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Abstract

Evacuation planning is a critical aspect of disaster pre-
paredness and response to minimize the number of peo-
ple exposed to a threat. Controlled evacuations aim at
managing the flow of evacuees as efficiently as possi-
ble and have been shown to produce significant ben-
efits compared to self-evacuations. However, existing
approaches do not capture the delays introduced by di-
verging and crossing evacuation routes, although evi-
dence from actual evacuations highlights that these can
lead to significant congestion. This paper introduces the
concept of convergent evacuation plans to tackle this is-
sue. It presents a MIP model to obtain optimal con-
vergent evacuation plans which, unfortunately, does not
scale to realistic instances. The paper then proposes a
two-stage approach that separates the route design and
the evacuation scheduling. Experimental results on a
real case study show that the two-stage approach pro-
duces better primal bounds than the MIP model and is
two orders of magnitude faster; It also produces dual
bounds stronger than the linear relaxation of the MIP
model. Finally, simulations of the evacuation demon-
strate that convergent evacuation plans outperform ex-
isting approaches for realistic driver behaviors.

Introduction
Planning large-scale evacuations is central to the prepared-
ness and response to many disasters including industrial haz-
ards, floods, bushfires, hurricanes, and tsunamis. It ensures
the safety of populations at threat by giving evacuees clear
instructions on how to reach a set of safe zones. Evacua-
tion planning is computationally challenging as it needs to
account for the disaster, traffic network, residential zones
and their population, and human behavior, among others.
Given a threat or a set of threat scenarios, an evacuation
plan must ideally produce two outputs: (1) a traffic man-
agement plan, including detailed evacuation routes and man-
agement points, and (2) an evacuation schedule, specifying
when residential zones should evacuate. Most automated
approaches to evacuation planning only address these fac-
tors partially and assume that individuals will decide their
routes, destinations, and times for departure to reach a global
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optimum. The resulting plan essentially becomes a self-
evacuation, where each individual makes their own deci-
sions about whether and when to evacuate, using their pre-
ferred route and transportation mode. Self-evacuations in-
crease the risk of congestion, since a large fraction of evac-
uees may choose the same evacuation routes or routes that
cross or diverge at intersections.

This paper focuses on controlled evacuations in which
authorities give evacuation orders to people under threat.
Controlled evacuations ensure that each residential zone is
assigned a specific route and time to evacuate, leading to
the most effective utilization of the road network. These
approaches significantly improve the quality of evacuation
plans, evacuating more people over a given horizon or de-
creasing the overall evacuation time. However, specifying
an evacuation route for each residential area is not sufficient
to control an evacuation fully: Two evacuation routes can
merge, possibly share a few road segments, and then di-
verge, leaving evacuees with a choice at the fork. Evidence
collected during evacuations demonstrates that drivers hes-
itate when approaching a fork (Townsend 2006), leading to
additional congestion.

To address this limitation, this paper introduces the con-
cept of convergent evacuation plans, which assigns an evac-
uation route to each residential zone and ensures that all
evacuation routes converge to the safe zones. Convergent
evacuation plans can be fully controlled and remove a key
source of congestion by ensuring that drivers never face a
choice between two onwards evacuation routes. Optimal
convergent plans can be obtained by a MIP model using a
time-indexed flow formulation. Unfortunately, this model
cannot tackle realistic-scale evacuations. To remedy this
issue, the paper proposes a two-stage approach that sepa-
rates the choice of evacuation routes from the scheduling
of the evacuation. More precisely, the first stage is a tree
design problem that selects a set of convergent routes and
produces an upper bound on the number of people who can
reach safety over a time horizon. The second stage is a flow
scheduling problem that determines how to evacuate the res-
idential zones optimally given the evacuation routes pro-
duced in the first stage. Experimental results on a real case
study demonstrate the benefits of the two-stage approach. In
particular:

• The tree design problem provides dual bounds that are
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Figure 1: Modeling of an Evacuation Planning Problem.

stronger than the linear relaxation of the MIP model;

• The two-stage approach produces better primal bounds
than the MIP model and is two orders of magnitude faster,
producing high-quality convergent evacuation plans for
70,000 people in less than a minute;

• Convergent evacuation plans outperform traditional ap-
proaches even for minimal driver hesitations at forks.

Convergent Evacuation Planning
The input of the evacuation problem is an evacuation graph
G = (N = E ∪ T ∪ S,A), where E , T , and S are the set
of evacuation, transit, and safe nodes, and A is the set of
arcs. Each evacuation node i is characterized by a number
of evacuees di and an evacuation deadline f̄i , while each
arc e is associated with a triple (se, ue, fe), where se is the
travel time, ue is the capacity, and fe is the time at which
the arc becomes unavailable. For modeling purposes, we
assume that all evacuation (resp. safe) nodes are connected
to a super source vs (resp. sink vt). Note that u(vs,i) = di.

Figure 1 illustrates these concepts. Figure 1a presents an
evacuation scenario with one evacuation node (0) and two
safe nodes (A and B). The evacuation node 0 must be evac-
uated by 13:00 and different arcs become unavailable at dif-
ferent times (for instance, (2, 3) is cut at 9:00). Figure 1b
specifies an evacuation graph based on this scenario. Here
evacuation node 0 has a demand of 20 and a deadline of
13:00. The arc (0, 1) has a travel time of 1, a capacity of 10,
and becomes unavailable at 11:00.

To capture the spatio-temporal aspects of evacuation plan-
ning, this paper discretizes the planning horizonH into time
steps of identical length [0..h] and defines a time-expanded
graph Gx = (N x = Ex ∪ T x ∪ Sx,Ax). Gx is constructed
by duplicating each node in N for each time step. Ax con-
tains an arc et = (it, jt+s(i,j)) for every time step t in which
e is available to model the transfer of evacuees from node
i at time t to node j at time t + s(i,j). In addition, arcs
with infinite capacity are added to model evacuees waiting

at evacuation and safe nodes. Figure 1c illustrates the time-
expanded graph for the evacuation graph presented earlier.
Note that some nodes may not be connected to either the
source or the sink (in light grey in this example), and can
therefore be removed to reduce the graph size.

The goal of convergent evacuation planning is to find a
subgraph of the evacuation graph that maximizes the flow of
evacuees and is fully controllable. A graph is convergent if,
for every node i ∈ N , the outdegree of i is 1. It is connected
if, for every evacuation node i ∈ E , there is a path from
the source vs to the sink vt going through i. Observe that
if we reverse the arcs direction and ignore vs, these paths
form a tree rooted at vt with evacuation nodes as leaves. An
evacuation graph that is both connected and convergent is
fully controllable from an operational perspective.

Proposition 1. Let G be a connected evacuation graph.
There exists a connected and convergent subgraph T of G.

Proposition 2. There is a unique path from an evacuation
node to the sink in every connected and convergent evacua-
tion graph.

The Convergent Evacuation Planning Problem (CEPP) can
now be formally stated.

Definition 1 (CEPP). Given a connected evacuation graph
G as input, the Convergent Evacuation Planning Problem
(CEPP) consists of finding a convergent subgraph T of G
whose associated time-expanded graph T x maximizes the
flow from vs to vt.

Literature Review
Despite its practical importance, evacuation planning has re-
ceived only limited interest from the research community.
As defined by Hamacher and Tjandra (2002), evacuation
planning can be tackled using either microscopic or macro-
scopic approaches. Microscopic approaches focus on mod-
eling and simulating the individual behaviors, movements,
and interactions of evacuees. Macroscopic approaches, such
as the one presented in this study, aggregate evacuees and
model their movements as a flow in the evacuation graph.
Evacuation planning is related to dynamic network flow
problems, also referred to as flows over time, where the time
required to traverse an edge is modeled explicitly. Ford and
Fulkerson (1958) introduced the Maximum Dynamic Net-
work Flow Problem (MDFP), which maximizes the flow
from a single source to a single sink within a specific time
horizon. Their polynomial algorithm first computes the
maximum flow over one time period. It then uses flow de-
composition to determine the s-t paths on the network. Fi-
nally, it creates temporally repeated flows through the static
network until the demand is satisfied or the time horizon
is reached. Burkard, Dlaska, and Klinz (1993) introduced
the quickest flow problem (QFP) which aims at finding the
shortest time horizon to transmit a certain amount of flow
from a source to a sink. The authors demonstrate that it
can be reduced to the MDFP using binary search to reduce
the horizon as much as possible. Hoppe and Tardos (2000)
generalized the QFP to several sources and sinks, defining
the quickest transshipment problem (QTP), and presented a

1122



polynomial algorithm for the QTP by taking an approach in-
spired from temporally repeated flows. A Maximum Flow
Tree (MFT) is a spanning tree T in a network G such that
every rooted path in T is at maximum capacity. The seminal
work by Gouda and Schneider (1995) presents a method to
compute a MFT that builds a spanning tree with maximum
capacity paths, and updates the tree when a connection be-
tween two nodes is established. Siachalou and Georgiadis
(2005) propose algorithms to compute solutions to the con-
strained widest multicast tree problem, which extends the
MFTP with additional constraints on the tree.

However, in the context of evacuation, MDFPs and MFTs
do not produce actionable plans that associate a single path
to a safe zone with each evacuation node. In fact, few studies
attempt to design actionable evacuation plans. Huibregtse
et al. (2011) proposed a two-stage algorithm that first gen-
erates a set of evacuation routes and feasible departure
times, and then assigns a route and time to each evacu-
ated area using an ant colony optimization algorithm. In
subsequent work, the authors studied the robustness of the
produced solution (Huibregtse, Bliemer, and Hoogendoorn
2010), and strategies to improve the compliance of evac-
uees (Huibregtse, Hegyi, and Hoogendoorn 2012). Even,
Pillac, and Van Hentenryck (2014) and Pillac, Van Henten-
ryck, and Even (2014) proposed a scalable conflict-based
path-generation algorithm that produces actionable evacua-
tion plans. These plans jointly schedule the evacuation and
the selection of contraflow roads.

This paper goes one step further and proposes algorithms
for convergent evacuation paths which are fully controllable.
The algorithms combine the design of a set of evacuation
routes and an evacuation schedule ensuring the convergence
of the flow evacuees.

The MIP Model
This section presents a MIP model for solving the CEPP.
The model uses a binary variable xe to denote whether arc
e ∈ G is selected and a continuous variable ϕet for the flow
on arc et ∈ Gx. The MIP model is formulated as follows:

max
∑

et∈δ+(vs)

ϕet (1)

s.t.∑
et∈δ−(i)

ϕet −
∑

et∈δ+(i)

ϕet = 0 ∀i ∈ N x (2)

∑
e∈δ+(i)

xe ≤ 1 ∀i ∈ N (3)

ϕet ≤ xe.uet ∀e ∈ A,∀t ∈ H (4)

ϕet ≥ 0 ∀et ∈ Ax (5)

xe ∈ {0, 1} ∀e ∈ A (6)

where δ−(i) (resp. δ+(i)) denotes the set of incoming (resp.
outgoing) edges of node i. Constraints (2) ensure flow con-
servation through the network, constraints (3) enforce con-
vergence of the evacuation paths, constraints (4) link the arc

and flow variables, while the objective (1) maximizes the
total evacuee flow.

The Proposed Approach

Computational experiments show that the MIP formulation
quickly becomes intractable for real-sized instances. This
section presents a two-stage approach that separates the
choice of the converging paths from the flow scheduling.

Tree Design Problem

The first stage of the proposed approach is a Tree Design
Problem (TDP). Intuitively, the TDP is an abstraction of the
CEPP where the evacuation flow is aggregated over time,
avoiding the need to reason about the time-expanded evac-
uation graph. Let G+ be the evacuation graph G where the
arc capacities have been summed over the time horizon. The
TDP consists of finding a convergent subgraph of G+ that
maximizes the flow from the source to the sink.

The TDP can be formulated as a MIP model with a bi-
nary variable ye and a continuous flow variable ψe for each
arc e ∈ A. The binary variable denotes whether arc e is
selected, while the continuous variable represents the aggre-
gated flow on arc e. The TDP can be formulated as follows:

max
∑

e∈δ+(vs)

ψe (7)

s.t.∑
e∈δ−(i)

ψe −
∑

e∈δ+(i)

ψe = 0 ∀i ∈ N (8)

∑
e∈δ+(i)

ye ≤ 1 ∀i ∈ N (9)

ψe ≤ ye
∑
t∈H

uet ∀e ∈ A (10)

ψe ≥ 0 ∀e ∈ A (11)
ye ∈ {0, 1} ∀e ∈ A (12)

Constraints (8) and (9) ensure flow conservation and a con-
vergent plan, constraints (10) impose the flow capacity on
each arc, and the objective (7) maximizes the flow.

Theorem 1. The optimal solution of TDP is an upper bound
to the CEPP.

Proof. We show that an optimal solution to the CEPP can
be transformed into a solution of the TDP with the same
objective value. Let Φ = {ϕet , xe}et∈Ax,e∈A be an opti-
mal solution to the CEPP and z(Φ) be its objective value.
Consider the following candidate solution to the TDP: Ψ =
{ψe =

∑
t∈H ϕet , ye = xe}e∈A. By definition of the flows,

the objective value of Ψ is equal to z(Φ). We now show that
Ψ satisfies all constraints of the TDP. Since Φ is a solution
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to the CEPP, it satisfies constraints (2) and we have∑
et∈δ−(i)

ϕet −
∑

et∈δ+(i)

ϕet = 0 ∀it ∈ N x

⇒
∑

e∈δ−(i)

∑
t∈H

ϕet −
∑

e∈δ+(i)

∑
t∈H

ϕet = 0 ∀i ∈ N

⇒
∑

e∈δ−(i)

ψe −
∑

e∈δ+(i)

ψe = 0 ∀i ∈ N

and Ψ satisfies constraints (8). Since Φ satisfies constraints
(3), it follows that Ψ satisfies constraints (9). Finally, since
Φ satisfies constraints (3), we have

ϕet ≤ xe.uet ∀e ∈ A,∀t ∈ H

⇒
∑
t∈H

ϕet ≤ xe
∑
t∈H

uet ∀e ∈ A

⇒ ψe ≤ ye
∑
t∈H

uet ∀e ∈ A

and Ψ satisfies (10). The result follows.

Flow Scheduling
An optimal solution to the TDP defines a connected and
convergent evacuation graph T used in the second stage to
schedule the flow of evacuees. The second stage is a Flow
Scheduling Problem (FSP) that maximizes the flow in the
time-expanded graph T x associated with T .

The FSP avoids the creation of the time-expanded graph
by reasoning about paths from the evacuation nodes to the
sink. By Propositions (1) and (2), the TDP produces a con-
vergent and connected subgraph which includes a unique
path from each evacuation node to the sink. We denote by
Ω this set of paths and use the following notations: τep is the
time taken to reach edge e from the source node using path
p ∈ Ω, Hp =

[
0..h− τvtp

]
is the set of departure times that

would allow evacuees to reach safety by using path p, pi is
the path associated with evacuation node i ∈ E in the TDP
solution, and w(e) is the set of paths using arc e.

The FSP uses a continuous variable χpt for each path p ∈
Ω and t ∈ Hp to represent the flow leaving at time t along
path p. The FSP can then be specified by the following linear
program:

max
∑
p∈Ω

∑
t∈Hp

χtp (13)

s.t.
∑
t∈Hp

χtpi ≤ di ∀i ∈ E (14)

∑
p∈ω(e)
t−τe

p∈Hp

χ
t−τe

p
p ≤ uet ∀e ∈ A, t ∈ H (15)

χtp ≥ 0 ∀p ∈ Ω, t ∈ Hp (16)

Constraints (14) ensure that the number of evacuees along
path pk does not exceed the number of evacuees dk in evac-
uation node k, while constraints (15) enforce arc capacity by
reasoning about the number of evacuees that can reach arc e

Algorithm 1 The two-stage Algorithm TDFS for the CEPP
Require: G the evacuation graph,H the time horizon
Ensure: A convergent evacuation plan
1: t∗ ← min {t ∈ H | z(TDP (G, [0..t])) = z(TDP (G,H))}
2: return FSP (TDP (G, [0..t∗]) ,H)

at time t. The objective (13) maximizes the total flow along
all paths and all times in the horizon.

In the following, we denote by TDP (G,H) an optimal so-
lution to the stage 1 (TDP) given an input evacuation graph
G and horizon H and by FSP (Ψ,H) an optimal solution to
the stage two (FSP) given a solution Ψ to the TDP and hori-
zon H, and CEPP (G,H) an optimal solution to the CEPP
MIP. We also use z(σ) to denote the objective value of a
solution σ to the CEPP, TDP, or FSP.
Corollary 1. Let G be a connected evacuation graph, H a
time horizon. We have z(TDP (G,H)) ≥ z(CEPP (G,H)) ≥
z(FSP (TDP (G,H) ,H)).

The two-stage Approach
When the time horizon is too large, many convergent evac-
uation plans can be optimal solutions to the TDP. However,
these plans often differ substantially in their ability to deal
with congestion. In practice, using optimal solutions to the
TDP with a tighter time horizon produces significantly bet-
ter plans for the FSP. As a result, the two-stage approach
TDFS computes the tightest time horizon t∗ that preserves
the optimal solution to the TDP and solves the FSP using the
TDP solution obtained for t∗.

Algorithm 1 implements this idea and formalizes our two-
stage approach. Observe that the FSP receives the full hori-
zon, since the TDP is an approximation to the CEPP and it
may not be possible to schedule the TDP flow in the time-
expanded graph for t∗. The tightest time horizon can be ob-
tained by dichotomic search over the horizon using the TDP
as a subproblem.

Minimizing Clearance Time
In evacuation planning, it is often desirable to determine the
earliest time by which all evacuees can reach safety. More
precisely, the goal is to compute the minimum clearance
time h∗ defined as

h∗ = min

{
h ∈ R | z(CEPP (G, [0..h])) =

∑
i∈E

di

}
.

To that purpose, we adapt the TDP model (7-12) by intro-
ducing a new continuous variable h representing the length
of the horizon, setting the objective to minh, and by substi-
tuting (10) with (10b) and adding (17):

ψe ≤ hmax
t∈H

uet ∀e ∈ A (10b)

ψ(vs,i)
= di ∀i ∈ E (17)

The resulting model, namely TDP-CT, provides a conver-
gent subgraph and a lower bound on the clearance time.

Algorithm 2 presents the TDFS-CT heuristic which finds
a convergent evacuation plan of minimum clearance time
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Algorithm 2 The two-stage Algorithm TDFS-CT for the
CEPP with Minimization of the Clearance Time
Require: G the evacuation graph
Ensure: A convergent evacuation plan of minimum clearance time
1: Ψ← TDP–CT (G)
2: h∗ ← min

{
t ∈ R | z(FSP (Ψ, [0..t])) =

∑
i∈E di

}
3: return FSP (Ψ, [0..h∗])

given a solution of TDP-CT. In our implementation, step 2
uses a dichotomic search initialized with the lower bound
provided by TDP-CT.

Experimental Results
This section presents experimental results for the the evac-
uation of the Hawkesbury-Nepean (HN) floodplain, located
North-West of Sydney. We consider a 1-in-200 years flood
that would require the evacuation of 70,000 people. The HN
evacuation graph contains 80 evacuated nodes, 5 safe nodes,
184 transit nodes, and 580 edges. The time horizonH spans
10 hours discretized into 5 minutes time-steps. The exper-
imental results also consider a class of instances HN80-Ix
using the HN evacuation graph but a number of evacuees
scaled by a factor x ∈ [1.1, 3.0] to reflect projected popu-
lation growth over the next decades. The algorithms were
implemented using JAVA 7 and GUROBI 5.6 and the results
were obtained on 64bits machines with 2.8GHz AMD 6-
Core Opteron 4184 and 32Gb of RAM.

Dual Bounds
Table 1 compares the bounds provided by the TDP and the
Linear Relaxation (LR) of the MIP model for the HN80
instances. Both models provide an upper bound on the
percentage of evacuated vehicles. In this table, columns
Perc. Evac. report the percentage of evacuated residents for
both models, columns CPU report the execution time in sec-
onds (s), while the column Gap TDP reports the gap relative
to the TDP solution z(TDP(G,H))−z(?)

z(?) where z(?) is the total
flow found by model ? (here ? is LR).

The results indicate that the TDP gives tighter dual
bounds. On average, the TDP produces a 3.5% improvement
in dual bounds, while improving LR by more than 10% on
the larger instances. The TDP is also 9 times faster than LR
on average.

Primal Bounds
Table 2 compares the two-stage TDFS with the best solution
found by the MIP model in 24 hours. For each iteration
of TDFS, we allocate 30s for each call to TDP. The results
indicate that, on average, TDFS evacuates 1.3% more people
than CEPP in about 14s. The average optimality gap is 0.2%
and the worst-case optimality gap is 0.7%. In contrast, even
with a 24 hours time limit, the MIP model has a worst-case
optimality gap of 7.9% and an average gap of 1.7%.
Figure 2 shows the evacuation percentage for the MIP model
(solid grey columns) and TDFS (solid white column), as
well as the MIP gap (hashed) for all HN80-Ix instances un-
der various time limits for te MIP model. The light, medium,

TDP LR

Instance CPU
(s)

Perc.
Evac.

CPU
(s)

Perc.
Evac.

Gap
TDP

HN80 0.2 100% 7.1 100% 0.0%
HN80-I1.1 0.3 100% 7.9 100% 0.0%
HN80-I1.2 0.2 100% 11.2 100% 0.0%
HN80-I1.4 0.3 100% 9.8 100% 0.0%
HN80-I1.7 0.7 100% 13.1 100% 0.0%
HN80-I2.0 2.6 96.2% 12.4 100% -3.8%
HN80-I2.5 5.0 81.1% 13.2 91.2% -11.1%
HN80-I3.0 0.6 68.1% 13.7 76.1% -10.5%
Average 1.2 93.2% 11.0 95.9% -3.2%

Table 1: Dual Bounds for the HN80-I Instances.

TDFS MIP 24h

Instance CPU
(s)

Perc.
Evac.

Gap
TDP

Perc.
Evac.

Gap
TDP

HN80 33.4 100% 0.0% 100% 0.0%
HN80-I1.1 1.3 100% 0.0% 100% 0.0%
HN80-I1.2 1.0 100% 0.0% 100% 0.0%
HN80-I1.4 6.4 100% 0.0% 100% 0.0%
HN80-I1.7 47.6 100% 0.0% 99.1% 0.9%
HN80-I2.0 4.1 95.5% 0.7% 89.1% 7.9%
HN80-I2.5 6.6 80.7% 0.5% 77.5% 4.7%
HN80-I3.0 1.5 67.7% 0.6% 68.0% 0.2%
Average 14.1 93.0% 0.2% 91.7% 1.7%

Table 2: Primal Bounds for the HN80-I Instances.

and dark grey colors represent the MIP incumbent solution
and gap after 1, 4, and 24 hours. The gap between the MIP
objective value and the best bound highlights the slow con-
vergence of the MIP solver.

Clearance Time Minimization
Table 3 presents results obtained with the TDFS-CT ap-
proach on the HN80 instances. The second column re-
ports the optimal clearance time obtained using a dichotomic
search using a free-flow model (FF-CT), which does not re-
strict the flow of evacuees (Pillac, Van Hentenryck, and Even
2013). The third and fourth columns report results for the
TDP-CT model run independently, and the fifth to seventh
column present the results from the TDFS-CT approach, in-
cluding the absolute optimality gap with respect to the lower
bound provided by TDP-CT. In these results, the TDP-CT
model is stopped after 30s when the duality gap is lower
than 1%.

The results show the competitiveness of the TDFS-CT ap-
proach which finds a clearance time close to the lower bound
provided by the TDP-CT. The quality of the solutions is par-
ticularly high, given that the TDP-CT model ignores travel
times along the arcs and that it takes between 10 and 55 min
to reach a safe node from any evacuated area. The results
also demonstrate the inadequacies of free-flow approaches,
which greatly underestimate the time required to evacuate
all vehicles in an orderly fashion. Note that the average run-
ning time of TDFS-CT is about 110s, of which an average
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Figure 2: Primal Bounds as a Function of Solving Time.

FF-CT TDP-CT TDFS-CT

Instance CT
(min)

CPU
(s)

CT
(min)

CPU
(s)

CT
(min)

Gap
(min)

HN80-I1.0 260 105 300 115 345 48
HN80-I1.1 280 30 330 39 375 48
HN80-I1.2 300 108 360 122 410 53
HN80-I1.4 340 30 420 47 470 54
HN80-I1.7 405 220 510 233 575 69
HN80-I2.0 465 35 595 63 645 50
HN80-I2.5 570 63 745 92 820 76
HN80-I3.0 670 120 895 171 935 43

Table 3: Clearance Time on the HN80-I Instances.

of about 90s is spent solving the TDP-CT model, and an av-
erage of about 20s is devoted to performing the dichotomic
search to find the minimum clearance time.

Benefits of Convergent Evacuation Plans
Figure 3 illustrates the benefits of convergent evacuation
plans. The chart compares the clearance times of TDFS-CT
with an instrumented mesoscopic simulation of the evacua-
tion plans produced by the CPG algorithm (Pillac, Van Hen-
tenryck, and Even 2014). CPG assigns a single evacuation
path to every evacuation node but allows for divergent paths.
The simulation instrumentation adds a delay at each fork
for each vehicle, capturing the driver hesitation. The chart
shows the effect of this delay on clearance times. The results
show that TDFS-CT starts outperforming CPG for an aver-
age delay as small as 0.75s. The benefits of TDFS becomes
substantial even for delays as small as 2s.

Conclusion
This paper introduced the concept of convergent evacua-
tion plans to produce fully controllable evacuations avoiding
forks. Forks lead to congestions in practice as drivers slow
down to consider the alternatives ahead of them. Addition-
ally, the presence of forks makes it harder to guarantee that
evacuees will actually follow the evacuation plan.

The paper formalized the Convergent Evacuation Plan-
ning Problem (CEPP) and presented a MIP model for find-

Figure 3: The Effect of Fork Delays on Clearance Times
(HN80).

ing a convergent evacuation plan maximizing the number of
people evacuated. To remedy its scalability issues, the pa-
per proposed a two-stage approach, separating the design
of the convergent evacuation routes from the scheduling of
evacuees along these routes. The first stage is a Tree De-
sign Problem (TDP) which aggregates arc capacities over
time and avoid discretizing time. The second stage is a flow
scheduling problem (FDP) that chooses when to evacuate
a residential area along a path. Optimal solutions to the
TDP are upper bounds to the optimal solutions to the CEPP.
The paper also presented results on minimizing the clear-
ance times using a variant of the two-stage approach.

Experimental results on a real case study validate the ben-
efits of the approach. In particular, they show that: (1) The
TDP provides stronger dual bounds than the linear relax-
ation of the MIP model; (2) The two-stage approach pro-
vides high-quality solutions with average and worst-case op-
timality gaps of 0.2% and 0.7% in less than a minute of CPU
Time. In contrast, the MIP model provides solutions with
average and worst-case optimality gaps of 1.7% and 7.9%
even with a time limit set to 24 hours; (3) The benefits of the
two-stage approach materialize as soon as a delay of 0.75s is
introduced at a fork when simulating the results of state-of-
the-art evacuation planning tools on a mesoscopic simulator.
The benefits become subtantial when the delay increases:
The clearance time doubles when the delay is about 4s.

Future work will focus on extending the models to in-
tegrate contraflow decisions and lane separation, build ac-
curate behavioral models of evacuees when responding to
evacuation orders, and exploit these models inside the evac-
uation planning algorithms. Contraflows and lane separa-
tions would give more flexibility to the optimisation algo-
rithm to exploit routes that would not be convergent other-
wise. Finally, observe that our algorithms can be generalized
to allow forks where the resulting increased capacity is ben-
eficial regardless of the slowdown produced.

Acknowledgments
NICTA is funded by the Australian Government through
the Department of Communications and the Australian Re-
search Council through the ICT Centre of Excellence Pro-
gram.

1126



References
Burkard, R.; Dlaska, K.; and Klinz, B. 1993. The quickest
flow problem. Methods and Models of Operations Research
37:31–58.
Even, C.; Pillac, V.; and Van Hentenryck, P. 2014. Nicta
evacuation planner: Actionable evacuation plans with con-
traflows. In Proceedings of the 20th European Conference
on Artificial Intelligence (ECAI 2014).
Ford, L. R., and Fulkerson, D. R. 1958. Constructing max-
imal dynamic flows from static flows. Operations Research
6(3):419–433.
Gouda, M. G., and Schneider, M. 1995. Maximum flow
routing. Technical report, Department of Computer Science,
University of Nevada, Las Vegas.
Hamacher, H. W., and Tjandra, S. A. 2002. Mathemati-
cal modelling of evacuation problems: A state of art. In
Schreckenberger, M., and Sharma, S., eds., Pedestrian and
Evacuation Dynamics. Springer Verlag. 227–266.
Hoppe, B., and Tardos, E. 2000. The quickest transshipment
problem. Mathematics of Operations Research 25(1):36–62.
Huibregtse, O. L.; Hoogendoorn, S. P.; Hegyi, A.; and
Bliemer, M. C. J. 2011. A method to optimize evacuation
instructions. OR Spectrum 33(3):595–627.
Huibregtse, O. L.; Bliemer, M. C.; and Hoogendoorn, S. P.
2010. Analysis of near-optimal evacuation instructions. Pro-
cedia Engineering 3:189–203.
Huibregtse, O.; Hegyi, A.; and Hoogendoorn, S. 2012.
Blocking roads to increase the evacuation efficiency. Jour-
nal of Advanced Transportation 46(3):282–289.
Pillac, V.; Van Hentenryck, P.; and Even, C. 2013. A
conflict-based path-generation heuristic for evacuation plan-
ning. Technical Report VRL-7393, NICTA, Melbourne.
Pillac, V.; Van Hentenryck, P.; and Even, C. 2014. A path-
generation matheuristic for large scale evacuation planning.
In Blesa, M.; Blum, C.; and Voss, S., eds., Hybrid Meta-
heuristics, volume 8457 of Lecture Notes in Computer Sci-
ence, 71–84. Springer.
Siachalou, S., and Georgiadis, L. 2005. Algorithms for
precomputing constrained algorithms for precomputing con-
strained widest paths and multicast trees. IEEE/ACM Trans-
actions on Networking 13(5):1174–1187.
Townsend, F. F. 2006. The federal response to hurricane Ka-
trina - lessons learned. Technical report, The White House,
Washington.

1127




