
Solving Distributed Constraint Optimization Problems
Using Logic Programming

Tiep Le, Tran Cao Son, Enrico Pontelli, William Yeoh
Department of Computer Science

New Mexico State University
{tile, tson, epontell, wyeoh}@cs.nmsu.edu

Abstract
This paper explores the use of answer set programming
(ASP) in solving distributed constraint optimization prob-
lems (DCOPs). It makes the following contributions: (i) It
shows how one can formulate DCOPs as logic programs;
(ii) It introduces ASP-DPOP, the first DCOP algorithm that
is based on logic programming; (iii) It experimentally shows
that ASP-DPOP can be up to two orders of magnitude faster
than DPOP (its imperative-programming counterpart) as well
as solve some problems that DPOP fails to solve due to mem-
ory limitations; and (iv) It demonstrates the applicability of
ASP in the wide array of multi-agent problems currently
modeled as DCOPs.

Introduction
Distributed constraint optimization problems (DCOPs) are
problems where agents need to coordinate their value as-
signments to maximize the sum of resulting constraint util-
ities (Modi et al. 2005; Petcu and Faltings 2005; Mailler
and Lesser 2004; Yeoh and Yokoo 2012). Researchers have
used them to model various multi-agent coordination and re-
source allocation problems (Maheswaran et al. 2004; Zivan,
Glinton, and Sycara 2009; Zivan, Okamoto, and Peled 2014;
Lass et al. 2008; Kumar, Faltings, and Petcu 2009; Ueda,
Iwasaki, and Yokoo 2010; Léauté and Faltings 2011).

The field has matured considerably over the past decade,
as researchers continue to develop better algorithms. Most
of these algorithms fall into one of the following three
classes: (i) search-based algorithms (Modi et al. 2005;
Gershman, Meisels, and Zivan 2009; Zhang et al. 2005),
where the agents enumerate combinations of value assign-
ments in a decentralized manner; (ii) inference-based al-
gorithms (Petcu and Faltings 2005; Farinelli et al. 2008),
where the agents use dynamic programming to propagate
aggregated information to other agents; and (iii) sampling-
based algorithms (Ottens, Dimitrakakis, and Faltings 2012;
Nguyen, Yeoh, and Lau 2013), where the agents sample the
search space in a decentralized manner. The existing algo-
rithms have been designed and developed almost exclusively
using imperative programming techniques, where the algo-
rithms define a control flow, that is, a sequence of com-
mands to be executed. In addition, the local solver employed

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

by each agent is an “ad-hoc” implementation. In this pa-
per, we are interested in investigating the benefits of using
declarative programming techniques to solve DCOPs, along
with the use of a general constraint solver, used as a black
box, as each agent’s local constraint solver. Specifically, we
propose an integration of DPOP (Petcu and Faltings 2005),
a popular DCOP algorithm, with answer set programming
(ASP) (Niemelä 1999; Marek and Truszczyński 1999) as the
local constraint solver of each agent.

This paper contributes to both areas of DCOPs and ASP.
For the DCOP community, we demonstrate that using ASP
as the local constraint solver provides a number of bene-
fits including the ability to capitalize on (i) the highly ex-
pressive ASP language to more concisely define input in-
stances (e.g., by representing constraint utilities as implicit
functions instead of explicitly enumerating them) and (ii) the
highly optimized ASP solvers to exploit problem structure
(e.g., propagating hard constraints to ensure consistency).

For the ASP community, while the proposed algorithm
does not make the common contribution of extending the
generality of the ASP language, it makes an equally im-
portant contribution of increasing the applicability of ASP
to model and solve a wide array of multi-agent coordina-
tion and resource allocation problems currently modeled as
DCOPs. Furthermore, it also demonstrates that general off-
the-shelf ASP solvers, which are continuously honed and
improved, can be coupled with distributed message pass-
ing protocols to outperform specialized imperative solvers,
thereby validating the significance of the contributions from
the ASP community. Therefore, in this paper, we make the
first step of bridging the two areas of DCOPs and ASP in an
effort towards deeper integrations of DCOP and ASP tech-
niques that are mutually beneficial to both areas.

Background: DCOPs
A distributed constraint optimization problem
(DCOP) (Modi et al. 2005; Petcu and Faltings 2005;
Mailler and Lesser 2004; Yeoh and Yokoo 2012) is defined
by 〈X ,D,F ,A, α〉, where: X = {x1, . . . , xn} is a set of
variables; D = {D1, . . . , Dn} is a set of finite domains,
where Di is the domain of variable xi; F = {f1, . . . , fm}
is a set of constraints, where each ki-ary constraint
fi : Di1 × Di2 × . . . × Diki

7→ N ∪ {−∞, 0} specifies
the utility of each combination of values of the variables in

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

1174

for i < j

xi xj Utilities
0 0 5
0 1 8
1 0 20
1 1 3

(a) (b) (c)

Figure 1: Example DCOP

x1 x2 Utilities
0 0 max(5+ 5, 8+8) = 16
0 1 max(5+20, 8+3) = 25
1 0 max(20+ 5, 3+8) = 25
1 1 max(20+20, 3+3) = 40

(a)

x1 Utilities
0 max(5+16, 8+25) = 33
1 max(20+25, 3+40) = 45

(b)

Table 1: UTIL Phase Computations in DPOP

its scope, scope(fi) = {xi1 , . . . , xiki
}; A = {a1, . . . , ap}

is a set of agents; and α : X → A maps each variable
to one agent. A solution is a value assignment for all
variables and its corresponding utility is the evaluation of
all utility functions on such solution. The goal is to find a
utility-maximal solution.

A DCOP can be described by a constraint graph, where
the nodes correspond to the variables in the DCOP, and the
edges connect pairs of variables in the scope of the same util-
ity function. A DFS pseudo-tree arrangement has the same
nodes and edges as the constraint graph and: (i) there is a
subset of edges, called tree edges, that form a rooted tree,
and (ii) two variables in the scope of the same utility func-
tion appear in the same branch of the tree. The other edges
are called backedges. Tree edges connect parent-child nodes,
while backedges connect a node with its pseudo-parents and
its pseudo-children. The separator of agent ai is the set of
variables owned by ancestor agents that are constrained with
variables owned by agent ai or by one of its descendant
agents. A DFS pseudo-tree arrangement can be constructed
using distributed DFS algorithms (Hamadi, Bessière, and
Quinqueton 1998). Figure 1(a) shows a constraint graph of a
DCOP with three agents, where each agent ai controls vari-
able xi with domain {0, 1}. Figure 1(b) shows one possible
pseudo-tree, where the dotted line is a backedge. Figure 1(c)
shows the utility functions, assuming that all of the three
constraints have the same function.

Background: DPOP
Distributed Pseudo-tree Optimization Procedure
(DPOP) (Petcu and Faltings 2005) is a complete algo-
rithm with the following three phases:
Pseudo-tree Generation Phase: DPOP calls existing
distributed pseudo-tree construction methods (Hamadi,
Bessière, and Quinqueton 1998) to build a pseudo-tree.
UTIL Propagation Phase: Each agent, starting from the
leafs of the pseudo-tree, computes the optimal sum of utili-
ties in its subtree for each value combination of variables in
its separator. The agent does so by summing the utilities of

its constraints with the variables in its separator and the util-
ities in the UTIL messages received from its child agents,
and then projecting out its own variables by optimizing over
them. In our DCOP example, agent a3 computes the opti-
mal utility for each value combination of variables x1 and
x2 (see Table 1(a)), and sends the utilities to its parent agent
a2 in a UTIL message. For example, consider the first row of
Table 1(a), where x1 = 0 and x2 = 0. The variable x3 can be
assigned a value of either 0 or 1, resulting in an aggregated
utility value of (5+5=10) or (8+8=16), respectively. Then,
the corresponding maximal value, which is 16, is selected
to be sent to agent a2. Agent a2 then computes the optimal
utility for each value of the variable x1 (see Table 1(b)), and
sends the utilities to its parent agent a1. Finally, agent a1
computes the optimal utility of the entire problem.
VALUE Propagation Phase: Each agent, starting from the
root of the pseudo-tree, determines the optimal value for its
variables. The root agent does so by choosing the values of
its variables from its UTIL computations. In our DCOP ex-
ample, agent a1 determines that the value with the largest
utility for its variable x1 is 1, with a utility of 45, and
then sends this information down to its child agent a2 in
a VALUE message. Upon receiving the VALUE message,
agent a2 determines that the value with the largest utility for
its variable x2, assuming that x1 = 1, is 0, with a utility of
45, and then sends this information down to its child agent
a3. Finally, upon receiving the VALUE message, agent a3
determines that the value with the largest utility for its vari-
able x3, assuming that x1 = 1 and x2 = 0, is 0, with a utility
of 25.

Background: ASP
Let us provide some general background on Answer Set Pro-
gramming (ASP). Consider a logic language L = 〈C,P,V〉,
where C is a set of constants, P is a set of predicate symbols,
and V is a set of variables. The notions of terms, atoms, and
literals are the traditional ones.

An answer set program Π is a set of rules of the form
c← a1, . . . , am, not b1, . . . , not bn (1)

where m ≥ 0 and n ≥ 0. Each ai and bi is a literal from
L, and each not bi is called a negation-as-failure literal (or
naf-literal). c can be a literal or omitted. A program is a posi-
tive program if it does not contain naf-literals. A non-ground
rule is a rule that contains variables; otherwise, it is called a
ground rule. A rule with variables is simply used as a short-
hand for the set of its ground instances from the language L.
If n = m = 0, then the rule is called a fact. If c is omitted,
then the rule is called an ASP constraint.

A set of ground literals X is consistent if there is no atom
a such that {a,¬a} ⊆ X . A literal l is true (false) in a set
of literals X if l ∈ X (l 6∈ X). A set of ground literals X
satisfies a ground rule of the form (1) if either of the fol-
lowing is true: (i) c ∈ X; (ii) some ai is false in X; or
(iii) some bi is true in X . A solution of a program, called
an answer set (Gelfond and Lifschitz 1990), is a consistent
set of ground literals satisfying the following conditions:
• If Π is a ground program (a program whose rules are all

ground) then its answer set S is defined by the following:

1175

Figure 2: UTIL and VALUE Propagations of Agent a2 in ASP-DPOP on our Example DCOP

◦ If Π does not contain any naf-literals, then S is an an-
swer set of Π if it is a consistent and subset-minimal
set of ground literals satisfying all rules in Π.

◦ If Π contains some naf-literals, then S is an answer set
of Π if it is an answer set of the program reduct ΠS .
ΠS is obtained from Π by deleting (i)) each rule that
has a naf-literal not b in its body with b ∈ S, and (ii) all
naf-literals in the bodies of the remaining rules.

• If Π is a non-ground program, that is, a program whose
rules include non-ground rules, then S is an answer set of
Π if it is an answer set of the program consisting of all
ground instantiations of the rules in Π.

The ASP language includes also language-level exten-
sions to facilitate the encoding of aggregates (min, max,
sum, etc.), range specification of variables, and allowing
choice of literals. In ASP, one solves a problem by encoding
it as an ASP program whose answer sets correspond one-to-
one to the solutions of the problem (Marek and Truszczyński
1999; Niemelä 1999). Answer sets of ASP programs can be
computed using ASP solvers like CLASP (Gebser et al. 2007)
and DLV (Citrigno et al. 1997).

Let us consider agent a3 from the example DCOP. The
utility tables of the constraints between agent a3 and the
other agents can be represented by the facts:

x2 cons x3(5, 0, 0) x2 cons x3(8, 0, 1)
x2 cons x3(20, 1, 0) x2 cons x3(3, 1, 1)
x1 cons x3(5, 0, 0) x1 cons x3(8, 0, 1)
x1 cons x3(20, 1, 0) x1 cons x3(3, 1, 1)

The facts in the first two lines represent the con-
straint between agents a2 and a3. For example, the fact
x2 cons x3(8, 0, 1) represents that a utility of 8 can be ob-
tained if x2 = 0 and x3 = 1. The facts in the next two lines
represent the constraint between agents a1 and a3. Agent a3
can use these facts and the rule

table row a3(U1+U2, Y, Z,X) ← x2 cons x3(U1, Y,X),
x1 cons x3(U2, Z,X).

to compute its UTIL table. Let us denote this program by
Πa3 . It is easy to see that Πa3 has a unique answer contain-
ing the set of facts above and the following atoms:

table row a3(10, 0, 0, 0) table row a3(16, 0, 0, 1)
table row a3(25, 0, 1, 0) table row a3(11, 0, 1, 1)
table row a3(25, 1, 0, 0) table row a3(11, 1, 0, 1)
table row a3(40, 1, 1, 0) table row a3(6, 1, 1, 1)

The first (resp. second) column lists four possible combina-
tions when x3 = 0 (resp. x3 = 1). Intuitively, these are the
atoms encoding the UTIL information of agent a3. If we add
to Πa3

the rule
table max a3(V, Y, Z) ←

V = #max[table row a3(U, Y, Z,) = U]

then the program has a unique answer set that contains the
answer set of Πa3

and the atoms table max a3(40, 1, 1),
table max a3(25, 1, 0), table max a3(25, 0, 1), and
table max a3(16, 0, 0). These atoms represent the infor-
mation that agent a3 will send to a2 in a UTIL message.

ASP-DPOP
We now describe how to capture the structure of a DCOP in
ASP and how to integrate the communication protocols of
DPOP with the use of ASP as the internal controller/solver.

Specifying a DCOP using ASP
Let us consider a generic DCOP P . We represent P using a
set of logic programs {Πai

| ai ∈ A}. Each variable xj ∈ X
is described by a collection of rules L(xj) that include:
• A fact of the form variable symbol(xj), identifying the

name of the variable.
• A fact of the form value(xj , d) for each d ∈ Dj , identi-

fying the possible values of xj . Alternatively, we can use
additional facts of the form
begin(xj , lower bound) end(xj , upper bound)

1176

to facilitate the description of domains. These facts de-
note the interval describing the domain of xj . In such a
case, the value predicate is defined by the rule:
value(X,B..E) ← variable symbol(X),

begin(X,B), end(X,E)

Each utility function fi ∈ F is encoded by a set of rules
L(fi) of the form:
• A fact of the form constraint(fi), identifying the utility

function.
• Facts of the form scope(fi, xij), identifying the variables

in the scope of the constraint.
• Facts of the form fi(u, x, y), identifying the utility of a

binary function fi for a combination of admissible values
of its variables. For higher arity utility functions, the rules
can be expanded in a straightforward manner. It is also
possible to envision the utility function modeled by rules
that implicitly describe it.

For each agent ai, the program Πai consists of:
• A fact of the form agent(ai), identifying the name of the

agent.
• A fact neighbor(aj) for each aj ∈ A, where α(xk) =
ai, α(xt) = aj , and ∃fi ∈ F|{xk, xt} ⊆ scope(fi).

• A fact owner(ai, xk) for each xk ∈ X , where α(xk) =
ai or α(xk) = aj and aj is a neighbor of ai.
• A set of rules L(fj) for each utility function fj ∈ F

whose scope contains a variable owned by ai; we refer to
these utility functions as being owned by ai;
• A set of rules L(xj) for each xj ∈ X that is in the scope

of a utility function that is owned by ai.

Agent Controller in ASP-DCOP
The agent controller, denoted by Cai

, consists of a set of
rules for communication (sending, receiving, and interpret-
ing messages) and a set of rules for generating an ASP pro-
gram used for the computation of the utility tables as in Ta-
ble 1 and the computation of the solution. We omit the de-
tailed code of Cai due to space constraints. Instead, we will
describe its functionality. For an agent ai,Cai receives, from
each child ac of ai, the UTIL messages consisting of facts
of the form
• table max ac(u, v1, . . . , vk), where u denotes the utility

corresponding to the combination v1, . . . , vk of the set of
variables x1, . . . , xk; and
• table info(ac, ap, xp, lbp, ubp), where ap is an ancestor

of ac who owns the variable xp, and the lower and upper
bounds lbp and ubp of that variable’s domain.

Facts of the form table info(ac, ap, xp, lbp, ubp) encode the
information necessary to understand the mapping between
the values v1, . . . , vk in the table max ac facts and the cor-
responding variables (and their owners) of the problem.
Cai will use the agent’s specification (Πai) and the UTIL

messages from its children to generate a set of rules that will
be used to compute the UTIL message (e.g., Table 1(a) for
agent a3 and Table 1(b) for agent a2) and solution extrac-
tion. In particular, the controller will generate rules for the
following purposes:

• Define the predicate table row ai(U,X1, . . . , Xn),
which specifies how the utility of a given combination
value of variables is computed; e.g., for agent a2
table row a2(U + U0, 0) ←

table max a3(U, 0, X2), x1 cons x2(U0, 0, X2).

• Identify the maximal utility for a given value com-
bination of its separator set; e.g., for agent a2
table max a2(Umax, 0) ←

Umax = #max[table row a2(U, 0) = U].

• Select the optimal row from the utility table. For example,
the rule that defines the predicate row for agent a2 in our
running example is as follows:

{row(U,X2)}← solution(a1, x1, X1), table max a2(U,X1),
table max a3(U0, X1, X2),
x1 cons x2(U1, X1, X2), U == U0 + U1.

←not 1 {row(U,X2)} 1.
where facts of the form solution(as, xt, vt) indicate that
as, an ancestor of ai, selects the value vt for xt.

This set of rules needs to be generated dynamically since it
depends on the arity of the constraints owned by the agents.
Also, it depends on whether ai is the root, a leaf, or an
inner node of the pseudo-tree. For later use, let us denote
with Iai

the set of rules defining the predicates table row ai
and table max ai, and with I ′ai

the set of rules defining the
predicate row.

ASP-DPOP Description
Let us now describe ASP-DPOP, a complete ASP-based
DCOP algorithm that emulates the computation and com-
munication operations of DPOP. Like DPOP, there are three
phases in the operation of ASP-DPOP.

At a high level, each agent ai in the system is composed
of two main components: the agent specification Πai

and its
controller Cai

. The two steps of propagation—generation
of the table to be sent from an agent to its parent in the
pseudo-tree (UTIL propagation) and propagation of variable
assignments from an agent to its children in the pseudo-
tree (VALUE propagation)—are achieved by computing so-
lutions of two ASP programs.

Pseudo-tree Generation Phase: Like DPOP, ASP-DPOP
calls existing distributed pseudo-tree construction algo-
rithms to construct its pseudo-tree. The information about
the parent, children, and pseudo-parents of each agent ai are
added to Πai

at the end of this phase.

UTIL Propagation Phase: Cai
receives utilities as the set

of facts Maj
from the children aj and generates the set of

rules Iai . For example, Figure 2 shows Ia2 and Ma3 for
agent a2 of the DCOP in Figure 1. An answer set of the pro-
gram Πai∪Iai∪

⋃
children aj

Maj is computed using an ASP
solver. Facts of the form table max ai(u, x1, . . . , xk) and
table info(ai, ap, xp, lbp, ubp) are extracted and sent to the
parent ap of ai as Mai

. This set is also kept for computing
the solution of ai.

VALUE Propagation Phase: The controller generates I ′ai

and computes the answer set of the program Πai
∪ I ′ai

with
the set of facts of the form table max ai(u, x1, . . . , xk) and

1177

the set of facts of the form solution(as, xt, vt). It then ex-
tracts the set of atoms of the form solution(ai, xj , vj) and
sends them to its children.
In summary, the UTIL and VALUE propagations corre-
spond to one ASP computation each (see Figure 2). We use
CLASP (Gebser et al. 2007) with its companion grounder
GRINGO, as our ASP solver, being the current state-of-the-
art for ASP. As the solver does not provide any communi-
cation capabilities, we use the Linda facilities offered by
SICStus c© Prolog for communication. The controller Cai

handles UTIL propagation and VALUE propagation using a
Linda blackboard to exchange the facts as illustrated earlier.

Theoretical Properties
The program Πai of each agent ai is correct and complete.
It is a positive program. Given a correct set of facts encoded
by the predicate table max ac from the child agents of the
agent ai, it computes the correct aggregated utility table col-
lected at agent ai and then selects the optimal rows that will
be sent to agent ai’s parent (predicate table max ai). Like-
wise, given a set of correct solutions of the ancestor agents of
ai (predicate solution), it computes the correct solution for
variables of agent ai. Therefore, as long as the ASP solvers
used by the agents is correct and complete, the correctness
and completeness of ASP-DPOP follow quite trivially from
that of DPOP since ASP-DPOP emulates the computation
and communication operations of DPOP.

Each agent in ASP-DPOP, like DPOP, needs to compute,
store, and send a utility for each value combination of its
separator. Therefore, like DPOP, ASP-DPOP sends the same
number of messages and also suffers from an exponential
memory requirement—the memory requirement per agent
is O(maxDomw), where maxDom = maxi |Di| and w is
the induced width of the pseudo-tree.

Related Work
The use of declarative programs, specifically logic pro-
grams, for reasoning in multi-agent domains is not new.
Starting with some seminal papers (Kowlaski and Sadri
1999), various authors have explored the use of several dif-
ferent flavors of logic programming, such as normal logic
programs and abductive logic programs, to address cooper-
ation between agents (Kakas, Torroni, and Demetriou 2004;
Sadri and Toni 2003; Gelfond and Watson 2007; De Vos
et al. 2005). Some proposals have also explored the com-
bination between constraint programming, logic program-
ming, and formalization of multi-agent domains (Dovier,
Formisano, and Pontelli 2013; Vlahavas 2002). Logic pro-
gramming has been used in modeling multi-agent sce-
narios involving agents knowledge about other’s knowl-
edge (Baral et al. 2010), computing models in the log-
ics of knowledge (Pontelli et al. 2010), multi-agent plan-
ning (Son, Pontelli, and Sakama 2009) and formalizing ne-
gotiation (Sakama, Son, and Pontelli 2011). ASP-DPOP is
similar to the last two applications in that (i) it can be viewed
as a collection of agent programs; (ii) it computes solutions
using an ASP solver; and (iii) it uses message passing for
agent communication. A key difference is that ASP-DPOP

solves multi-agent problems formulated as constraint-based
models, while the other applications solve problems formu-
lated as decision-theoretic and game-theoretic models.

Researchers have also developed a framework that inte-
grates declarative techniques with off-the-shelf constraint
solvers to partition large constraint optimization problems
into smaller subproblems and solve them in parallel (Liu et
al. 2012). In contrast, DCOPs are problems that are naturally
distributed and cannot be arbitrarily partitioned.

ASP-DPOP is able to exploit problem structure by prop-
agating hard constraints and using them to prune the search
space efficiently. This reduces the memory requirement
of the algorithm and improves the scalability of the sys-
tem. Existing DCOP algorithms that also propagates hard
and soft constraints to prune the search space include H-
DPOP that propagates exclusively hard constraints (Ku-
mar, Petcu, and Faltings 2008), BrC-DPOP that propa-
gates branch consistency (Fioretto et al. 2014), and variants
of BnB-ADOPT (Yeoh, Felner, and Koenig 2010; Gutier-
rez and Meseguer 2012b; Gutierrez, Meseguer, and Yeoh
2011) that maintains soft-arc consistency (Bessiere, Gutier-
rez, and Meseguer 2012; Gutierrez and Meseguer 2012a;
Gutierrez et al. 2013). A key difference is that these algo-
rithms require algorithm developers to explicitly implement
the ability to reason about the hard and soft constraints and
propagate them efficiently. In contrast, ASP-DPOP capital-
izes on general purpose ASP solvers to do so.

Experimental Results
We implement two versions of the ASP-DPOP algorithm—
one that uses ground programs, which we call “ASP-DPOP
(facts),” and one that uses non-ground programs, which we
call “ASP-DPOP (rules).” In addition, we also implemented
a variant of H-DPOP called PH-DPOP, which stands for
Privacy-based H-DPOP, that restricts the amount of infor-
mation that each agent can access to the amount common
in most DCOP algorithms including ASP-DPOP. Specifi-
cally, agents in PH-DPOP can only access their own con-
straints and, unlike H-DPOP, cannot access their neighbor-
ing agents’ constraints.

In our experiments, we compare both versions of
ASP-DPOP against DPOP (Petcu and Faltings 2005),
H-DPOP (Kumar, Petcu, and Faltings 2008), and PH-
DPOP. We use a publicly-available implementation of
DPOP (Léauté, Ottens, and Szymanek 2009) and an imple-
mentation of H-DPOP provided by the authors. We ensure
that all algorithms use the same pseudo-tree for fair compar-
isons. We measure the runtime of the algorithms using the
simulated runtime metric (Sultanik, Lass, and Regli 2007).
All experiments are performed on a Quadcore 3.4GHz ma-
chine with 16GB of memory. If an algorithm fails to solve
a problem, it is due to memory limitations. We conduct
our experiments on random graphs (Erdös and Rényi 1959),
where we systematically vary domain-independent parame-
ters, and on comprehensive optimization problems in power
networks (Gupta et al. 2013).

Random Graphs: In our experiments, we vary the number
of variables |X |, the domain size |Di|, the constraint density

1178

|X | DPOP H-DPOP PH-DPOP ASP-DPOP
Solved Time Solved Time Solved Time Solved Time

5 100% 36 100 % 28 100 % 31.47 100% 779
10 100% 204 100 % 73 100 % 381.02 100% 1,080
15 86% 39,701 100 % 148 98 % 67,161 100% 1,450
20 0% - 100 % 188 0 % - 100% 1,777
25 0% - 100 % 295 0 % - 100% 1,608

p1
DPOP H-DPOP PH-DPOP ASP-DPOP

Solved Time Solved Time Solved Time Solved Time
0.4 100% 1,856 100 % 119 100 % 2,117 100% 1,984
0.5 100% 13,519 100 % 120 100 % 19,321 100% 1,409
0.6 94% 42,010 100 % 144 100 % 54,214 100% 1,308
0.7 56% 66,311 100 % 165 88 % 131,535 100% 1,096
0.8 20% 137,025 100 % 164 62 % 247,335 100% 1,073

|Di| DPOP H-DPOP PH-DPOP ASP-DPOP
Solved Time Solved Time Solved Time Solved Time

4 100% 782 100 % 87 100 % 1,512 100% 1,037
6 90% 28,363 100 % 142 98 % 42,275 100% 1,283
8 14% 37,357 100 % 194 52 % 262,590 100% 8,769

10 0% - 100 % 320 8 % 354,340 100% 29,598
12 0% - 100 % 486 0% - 100% 60,190

p2
DPOP H-DPOP PH-DPOP ASP-DPOP

Solved Time Solved Time Solved Time Solved Time
0.4 86% 48,632 100 % 265 84 % 107,986 86% 50,268
0.5 94% 38,043 100 % 161 96 % 71,181 92% 4,722
0.6 90% 31,513 100 % 144 98 % 68,307 100% 1,410
0.7 90% 39,352 100 % 128 100 % 49,377 100% 1,059
0.8 92% 40,526 100 % 112 100 % 62,651 100% 1,026

Table 2: Experimental Results on Random Graphs

(a) 13 Bus Topology (b) 34 Bus Topology (c) 37 Bus Topology

Figure 3: Runtime Results on Power Network Problems

p1, and the constraint tightness p2. For each experiment, we
vary only one parameter and fix the rest to their “default”
values: |A| = 5, |X | = 15, |Di| = 6, p1 = 0.6, p2 = 0.6.
Table 2 shows the percentage of instances solved (out of 50
instances) and the average simulated runtime (in ms) for the
solved instances. We do not show the results for ASP-DPOP
(rules), as the utilities in the utility table are randomly gener-
ated, leading to no differences w.r.t. ASP-DPOP (facts). We
make the following observations:
• ASP-DPOP is able to solve more problems than DPOP

and is faster than DPOP when the problem becomes more
complex (i.e., increasing |X |, |Di|, p1, or p2). The reason
is that ASP-DPOP is able to prune a significant portion of
the search space thanks to hard constraints. ASP-DPOP
does not need to explicitly represent the rows in the UTIL
table that are infeasible, unlike DPOP. The size of the
search space pruned increases as the complexity of the
instance grows, resulting in a larger difference between
the runtime of DPOP and ASP-DPOP.

• H-DPOP is able to solve more problems and solve them
faster than every other algorithm. The reason is because
agents in H-DPOP utilize more information about the
neighbors’ constraints to prune values. In contrast, agents
in ASP-DPOP and PH-DPOP only utilize information
about their own constraints to prune values and agents
in DPOP do not prune any values.

• ASP-DPOP is able to solve more problems and solve

them faster than PH-DPOP. The reason is that agents in
PH-DPOP, like agents in H-DPOP, use constraint deci-
sion diagram (CDD) to represent their utility tables, and
it is expensive to maintain and perform join and project
operations on this data structure. In contrast, agents in
ASP-DPOP is able to capitalize on highly efficient ASP
solvers to maintain and perform operations on efficient
data structures thanks to their highly optimized ground-
ing techniques and use of portfolios of heuristics.

Power Network Problems: A customer-driven microgrid
(CDMG), one possible instantiation of the smart grid prob-
lem, has recently been shown to subsume several classical
power system sub-problems (e.g., load shedding, demand re-
sponse, restoration) (Jain et al. 2012). In this domain, each
agent represents a node with consumption, generation, and
transmission preference, and a global cost function. Con-
straints include the power balance and no power loss prin-
ciples, the generation and consumption limits, and the ca-
pacity of the power line between nodes. The objective is to
minimize a global cost function. CDMG optimization prob-
lems are well-suited to be modeled with DCOPs due to their
distributed nature. Moreover, as some of the constraints in
CDMGs (e.g., the power balance principle) can be described
in functional form, they can be exploited by ASP-DPOP
(rules). For this reason, both “ASP-DPOP (facts)” and “ASP-
DPOP (rules)’ were used in this domain.

We use three network topologies defined using the IEEE

1179

|Di| 13 Bus Topology 34 Bus Topology 37 Bus Topology
5 7 9 11 5 7 9 11 5 7 9 11

H-DPOP 6,742 30,604 97,284 248,270 1,437 4,685 11,617 24,303 6,742 30,604 97,284 248,270
DPOP 3,125 16,807 59,049 161,051 625 2,401 6,561 14,641 3,125 16,807 59,049 161,051

ASP-DPOP 10 14 18 22 10 14 18 22 10 14 18 22
(a) Largest UTIL Message Size

H-DPOP 19,936 79,322 236,186 579,790 20,810 57,554 130,050 256,330 38,689 133,847 363,413 836,167
DPOP 9,325 43,687 143,433 375,859 9,185 29,575 73,341 153,923 17,665 71,953 215,793 531,025

ASP-DPOP 120 168 216 264 330 462 594 726 360 504 648 792
(b) Total UTIL Message Size

Table 3: Message Size Results on Power Network Problems

standards (IEEE Distribution Test Feeders 2014) and vary
the domain size of the generation, load, and transmission
variables of each agent from 5 to 31. Figure 3 summarizes
the runtime results. As the utilities are generated following
predefined rules (Gupta et al. 2013), we also show the results
for ASP-DPOP (rules). Furthermore, we omit results for PH-
DPOP because they have identical runtime—the amount of
information used to prune the search space is identical for
both algorithms in this domain. We also measure the size of
UTIL messages, where we use the number of values in the
message as units. Table 3 tabulates the results. We did not
measure the size of VALUE messages since they are signif-
icantly smaller than UTIL messages.

The results in Figure 3 are consistent with those shown
earlier—ASP-DPOP is slower than DPOP when the domain
size is small, but it is able to solve more problems than
DPOP. We observe that, in Figure 3(b), DPOP is consis-
tently faster than ASP-DPOP and is able to solve the same
number of problems as ASP-DPOP. It is because the high-
est constraint arity in 34 bus topology is 5 while it is 6 in 13
and 37 bus topologies. Unlike in random graphs, H-DPOP is
slower than the other algorithms in these problems. The rea-
son is that the constraint arity in these problems are larger
and the expensive operations on CDDs grows exponentially
with the arity. We also observe that ASP-DPOP (rules) is
faster than ASP-DPOP (facts). The reason is that the former
is able to exploit the interdependencies between constraints
to prune the search space. Additionally, ASP-DPOP (rules)
can solve more problems than ASP-DPOP (facts). The rea-
son is that the former requires less memory since it prunes
a larger search space and, thus, ground fewer facts. Finally,
both versions of ASP-DPOP require smaller messages than
both H-DPOP and DPOP. The reason for the former is that
the CDD data structure of H-DPOP is significantly more
complex than that of ASP-DPOP, and the reason for the
latter is because ASP-DPOP pruned portions of the search
space while DPOP did not.

Conclusions
In this paper, we explore the new direction of DCOP al-
gorithms that use logic programming techniques. Our pro-
posed logic-programming-based algorithm, ASP-DPOP, is
able to solve more problems and solve them faster than
DPOP, its imperative programming counterpart. Aside from
the ease of modeling, each agent in ASP-DPOP also capital-

izes on highly efficient ASP solvers to automatically exploit
problem structure (e.g., prune the search space using hard
constraints). Experimental results show that ASP-DPOP is
faster and can scale to larger problems than a version of H-
DPOP that limits its knowledge to the same amount as ASP-
DPOP. These results highlight the strength of the declara-
tive programming paradigm, where explicit model-specific
pruning rules are not necessary. In conclusion, we believe
that this work contributes to the DCOP community, where
we show that the declarative programming paradigm is a
promising new direction of research for DCOP researchers,
as well as the ASP community, where we demonstrate the
applicability of ASP to solve a wide array of multi-agent
problems that can be modeled as DCOPs.

Acknowledgment
This research is partially supported by NSF grants HRD-
1345232 and DGE-0947465. The views and conclusions
contained in this document are those of the authors and
should not be interpreted as representing the official poli-
cies, either expressed or implied, of the sponsoring organi-
zations, agencies, or the U.S. government. We would like to
thank Akshat Kumar for sharing with us his implementation
of H-DPOP.

References
Baral, C.; Gelfond, G.; Pontelli, E.; and Son, T. C. 2010. Model-
ing multi-agent scenarios involving agents knowledge about other’s
knowledge using ASP. In Proc. of AAMAS, 259–266.

Bessiere, C.; Gutierrez, P.; and Meseguer, P. 2012. Including soft
global constraints in DCOPs. In Proc. of CP, 175–190.

Citrigno, S.; Eiter, T.; Faber, W.; Gottlob, G.; Koch, C.; Leone, N.;
Mateis, C.; Pfeifer, G.; and Scarcello, F. 1997. The dlv system:
Model generator and application frontends. In Proc. of the Work-
shop on Logic Programming, 128–137.

De Vos, M.; Crick, T.; Padget, J. A.; Brain, M.; Cliffe, O.; and
Needham, J. 2005. LAIMA: A multi-agent platform using ordered
choice logic programming. In Proc. of DALT.

Dovier, A.; Formisano, A.; and Pontelli, E. 2013. Autonomous
agents coordination: Action languages meet CLP() and Linda. The-
ory and Practice of Logic Programming 13(2):149–173.

Erdös, P., and Rényi, A. 1959. On random graphs i. Publicationes
Mathematicae Debrecen 6:290.

1180

Farinelli, A.; Rogers, A.; Petcu, A.; and Jennings, N. 2008. De-
centralised coordination of low-power embedded devices using the
Max-Sum algorithm. In Proc. of AAMAS, 639–646.
Fioretto, F.; Le, T.; Yeoh, W.; Pontelli, E.; and Son, T. C. 2014.
Improving DPOP with branch consistency for solving distributed
constraint optimization problems. In Proc. of CP.
Gebser, M.; Kaufmann, B.; Neumann, A.; and Schaub, T. 2007.
clasp: A conflict-driven answer set solver. In Proc. of LPNMR,
260–265.
Gelfond, M., and Lifschitz, V. 1990. Logic programs with classical
negation. In Proc. of ICLP, 579–597.
Gelfond, G., and Watson, R. 2007. Modeling cooperative multi-
agent systems. In Proc. of ASP Workshop.
Gershman, A.; Meisels, A.; and Zivan, R. 2009. Asynchronous
Forward-Bounding for distributed COPs. Journal of Artificial In-
telligence Research 34:61–88.
Gupta, S.; Jain, P.; Yeoh, W.; Ranade, S.; and Pontelli, E.
2013. Solving customer-driven microgrid optimization problems
as DCOPs. In Proc. of the Distributed Constraint Reasoning Work-
shop, 45–59.
Gutierrez, P., and Meseguer, P. 2012a. Improving BnB-ADOPT+-
AC. In Proc. of AAMAS, 273–280.
Gutierrez, P., and Meseguer, P. 2012b. Removing redundant mes-
sages in n-ary BnB-ADOPT. Journal of Artificial Intelligence Re-
search 45:287–304.
Gutierrez, P.; Lee, J.; Lei, K. M.; Mak, T.; and Meseguer, P. 2013.
Maintaining soft arc consistencies in BnB-ADOPT+ during search.
In Proc. of CP, 365–380.
Gutierrez, P.; Meseguer, P.; and Yeoh, W. 2011. Generalizing
ADOPT and BnB-ADOPT. In Proc. of IJCAI, 554–559.
Hamadi, Y.; Bessière, C.; and Quinqueton, J. 1998. Distributed
intelligent backtracking. In Proc. of ECAI, 219–223.
IEEE Distribution Test Feeders. 2014. http://ewh.ieee.org/soc/pes/
dsacom/testfeeders/.
Jain, P.; Gupta, S.; Ranade, S.; and Pontelli, E. 2012. Optimum
operation of a customer-driven microgrid: A comprehensive ap-
proach. In Proc. of PEDES.
Kakas, A.; Torroni, P.; and Demetriou, N. 2004. Agent Planning,
negotiation and control of operation. In Proc. of ECAI.
Kowlaski, R., and Sadri, F. 1999. Logic programming towards
multi-agent systems. Annals of Mathematics and Artificial Intelli-
gence 25(3-4):391–419.
Kumar, A.; Faltings, B.; and Petcu, A. 2009. Distributed constraint
optimization with structured resource constraints. In Proc. of AA-
MAS, 923–930.
Kumar, A.; Petcu, A.; and Faltings, B. 2008. H-DPOP: Using hard
constraints for search space pruning in DCOP. In Proc. of AAAI,
325–330.
Lass, R.; Kopena, J.; Sultanik, E.; Nguyen, D.; Dugan, C.; Modi,
P.; and Regli, W. 2008. Coordination of first responders under
communication and resource constraints (Short Paper). In Proc. of
AAMAS, 1409–1413.
Léauté, T., and Faltings, B. 2011. Coordinating logistics operations
with privacy guarantees. In Proc. of IJCAI, 2482–2487.
Léauté, T.; Ottens, B.; and Szymanek, R. 2009. FRODO 2.0: An
open-source framework for distributed constraint optimization. In
Proc. of the Distributed Constraint Reasoning Workshop, 160–164.
Liu, C.; Ren, L.; Loo, B. T.; Mao, Y.; and Basu, P. 2012. Cologne:
A declarative distributed constraint optimization platform. Pro-
ceedings of the VLDB Endowment 5(8):752–763.

Maheswaran, R.; Tambe, M.; Bowring, E.; Pearce, J.; and Varakan-
tham, P. 2004. Taking DCOP to the real world: Efficient complete
solutions for distributed event scheduling. In Proc. of AAMAS,
310–317.
Mailler, R., and Lesser, V. 2004. Solving distributed constraint
optimization problems using cooperative mediation. In Proc. of
AAMAS, 438–445.
Marek, V., and Truszczyński, M. 1999. Stable models and an alter-
native logic programming paradigm. In The Logic Programming
Paradigm: a 25-year Perspective, 375–398.
Modi, P.; Shen, W.-M.; Tambe, M.; and Yokoo, M. 2005.
ADOPT: Asynchronous distributed constraint optimization with
quality guarantees. Artificial Intelligence 161(1–2):149–180.
Nguyen, D. T.; Yeoh, W.; and Lau, H. C. 2013. Distributed Gibbs:
A memory-bounded sampling-based DCOP algorithm. In Proc. of
AAMAS, 167–174.
Niemelä, I. 1999. Logic programming with stable model semantics
as a constraint programming paradigm. Annals of Mathematics and
Artificial Intelligence 25(3–4):241–273.
Ottens, B.; Dimitrakakis, C.; and Faltings, B. 2012. DUCT: An up-
per confidence bound approach to distributed constraint optimiza-
tion problems. In Proc. of AAAI, 528–534.
Petcu, A., and Faltings, B. 2005. A scalable method for multiagent
constraint optimization. In Proc. of IJCAI, 1413–1420.
Pontelli, E.; Son, T. C.; Baral, C.; and Gelfond, G. 2010. Logic
programming for finding models in the logics of knowledge and its
applications: A case study. Theory and Practice of Logic Program-
ming 10(4-6):675–690.
Sadri, F., and Toni, F. 2003. Abductive logic programming for
communication and negotiation amongst agents. ALP Newsletter.
Sakama, C.; Son, T. C.; and Pontelli, E. 2011. A logical formu-
lation for negotiation among dishonest agents. In Proc. of IJCAI,
1069–1074.
Son, T. C.; Pontelli, E.; and Sakama, C. 2009. Logic programming
for multiagent planning with negotiation. In Proc. of ICLP, 99–
114.
Sultanik, E.; Lass, R.; and Regli, W. 2007. DCOPolis: a frame-
work for simulating and deploying distributed constraint reasoning
algorithms. In Proc. of the Distributed Constraint Reasoning Work-
shop.
Ueda, S.; Iwasaki, A.; and Yokoo, M. 2010. Coalition structure
generation based on distributed constraint optimization. In Proc.
of AAAI, 197–203.
Vlahavas, I. 2002. MACLP: Multi Agent Constraint Logic Pro-
gramming. Information Sciences 144(1-4):127–142.
Yeoh, W., and Yokoo, M. 2012. Distributed problem solving. AI
Magazine 33(3):53–65.
Yeoh, W.; Felner, A.; and Koenig, S. 2010. BnB-ADOPT: An asyn-
chronous branch-and-bound DCOP algorithm. Journal of Artificial
Intelligence Research 38:85–133.
Zhang, W.; Wang, G.; Xing, Z.; and Wittenberg, L. 2005. Dis-
tributed stochastic search and distributed breakout: Properties,
comparison and applications to constraint optimization problems
in sensor networks. Artificial Intelligence 161(1–2):55–87.
Zivan, R.; Glinton, R.; and Sycara, K. 2009. Distributed constraint
optimization for large teams of mobile sensing agents. In Proc. of
IAT, 347–354.
Zivan, R.; Okamoto, S.; and Peled, H. 2014. Explorative anytime
local search for distributed constraint optimization. Artificial Intel-
ligence 212:1–26.

1181

