (0, . . . , 0)]}; S ← ∅
4 while O 6= ∅ do
5 `∗ ← SELECT(O)
6 Move `∗ from O to C
7 if n`∗ ∈ Γ and ∀` ∈ S, not(g`-P g`∗) then
8 Add `∗ to S
9 else

10 foreach n ∈ S(n`∗) do
11 Generate `′ = [n, p`∗ ◦ 〈n〉, g`∗+ g((n`∗ , n))]
12 if ∀` ∈ O(n) ∪ C(n), not(g`-P g`′) then
13 Add `′ to O(n)
14 Apply rule R2 to `′

15 if `′ is not discarded then
16 Apply rule R1 to O(n)
17 S ← Ω-Filter(S)

Using the above results, we propose Algorithm 2 to compute
POΩ(X ) where SELECT(L) returns a label `∈L such that:
∃f ∈F (`),∀`′∈O,∀f ′∈F (`′), not(f ′-P f).

Theorem 2. Algorithm 2 returns exactly the set POΩ(X )
and one solution path for each returned element.

Proof. First, let us remark that Algorithm 2 is based on a
MOA∗ search of Pareto-optimal cost vectors attached to so-
lution paths, refined by two pruning rules R1 and R2. This
focus on Pareto-optimal solutions is justified by the fact that
all vectors in Ω have strictly positive components by hypoth-
esis (hence possibly optimal vectors are necessarily Pareto-
optimal). Then, we know that we cannot loose a possibly
optimal cost vector by discarding labels with rule R1 or R2
due to propositions 4 and 5. Hence the set of returned labels
S contains necessarily all elements in POΩ(X ) at the end
of the while loop. Finally, the last call of Ω-Filter on S (see
line 17 of Algorithm 2) eliminates, if necessary, any solution
that does not belong to POΩ(X ).

Incremental Elicitation During the Search
In Section 2, we were considering that Ω, the set of admis-
sible weights, is stable over the time. We consider now that
new preference statements about paths are obtained at dif-
ferent times (denoted 1, . . . , T ) during the search (we as-
sume that Algorithm 2 starts at time 0 and terminates at time
T+1). This induces additional constraints that progressively
reduce the set Ω. Let Ωt be the set Ω at time t of the process.
We obtain a nested sequence of sets since Ωt+1 ⊆ Ωt for
all t ∈ {0, . . . , T} and therefore POΩt+1(X ) ⊆ POΩt(X )
by Definition 1. Hence the labels discarded at time t corre-
spond to subpaths that cannot be part of a possibly optimal
solution path at any time t′ ∈ {t+1, . . . , T +1}. Therefore,
when Ω reduces over the time, there is no need to restart
Algorithm 2. It will output the set POΩT+1

(X ) at the end of
the process. This remark suggests the possibility of inserting

1096



preference queries in the search algorithm so as to obtain ad-
ditional constraints on Ω, thus enabling a faster focus on the
preferred solution paths.

Query Selection Strategies. We use query selection
strategies based on the Minimax Regret criterion so as to
reduce the uncertainty. Minimax Regret is a decision cri-
terion usually used for decision making under total uncer-
tainty. It is also a useful criterion to select preference queries
as shown in (Wang and Boutilier 2003; Boutilier et al. 2006).
According to this decision criterion, the most promising cost
vector x∈X given the uncertainty set Ω is characterized by
the following definitions of regrets, for all x, y ∈ X :

Definition 3.
Pairwise Max Regret: PMR(x, y; Ω) = max

ω∈Ω
{ω · x− ω · y}

Max Regret: MR(x,X ; Ω) = max
y∈X

PMR(x, y; Ω)

Minimax Regret: MMR(X ; Ω) = min
x∈X

MR(x,X ; Ω)

MR(x,X ; Ω) is the worst-case regret of choosing x instead
of any y ∈ X . According to the Minimax Regret criterion,
the optimal cost vectors (named MMR-vectors hereafter)
are those minimizing MR, i.e. those achieving the MMR
value. Choosing a MMR-vector allows one to guarantee that
the worst-case loss is minimized. Given the set Ω, the worst-
case loss measured by MMR might still be too large for
certifying the quality of the solution. Therefore, the Mini-
max Regret criterion can be used to select the most effec-
tive queries to reduce the MMR-value (the answers will
further restrict the set Ω). Ideally, we would like to obtain
MMR=0, which corresponds to the identification of a nec-
essarily optimal solution, i.e. a solution which is optimal
for all remaining ω ∈ Ω. This idea was successfully imple-
mented in (Wang and Boutilier 2003; Boutilier et al. 2006)
by the Current Solution Strategy (CSS). The CSS consists
in generating a preference query asking the DM to compare
two potentially good cost vectors in X : an MMR-vector x∗
and another vector y maximizing PMR(x∗, y; Ω). The set
Ω is then reduced by inserting the linear constraint induced
by the answer, so as to keep consistency with DM’s pref-
erences. The CSS is based on the repeated computation of
PMR(x, y; Ω) for many pairs (x, y) of feasible solutions (all
in the worst-case), which may induce prohibitive computa-
tion times in our context due to the size of X . Therefore,
instead of computing X and then applying this elicitation
scheme, we propose to integrate the CSS to the search per-
formed by Algorithm 2. We present now two strategies (S1
and S2) for generating queries during the search so as to
obtain a set Ω sufficiently small to identify a necessarily op-
timal solution.

Strategy S1 aims at using new preference statements to bet-
ter select the next label to expand. To this end, the call to
SELECT(O) in Algorithm 2 line 5 selects the next label to
expand by repeatedly asking queries applying the CSS over
the setX={g`+h : `∈O, h∈H(n`)} of heuristic cost vec-
tors until the MMR equals zero. Note that if MMR(X; Ω)
is initially equal to zero, no query is asked during the call to
SELECT(O). Then, the label `∗ ∈O selected for expansion

corresponds to an element of X with a null MR value, i.e.
the label `∗ is such that MR(g`∗+ h,X; Ω) = 0 for some
h ∈ H(n`∗). Thus, using this strategy amounts to only ex-
tending paths associated with a necessarily optimal heuristic
cost vector. Finally, if the MMR value of X = {g` : `∈S}
is strictly larger than zero at the end of Algorithm 2, then
S1 iteratively applies the CSS overX until the MMR equals
zero; this ensures that there exists a necessarily optimal so-
lution path in the set S returned by Algorithm 2.

Strategy S2 only uses new preference statements to keep
the MMR of X = {g` : ` ∈ S} at value zero. S2 ensures
that there exists, at any time of Algorithm 2, a solution that
is necessarily optimal in S. More precisely, whenever the in-
sertion of `∗ in S (line 8) makes the MMR value of X be
strictly larger than zero, then S2 repeatedly asks queries ap-
plying the CSS over X until the MMR equals zero. Hence,
Algorithm 2 outputs a necessarily optimal solution.

Note that, in both strategies, the DM is only asked to com-
pare pairs of vectors associated with complete paths from s
to a goal node which makes sense. Although these cost vec-
tors are heuristic evaluations of solution paths in strategy S1
they represent actual costs of solution paths in strategy S2.
Hence in strategy S2, queries could be complemented by the
presentation of paths under consideration to the DM to bet-
ter ground her decision. This option seems less appropriate
in S1 because it involves heuristic estimations of costs rather
than actual costs of solution paths.

Algorithm 2 combined with strategy S1 or S2 returns a
necessarily optimal solution. However it should be seen as
a theoretical answer to our multiobjective search problem
because in practice, making the MMR decrease to 0 at any
stage of the procedure may entail a prohibitive number of
queries. For a practical implementation of this procedure,
we slightly relax the constraint on the MMR value by only
requiring that MMR remains below a positive threshold λ.
Let us develop this idea.

Search Implementation Let us relax the notion of fω-
optimality by considering, in any set of vectors X , the set
of near-optimal solutions defined by {x ∈ X : fω(x)−
miny∈X fω(y)≤ λ}, for some given threshold λ > 0. This
leads us to introduce the following:
Definition 4. The set of possibly near-optimal vectors in X
is: POλ

Ω(X)=
⋃
ω∈Ω

{x∈X : fω(x)−miny∈X fω(y)≤λ}.

As for POΩ(X ), the queries generated during the search of
the possibly near-optimal solution paths will reduce Ω and
therefore POλ

Ω(X) until a necessarily near-optimal vector
x ∈ X is found, i.e. such that fω(x)−miny∈X fω(y)≤λ for
all remaining ω ∈ Ω. Note that, by definition, a necessarily
near-optimal vector in X has a MR value strictly lower than
λ. Let us explain how Algorithm 2 and strategies S1 and
S2 must be adapted to compute a necessarily near-optimal
solution path. Consider the following dominance:
Definition 5. For all Y,Z⊆ Rq+:
Z≺λΩ Y if and only if ∀y∈Y,∀ω∈Ω,∃z∈Z, ω·y−ω·z > λ

This relation is useful to determine POλ
Ω due to the follow-

ing result that includes Proposition 1 as special case (λ = 0).

1097



Proposition 6. If there exists Y,Z ⊆X such that Z ≺λΩ Y
then Y ∩ POλ

Ω(X) = ∅.
The proof is deliberately omitted, it is very similar to that of
Proposition 1. Moreover, ≺λΩ obviously shares several use-
ful properties with ≺Ω, including transitivity and additivity.
Therefore ≺λΩ is to POλ

Ω as ≺Ω is to POΩ. Hence, if ≺Ω

is substituted by ≺λΩ then Algorithm 1 returns POλ
Ω(X) in-

stead of POΩ(X); consequently, if the same substitution is
performed in R1 and R2 then Algorithm 2 returns POλ

Ω(X )
instead of POΩ(X ). Furthermore, our elicitation strategies
can be used during the search to reduce the uncertainty set Ω
so as to determine a necessarily near-optimal solution path.
It is sufficient to modify S1 and S2 so that MMR values are
not required to be equal to zero, but only to be lower than λ.

Numerical Tests
In this section, we report various numerical tests aiming
at evaluating the performance of elicitation procedures S1
and S2 within Algorithm 2, both in terms of computa-
tion time and number of preference queries. These tests
are used to determine a necessarily near-optimal path for
the approximation threshold λ = 0.01 (meaning that the
MMR value will be below 0.01). We consider instances of
G = (N,A) with one goal node γ and generated as fol-
lows: nodes in N are uniformly drawn in the two dimen-
sion grid {1, . . . , 1000} × {1, . . . , 1000}, except γ and the
source node s which are respectively located in (1000, 500)
and (1, 500). Then, each generated node is linked to its five
nearest nodes by arcs uniformly drawn in {0, . . . , 100}q . As
admissible heuristicH , we consider thatH(n) only contains
the ideal point I(n)=(I1, . . . , Iq) for all n∈N , where Ik =
minx∈{g(p):p∈P (n,γ)} xk for all k ∈ Q. Simulated DMs an-
swer to queries according to a linear scalarizing function fω ,
where ω is randomly chosen in {int(Rq+) :

∑
i∈N ωi=1}.

The tests aim at estimating the impact of q (the number of
criteria, see Table 1) and the impact of |N | (the number of
nodes, see Table 2) on the performance of Algorithm 2 im-
plemented with S1 or S2. For comparison, we also consider
the two-stage procedure (named S0 hereafter) consisting in
first running MOA∗ and then applying the CSS over the re-
sulting set of Pareto-optimal cost vectors. In Tables 1 and 2,
the computation time is given in minutes and results are ob-
tained by averaging over 30 runs. Linear optimizations are
performed using the Gurobi library of Java.

Looking at the results for S1, we first see that Algorithm 2
used with S1 is faster than S0 when we consider more than
three criteria (see Table 1). In particular, S1 is almost 100
times faster than S0 for q = 4, 5. Moreover, the number of
queries tends to be smaller than that of S0 as q increases:
S1 indeed generates 70%, 51%, 43% and 20% more queries
than S0 when q is respectively equal to 2, 3, 4 and 5. Be-
sides, we can see that Algorithm 2 combined with S1 is
much faster than S0 on bigger instances (see Table 2): S1
is almost five times faster than S0 and generates 8% less
queries for |N |=500.

Looking now at the results obtained for S2, we first see
that Algorithm 2 used with S2 generates less preference
queries than S0. For instance, S2 generates 44% less queries

for q = 5 (see Table 1) and save about 25% of queries on
the bigger instances (see Table 2); therefore S2 significantly
reduces the DM’s burden. However, computation times are
worse with S2, especially on small instances and when con-
sidering two or three criteria. Overall, Algorithm 2 com-
bined with strategy S1 turns out to be faster but S2 may still
be preferred to minimize the number of queries.

Table 1: Impact of q the number of criteria (|N | = 200).

q = 2 q = 3 q = 4 q = 5
time queries time queries time queries time queries

S0 0.02 3.7 1.3 8.3 131.5 12.5 192.7 23.5
S1 0.5 6.3 1.1 12.5 1.5 17.9 2.2 28.1
S2 2.9 3.5 25.1 6.8 78.2 10.2 603.2 13.1

Table 2: Impact of |N | the number of nodes (q = 3).

|N | = 100 |N | = 300 |N | = 400 |N | = 500
time queries time queries time queries time queries

S0 0.2 7.7 6 9.4 15.8 10.4 28.8 11.5
S1 0.32 12.3 8.3 13.2 3.8 11.6 5.8 10.6
S2 2.4 6.5 158.4 7.7 65.6 9.1 154.4 8.3

Conclusion and Perspectives
We have presented a new approach to multiobjective
preference-based search where the elicitation of criteria
weights is performed incrementally during the search. We
have proposed, implemented and tested several elicitation
strategies enabling a balanced tradeoff between two conflict-
ing objectives: minimizing the number of queries and max-
imizing the quality of the recommendation. The tests show
that, in multiobjective state space search problems, perform-
ing the elicitation during the search is better than first gener-
ating the Pareto set with MOA∗ and then applying standard
elicitation techniques on the Pareto set. Moreover, the num-
ber of queries needed to make a recommendation with the
desired guarantee remains low despite the combinatorial na-
ture of the problem.

The next step is now to extend our approach to work with
a non-linear fω function so as to obtain better fitting capaci-
ties to the DM’s preferences and enhance the possibilities of
exploring the Pareto set. For example, an incremental elici-
tation procedure for Choquet integrals has been recently pro-
posed in (Benabbou, Perny, and Viappiani 2014) for explicit
sets of alternatives. However, its extension to multiobjective
state-space search raises challenging algorithmic questions.
The use of a Choquet integral indeed complicates the defi-
nition of pruning rules during the search as well as the ex-
ploitation of new preference information.

Finally, integrating incremental preference elicitation into
other general solution schemes (e.g. Branch and Bound,
And/Or search) would also be worth investigating.

Acknowledgments
Work supported by the French National Research Agency
through the Idex Sorbonne Universités under grant ANR-
11-IDEX-0004-02.

1098



References
Benabbou, N.; Perny, P.; and Viappiani, P. 2014. Incremen-
tal elicitation of Choquet capacities for multicriteria decision
making. In 21st European Conference on Artificial Intelli-
gence, 87–92.
Boutilier, C.; Brafman, R. I.; Domshlak, C.; Hoos, H. H.;
and Poole, D. 2004. Preference-based constrained optimiza-
tion with cp-nets. Computational Intelligence 20(2):137–
157.
Boutilier, C.; Patrascu, R.; Poupart, P.; and Schuurmans, D.
2006. Constraint-based optimization and utility elicitation
using the Minimax decision criterion. Artificial Intelligence
Journal 170(8-9):686–713.
Brafman, R. I., and Domshlak, C. 2009. Preference handling
- an introductory tutorial. AI Magazine 30(1):58–86.
Braziunas, D., and Boutilier, C. 2007. Minimax regret based
elicitation of generalized additive utilities. In UAI 2007, Pro-
ceedings of the Twenty-Third Conference on Uncertainty in
Artificial Intelligence, 25–32.
Dasgupta, P.; Chakrabarti, P.; and DeSarkar, S. 1995. Utility
of pathmax in partial order heuristic search. J. of algorithms
55:317–322.
Domshlak, C.; Hüllermeier, E.; Kaci, S.; and Prade, H. 2011.
Preferences in AI: an overview. Artificial Intelligence Jour-
nal 175(7-8):1037–1052.
Drummond, J., and Boutilier, C. 2014. Preference elici-
tation and interview minimization in stable matchings. In
Proceedings of the Twenty-Eighth AAAI Conference on Ar-
tificial Intelligence, 645–653.
Galand, L., and Perny, P. 2006. Search for Compromise
Solutions in Multiobjective State Space Graphs. In 17th Eu-
ropean Conference on Artificial Intelligence, 93–97.
Galand, L., and Perny, P. 2007. Search for Choquet-optimal
paths under uncertainty. In Proceedings of the 23rd confer-
ence on Uncertainty in Artificial Intelligence, 125–132.
Gonzales, C., and Perny, P. 2004. GAI Networks for Utility
Elicitation. In Proceedings of the 9th International Con-
ference on the Principles of Knowledge Representation and
Reasoning, 224–234.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems, Man, and Cybernet-
ics 4(2):100–107.
Koriche, F., and Zanuttini, B. 2010. Learning conditional
preference networks. Artif. Intell. 174(11):685–703.
Mandow, L., and De la Cruz, J. L. P. 2005. A new approach
to multiobjective A* search. In International Joint Confer-
ence on Artificial Intelligence, 218–223.
White III, C. C.; Sage, A. P.; and Dozono, S. 1984. A model
of multiattribute decisionmaking and trade-off weight deter-
mination under uncertainty. IEEE Transactions on Systems,
Man, and Cybernetics 14(2):223–229.
Regan, K., and Boutilier, C. 2011. Eliciting additive reward
functions for markov decision processes. In IJCAI 2011,

Proceedings of the 22nd International Joint Conference on
Artificial Intelligence, 2159–2164.
Stewart, B. S., and White III, C. C. 1991. Multiobjective
A*. Journal of ACM 38(4):775–814.
Vanderpooten, D., and Vincke, P. 1997. Description and
analysis of some representative interactive multicriteria pro-
cedures. Appl. Math. Comp. 83(2-3):261–280.
Wang, T., and Boutilier, C. 2003. Incremental Utility Elici-
tation with the Minimax Regret Decision Criterion. In Pro-
ceedings of the Eighteenth International Joint Conference
on Artificial Intelligence, 309–316.
Weng, P., and Zanuttini, B. 2013. Interactive Value Iteration
for Markov Decision Processes with Unknown Rewards. In
Proceedings of the 23rd International Joint Conference on
Artificial Intelligence, 2415–2421.
Zionts, S., and Wallenius, J. 1976. An interactive program-
ming method for solving the multiple criteria problem. Man-
agement Science 22(6):652–663.

1099




