
Pruning Game Tree by Rollouts

Bojun Huang
Microsoft Research

bojhuang@microsoft.com

Abstract

In this paper we show that the α-β algorithm and its succes-
sor MT-SSS*, as two classic minimax search algorithms, can
be implemented as rollout algorithms, a generic algorithmic
paradigm widely used in many domains. Specifically, we de-
fine a family of rollout algorithms, in which the rollout policy
is restricted to select successor nodes only from a subset of
the children list. We show that any rollout policy in this fam-
ily (either deterministic or randomized) is guaranteed to eval-
uate the game tree correctly with a finite number of rollouts.
Moreover, we identify simple rollout policies in this family
that “implement” α-β and MT-SSS*. Specifically, given any
game tree, the rollout algorithms with these particular policies
always visit the same set of leaf nodes in the same order with
α-β and MT-SSS*, respectively. Our results suggest that tra-
ditional pruning techniques and the recent Monte Carlo Tree
Search algorithms, as two competing approaches for game
tree evaluation, may be unified under the rollout paradigm.

Introduction
Game tree evaluation formulates a logic process to make
optimal worst-case plans for sequential decision making
problems, a research topic usually benchmarked by two-
player board games. Historically, classic game-tree search
algorithms like α-β and its successors have successfully
demonstrated human-champion-level performance in tacti-
cal games like Chess, but their computational complexity
suffers from exponential growth with respect to the depth
of the game tree. In order to reduce the size of the game tree
under consideration, these traditional game-tree search algo-
rithms have to be complemented by domain-specific evalu-
ation functions, a task that is very difficult in some domains,
such as GO and General Game Playing.

Recently, rollout algorithms have been introduced as a
new paradigm to evaluate large game trees, partially be-
cause of their independence of domain-specific evaluation
functions. In general, rollout algorithm is a generic algo-
rithmic paradigm that has been widely used in many do-
mains, such as combinatorial optimization (Bertsekas, Tsit-
siklis, and Wu 1997) (Glover and Taillard 1993), stochas-
tic optimization (Bertsekas and Castanon 1999), planning

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

in Markov Decision Process (Péret and Garcia 2004) (Koc-
sis and Szepesvári 2006), and game playing (Tesauro and
Galperin 1996) (Abramson 1990). In the context of game
tree evaluation, a rollout is a process that simulates the game
from the current state (the root of the game tree) to a termi-
nating state (a leaf node), following a certain rollout policy
that determines each move of the rollout in the state space. A
rollout algorithm is a sequence of rollout processes, where
information obtained from one rollout process can be uti-
lized to reinforce the policies of subsequent rollouts, such
that the long-term performance of the algorithm may con-
verge towards the (near-)optimal policy.

In particular, a specfic class of rollout algorithms, called
Monte Carlo Tree Search (MCTS), has substantially ad-
vanced the state-of-art in Computer GO (Gelly et al. 2012)
and General Game Playing (Finnsson and Björnsson 2008).
The key idea of MCTS is to use the average outcome of
rollouts to approximate the minimax value of a game tree,
which is shown to be effective in dynamic games (Coulom
2006). On the other hand, however, people also observed
that existing MCTS algorithms appear to lack the capabil-
ity of making “narrow lines” of tactical plans as traditional
game-tree search algorithms do. For example, Ramanujan,
Sabharwal, and Selman (2012) show that UCT, as a popular
rollout algorithms in game playing, is prone to being misled
by over-estimated nodes in the tree, thus often being trapped
in sub-optimal solutions in some situations.

As a result, researchers have been trying to combine
MCTS algorithms with traditional game tree search algo-
rithms, in order to design unified algorithms that share the
merits of both sides (Baier and Winands 2013) (Lanctot et
al. 2013) (Coulom 2006). Unfortunately, one of the major
difficulties for the unification is that most traditional α-β-
like algorithms are based on minimax search, which seems
to be a different paradigm from rollout.

In this paper, we show that two classic game-tree search
algorithms, α-β and MT-SSS*, can be implemented as roll-
out algorithms. The observation offers a new perspective
to understand these traditional game-tree search algorithms,
one that unifies them with their modern “competitors” under
the generic framework of rollout. Specifically,
• We define a broad family of rollout algorithms, and

prove that any algorithm in this family is guaranteed
to correctly evaluate game trees by visiting each leaf

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

1165



node at most once. The correctness guarantee is policy-
oblivious, which applies to arbitrary rollout policy in the
family, either deterministic or probabilistic.

• We then identify two simple rollout policies in this
family that implement the classic minimax search al-
gorithms α-β and MT-SSS* under our rollout frame-
work. We prove that given any game tree, the rollout al-
gorithms with these particular policies always visit the
same set of leaf nodes in the same order as α-β and an
“augmented” version of MT-SSS*, respectively.

• As a by-product, the“augmented” versions of these clas-
sic algorithms identified in our equivalence analysis are
guaranteed to outprune their original versions.

Preliminaries
Game tree model
A game tree T is defined by a tuple (S, C,V), where S is a
finite state space, C(·) is the successor function that defines
an ordered children list C(s) for each state s ∈ S, and V(·)
is the value function that defines a minimax value for each
state s ∈ S.

We assume that C(·) imposes a tree topology over the state
space, which means there is a single state that does not show
in any children list, which is identified as the root node of
the tree. A state s is a leaf node if its children list is empty
(i.e. C(s) = ∅), otherwise it is an internal node.

The value function V(·) of a given game tree can be spec-
ified by labeling each state s ∈ S as either MAX or MIN,
and further associating each leaf-node state s with a deter-
ministic rewardR(s). The minimax value V(s) of each state
s ∈ S is then defined as

V(s) =


R(s) if s is Leaf;
maxc∈C(s) V(c) if s is Internal & MAX;
minc∈C(s) V(c) if s is Internal & MIN.

(1)

To align with previous work, we assume that the reward
R(s) for any s is ranged in a finite set of integers, and we
use the symbols +∞ and−∞ to denote a finite upper bound
and lower bound that are larger and smaller than any possi-
ble value of R(s), respectively. 1

Explicit game trees often admit compact specifications in
the real world (for example, as the rules of the game). Given
the specification of a game tree, our goal is to compute the
minimax value of the root node, denoted by V(root), as
quickly as possible. Specifically, we measure the efficiency
of the algorithm by the number of times the algorithm calls
the reward function R(·), i.e. the number of leaf-node eval-
uations, which is often an effective indicator of the compu-
tation time of the algorithm in practice (Marsland 1986).

As a convenient abstraction, we suppose that any algo-
rithm in the game tree model can access an external storage
(in unit time) to retrieve/store a closed interval [v−s , v

+
s ] as

the value range for any specified state s ∈ S. Initially, we
have [v−s , v

+
s ] = [−∞,+∞] in the storage for all states. We

1The algorithms and analysis proposed in this paper also apply
to more general cases, such as when R(s) is ranged in an infinite
set of integers or in the real field.

remark that such a “whole-space” storage only serves as a
conceptually unified interface that simplifies the presenta-
tion and analysis in this paper. In practice, we do not need
to allocate physical memory for nodes with the trivial bound
[−∞,+∞]. For example, the storage is physically empty
if the algorithm does not access the storage at all. Such a
storage can be easily implemented based on standard data
structures such as a transposition table (Zobrist 1970).

Depth-first algorithms and α-β pruning
Observe that Eq. (1) implies that there must exist at least
one leaf node in the tree that has the same minimax value as
the root. We call any such leaf node a critical leaf. A game-
tree search algorithm computes V(root) by searching for a
critical leaf in the given game tree.

Depth-first algorithm is a specific class of game-tree
search algorithms that compute V(root) through a depth-
first search. It will evaluate the leaf nodes strictly from left
to right, under the order induced by the successor function
C(·). It is well known that the α-β algorithm is the optimal
depth-first algorithm in the sense that, for any game tree,
no depth-first algorithm can correctly compute V(root) by
evaluating fewer leaf nodes than α-β does (Pearl 1984).

The key idea of the α-β algorithm is to maintain an open
interval (α, β) when visiting any tree node s, such that a
critical leaf is possible to locate in the subtree under s only
if V(s) ∈ (α, β). In other words, whenever we know that
the value of s falls outside the interval (α, β), we can skip
over all leaf nodes under s without compromising correct-
ness. Algorithm 1 gives the psuedocode of the α-β algo-
rithm, which follows Figure 2 in (Plaat et al. 1996). Given a
tree node s and an open interval (α, β), the alphabeta proce-
dure returns a value g, which equals the exact value of V(s)
if α < g < β, but only encodes a lower bound of V(s) if
g ≤ α (a situation called fail-low), or an upper bound of
V(s) if g ≥ β (a situation called fail-high).

Note that Algorithm 1 accesses the external storage at
Line 4 and Line 22, which are unnecessary because the al-
gorithm never visits a tree node more than once. Indeed, the
basic version of the α-β algorithm does not require the exter-
nal storage at all. Here, we provide the “storage-enhanced”
version of α-β for the sake of introducing its successor al-
gorithm MT-SSS*.

Best-first algorithms and MT-SSS*
To a great extent, the pruning effect of the α-β algorithm
depends on the order that the leaf nodes are arranged in
the tree. In general, identifying and evaluating the “best”
node early tends to narrow down the (α, β) window more
quickly, thus more effectively pruning suboptimal nodes in
the subsequent search. In the best case, the optimal child
of any internal node is ordered first, and thus is visited be-
fore any other sibling node in the depth-first search. Knuth
and Moore (1975) prove that in this case the α-β algorithm
only needs to evaluate n1/2 leaf nodes, assuming n leaves
in total. In comparison, Pearl (1984) shows that this number
degrades to around n3/4 if the nodes are randomly ordered.
In the worst case, it is possible to arrange the nodes in such

1166



Algorithm 1: The α-β algorithm enhanced with storage.
1 g ← alphabeta(root, −∞, +∞) ;
2 return g
3 Function alphabeta(s, α, β)

4

retrieve [v−s , v
+
s ] ;

if v−s ≥ β then return v−s ;
if v+s ≤ α then return v+s ;

5 if s is a leaf node then
6 g ← R(s) ;
7 else if s is a MAX node then
8 g ← −∞ ; αs ← α ;
9 foreach c ∈ C(s) do

10 g ← max{ g , alphabeta(c, αs, β) } ;
11 αs ← max{ αs , g } ;
12 if g ≥ β then break;
13 end
14 else if s is a MIN node then
15 g ← +∞; βs ← β ;
16 foreach c ∈ C(s) do
17 g ← min{ g , alphabeta(c, α, βs) } ;
18 βs ← min{ βs , g } ;
19 if g ≤ α then break;
20 end
21 end

22

if g < β then v+s ← g;
if g > α then v−s ← g;
store [v−s , v

+
s ] ;

23 return g

a way that the α-β algorithm has to evaluate all of the n leaf
nodes in the tree.

Best-first algorithm is a class of algorithms that always try
to evaluate the node that currently looks more “promising”
(to be or contain a critical leaf). In particular, The SSS* algo-
rithm, first proposed by Stockman (1979) and later revised
by Campbell (1983) , is a classic best-first algorithm that
is guaranteed to “outprune” the α-β algorithm in the sense
that: SSS* never evaluates a leaf node that is not evaluated
by α-β, while for some problem instances SSS* manages
to evaluate fewer leaf nodes than α-β. The SSS* algorithm
is based on the notion of solution tree. The basic idea is to
treat each MAX node as a cluster of solution trees, and to
always prefer to search the leaf node that is nested in the
solution-tree cluster currently with the best upper bound.

Interestingly, Plaat et al. (1996) show that SSS*, as a best-
first algorithm, can be implemented as a series of storage-
enhanced depth-first searches. Each pass of such a depth-
first search is called a Memory-enhanced Test, so this version
of SSS*is also called MT-SSS*. Plaat et al. prove that for
any game tree, MT-SSS* visits the same set of leaf nodes in
the same order with the original SSS* algorithm.

Algorithm 2 gives the psuedocode of MT-SSS*. Instead
of directly determining the exact value of V(root) in a sin-
gle pass, the algorithm iteratively calls the alphabeta pro-

Algorithm 2: The MT-SSS* algorithm.
1 [v−s , v

+
s ]← [−∞,+∞] for every s ∈ S;

2 while v−root < v+root do
3 alphabeta(root, v+root − 1, v+root) ;
4 end
5 return v−root

cedure (in Algorithm 1) to refine the value bounds of the
root until the gap between the bounds is closed. Each pass
of the alphabeta procedure is for examining the same ques-
tion: Is the current upper bound of the root tight? The algo-
rithm calls the alphabeta procedure with the minimum win-
dow (v+root − 1, v+root),

2 which forces the procedure to only
visit the leaf nodes “relevant” to this question. In this case
the alphabeta procedure will answer this question by return-
ing either a new upper bound that is lower than the original
bound v+root, or a matching lower bound that equals v+root.
Note that the alphabeta procedure stores value bounds in
the external storage, so latter iterations can re-use the results
gained in previous iterations, avoiding repeated work. Since
SSS* has been proven to outprune α-β, the total number of
leaf-node evaluations over all passes of minimum-window
searches in MT-SSS* will never exceed the number made
by a single pass of full-window search. On the other hand,
in cases when the given game tree is in a “bad” order, the
best-first working style of MT-SSS* can help to significantly
reduce the number of leaf-node evaluations.

Monte Carlo Tree Search and UCT
While α-β and MT-SSS* can offer substantial improvement
over exhaustive tree search, both of them still have to run in
time exponential to the depth of the tree (Pearl 1984), which
limits the tree size they can directly deal with. In practice,
these algorithms typically need to be complemented with a
static evaluation function that can make heuristic estimation
on the minimax value of an arbitrarily given non-leaf node,
resulting in the “bounded look-ahead” paradigm (Reinefeld
and Marsland 1994). In such a paradigm, an internal node
s may be considered as a “virtual leaf node” (or frontier
node) under certain conditions, and in that case the evalu-
ation function is applied to give the reward value of this vir-
tual leaf node, with the whole sub-tree under s being cut-off
from the tree search. The hope is that the evaluation function
can reasonably approximate V(s) at these virtual leaf nodes
such that the result of searching only the partial tree above
these virtual leaves is similar to the result of a complete tree
search. However, depending on domains it can sometimes be
highly challenging to design a satisfactory evaluation func-
tion and cut-off conditions.

Monte Carlo Tree Search (MCTS) is an alternative algo-
rithmic paradigm that can evaluate large game trees with-
out sophisticated evaluation functions (Coulom 2006). As
a specific class of rollout algorithms, MCTS algorithms re-
peatedly perform rollouts in the given game tree and use the

2Recall that the rewards are assumed to be integers, in which
case the open interval (x−1, x) is essentially empty if x is integer.

1167



average outcome of the rollouts to approximate the minimax
value of the tree (Abramson 1990).

Among others, the UCT algorithm is a particular instance
of MCTS algorithms that has drawn a lot of attention in
the community (Kocsis and Szepesvári 2006). At a tree
node s, the algorithm uses a deterministic rollout policy that
computes for each successor node c a score UCT (c) =

µc+λ
√
lnns/nc, where µc is the average reward of the pre-

vious rollouts passing through c, nc is the number of such
rollouts, and ns is the number of rollouts through s. Then
the algorithm simply chooses the successor node with the
highest score. One can check that the UCT score will ap-
proach to the average reward µc if the current node s has
been extensively visited. In contrast, when the sample size
ns is small, less-visited successor nodes can get substantial
bonus in their score, thus may get chance to be explored
even if it has a low average reward µc. The trade-off be-
tween exploitation and exploration can be controlled by fine-
tuning the parameter λ, such that the resulting footprints of
the rollouts are “softly” biased to the most promising varia-
tions. Kocsis and Szepesvári (2006) proved that the outcome
of UCT always converges to the minimax value V(root) if
given infinite time.

A Family of Rollout Algorithms
Rollout algorithms perform a rollout by iteratively select-
ing a successor node at each node s along a top-down path
starting from the root. In general, a rollout algorithm may
select the successor node according to an arbitrary probabil-
ity distribution over the whole children list C(s). However,
the idea of α-β pruning suggests that it may be unnecessary
to consider every successor node for computing the value of
V(root). In this section we present a family of rollout algo-
rithms that follows this observation by restricting the suc-
cessor node selection to be over a subset of C(s). As shown
later, this family of rollout algorithms naturally encompasses
the ideas of traditional minimax search algorithms.

Recall that at any time we know from the external storage
a value range [v−c , v

+
c ] for each tree node c ∈ S . We start

with identifying an important property of the knowledge in
the storage. Specifically, we say that the storage is valid with
respect to a given game tree T if v−s ≤ V(s) ≤ v+s for
any node s in T . Moreover, we define that a valid storage is
coherent to the given game tree if its validity is robust to the
uncertainty itself claims.

Definition 1. Given a game tree T = (S, C,V), a storage
M = {[v−s , v+s ]}s∈S is coherent, with respect to T , if i) M
is valid to T ; and ii) For any leaf node c ∈ S and for any
r ∈ [v−c , v

+
c ], let T ′ = (S, C,V ′) be the game tree obtained

by setting R(c) = r in the original tree T , M is valid to T ′.

A coherent storage enables a sufficient condition to ignore
a tree node c (as well as the subtree rooted at c) in the search
for the value of V(root). Specifically, let P(c) be the set of
tree nodes between and including the root node and node c
(so P(root) = {root}). For each tree node c, define [αc, βc]
as the intersection interval of the value ranges of all nodes in

P(c). That is,

[αc, βc] =
⋂

s∈P(c)

[v−s , v
+
s ], (2)

or equivalently, in practice we can compute αc and βc by

αc = max
s∈P(c)

v−s , βc = min
s∈P(c)

v+s . (3)

The following lemma shows that if the uncertainty in the
storage is coherent, then under certain condition, not only
is the value range [v−root, v

+
root] stable to the “disturbance”

from lower layers of the tree, but the exact minimax value
V(root) is also stable. The key insight is to see that both
max and min are monotone value functions.
Lemma 1. Given any game tree T = (S, C,V), let M =
{[v−s , v+s ]}s∈S be a storage coherent to T . For any leaf node
c ∈ S and for any r ∈ [v−c , v

+
c ] , let T ′ = (S, C,V ′) be the

game tree obtained by setting R(c) = r in the original tree
T , then V ′(root) = V(root) if αc ≥ βc.

Proof. First observe that the lemma trivially holds when the
leaf node c is at depth 1, i.e. when it is the root node – in
that case we have [αc, βc] = [v−root, v

+
root], and thus αc ≥ βc

implies v−root = v+root if the storage M is valid. For leaf
node c with a depth larger than 1, by induction we only need
to prove the lemma assuming that it holds for all ancestor
nodes of the c (or equivalently, for each such ancestor node
we assume the lemma holds for another tree in which the
subtree of this ancestor node is pruned).

Let s be the parent node of c. For contradiction assume
c could affect the value of root, i.e., for leaf node c with
αc ≥ βc, V ′(root) 6= V(root) when R(c) changes to some
r ∈ [v−c , v

+
c ]. In that case we must have αs < βs, because

otherwise s cannot affect the value of the root (which is as-
sumed by induction), and neither can its successor node c.

Now we have αs < βs and αc ≥ βc. Recall that
[αc, βc] = [αs, βs] ∩ [v−c , v

+
c ], which means we have either

(i) v−c = v+c , in which case the lemma trivially holds; or (ii)
βs ≤ v−c ; or (iii) v+c ≤ αs. We only discuss case (ii) in the
following, and the argument for case (iii) is symmetrical.

Since βs ≤ v−c , and by Eq.(3), βs = mint∈P(s) v
+
t , there

must exist a node s∗ ∈ P(s) such that v+s∗ ≤ v−c . That
is, there is no overlap between the value ranges of c and
s∗ (except the boundary). Now we suppose R(c) = v−c in
T , and prove that V ′(s∗) = V(s∗) if R(c) increases from
v−c to any r > v−c . In that case it immediately follows that
the value of s∗ must also remain constant if R(c) is further
changing between such r’s (because any of them equals the
V(s∗) when R(c) = v−c ).

The key insight is to see that both the max function and
the min function are monotone, and so does any recursive
function defined by Eq.(1). Specifically, because v+s∗ ≤ v−c ,
and because v+s∗ is valid upper bound, we have V(s∗) ≤ v−c .

Case 1: When V(s∗) = v−c . Because V ′(·) is monotone
and r > v−c , we have V ′(s∗) ≥ V(s∗) = v−c . On the other
hand, recall that we already have v+s∗ ≤ v−c , and because the
storage M is valid to T ′, we must have V ′(s∗) ≤ v+s∗ ≤ v−c .
For both the inequalities about V ′(s∗) to be true, the only
possibility is V ′(s∗) = v−c , and thus V ′(s∗) = V(s∗).

1168



B

C

A

D FE E

α β 

C

A B

E

αc βc 

C

A B

(a) (b) (c)

α β 

Figure 1: Illustration of one downward step in the rollout process of Algorithm 3.

Case 2: When V(s∗) < v−c . Because V(c) = v−c , we have
V(s∗) < V(c). One can check that in this case there must
exist an s′ and its successor node c1, both on the path be-
tween s∗ and c (included), such that V(s′) < v−c ≤ V(c1).
Notice that this can only happen when s′ is a MIN node
and there is another successor node of s′, denoted by c2,
such that V(c2) = V(s′) < V(c1). In other words, the
value of s′ must be currently dominated by c2, and not by
c1. Again, due to the monotonicity of the minimax func-
tion, when R(c) increases from v−c to r > v−c , the value
of c1 must become even larger, if ever changed. On the
other hand, all the other successor nodes of s∗ – including
c2 – are not ancestors of c, so their values will not change
when R(c) changes. Therefore, we know that the value of
s′ must still be dominated by c2 after R(c) changes, i.e.
V ′(s′) = V ′(c2) = V(c2) = V(s′). Since s′ is on the path
between s∗ and c, we also have V ′(s∗) = V(s∗).

Finally, since we have proven that the leaf node c cannot
affect the value of its ancestor node s∗, it immediately fol-
lows that c cannot affect the root node either, a contradiction
to the assumption made at the beginning of the proof.

Since Lemma 1 guarantees that a successor node c with
αc ≥ βc cannot affect V(root) (nor does any node in the
subtree of c), it is safe for rollout algorithms to select suc-
cessor nodes, at any node s, only from the collection of suc-
cessor nodes with αc < βc, denoted by

As = {c ∈ C(s) | αc < βc}. (4)

Algorithm 3 presents a family of rollout algorithms that em-
bodies this idea. Algorithms in this family keep performing
rollouts until the value range [v−root, v

+
root] is closed. In each

round of rollout, the specific rollout trajectory depends on
the SelectionPolicy() routine, which selects a successor node
c∗ from the subsetAs for the next move. The selection of c∗
can be either based on deterministic rules or sampled from
a probability distribution over As. An algorithm instance of
this family is fully specified once the SelectionPolicy routine
is concretely defined.

To keep the storage coherent, Algorithm 3 updates the
value range [v−s , v

+
s ] for each node s along the trajectory of

rollout, in a bottom-up order. The value bounds are updated
directly based on the minimax function defined by Eq.(1). It
is not hard to see that the storage of Algorithm 3 is always
in a coherent state after each round of the rollout. Finally,
Algorithm 3 computes αc and βc in an incremental way, as
illustrated by Figure 1.

Algorithm 3: A family of rollout algorithms.
1 [v−s , v

+
s ]← [−∞,+∞] for every s ∈ S;

2 while v−root < v+root do
3 rollout(root, v−root, v

+
root) ;

4 end
5 return v−root

6 Function rollout(s, αs, βs)
7 if C(s) 6= ∅ then
8 foreach c ∈ C(s) do
9 [αc, βc]← [max{αs, v−c },min{βs, v+c }] ;

10 end
11 As = {c ∈ C(s) | αc < βc} ;

12 c∗ ← SelectionPolicy(As) ;
rollout(c∗, αc∗ , βc∗) ;

13 end

14 v−s ←


R(s) if s is Leaf
maxc∈C(s) v

−
c if s is Internal & MAX

minc∈C(s) v
−
c if s is Internal & MIN ;

15 v+s ←


R(s) if s is Leaf
maxc∈C(s) v

+
c if s is Internal & MAX

minc∈C(s) v
+
c if s is Internal & MIN ;

16 return

In the following, we present some nice properties that are
shared between all algorithms in the family of Algorithm 3.
First, Lemma 2 shows that all data structures used in Algo-
rithm 3 changes monotonically over time.

Lemma 2. Given any game tree T , and under any selection
policy (deterministic or randomized), for any s ∈ S, the set
of As in Algorithm 3 is non-increasing over time, and so do
for the intervals [v−s , v

+
s ] and [αs, βs].

Proof. It can be directly seen that the interval [v−s , v
+
s ] can

never increase in Algorithm 3. By definition, i.e. Eq.(3), this
implies the non-increasing monotonicity of [αs, βs], which
in turn implies the monotonicity of As, due to Eq.(4).

Lemma 2 suggests that once a node is excluded from As,
it cannot come back. In that sense, the rollout algorithms
of Algorithm 3 is indeed using As to prune the game tree.
On the other hand, one might worry that some algorithm

1169



in this family could potentially be “stuck” at some point,
when there is no candidate in the subset As. It turns out that
this can never happen, regardless of the selection policy the
algorithm is using.
Lemma 3. Given any game tree T , and under any selection
policy (deterministic or randomized), Algorithm 3 always
runs the rollout() procedure on node s such that As = ∅
if and only if C(s) = ∅.

Proof. It is sufficient to prove that if Algorithm 3 visits a
non-leaf node s (i.e. C(s) 6= ∅), then As 6= ∅. We prove
this by showing that for any non-leaf node s that Algorithm
3 visits, there always exists at least one successor node c ∈
C(s) such that [v−c , v

+
c ] ⊇ [v−s , v

+
s ], i.e. c has a wider (or the

same) value range than s.
We only discuss the case when s is a non-root MAX

node. The argument is similar in other cases. If s is an in-
ternal MAX node, according to Algorithm 3 we have v+s =
maxc∈C(s) v

+
c , so there exists a successor node c∗ such that

v+c∗ = v+s . On the other hand, since v−s = maxc∈C(s) v
−
c , we

have v−c∗ ≤ v−s . Thus, [v−c∗ , v
+
c∗ ] ⊇ [v−s , v

+
s ].

Given such a successor node c∗, let t be the parent node of
s, according to Algorithm 3 we have αs = max{αt, v−s } =
max{αt, v−s , v−c∗} = max{αs, v−c∗} = αc∗ . Similarly we
also have βs = βc∗ . Because Algorithm 3 visits node s, we
must have αs < βs, thus αc∗ < βc∗ , thus c∗ is in As.

Finally, we observe that the family of Algorithm 3 is con-
sistent, in the sense that all algorithm instances in the family
always return the same result, and this policy-independent
result of Algorithm 3 is always correct, as Theorem 1 shows.
Theorem 1. Given any game tree T and under any selec-
tion policy (deterministic or randomized), Algorithm 3 never
visit a leaf node more than once, and always terminates with
v−root = v+root = V(root).

Proof. First, we see that Algorithm 3 never visits a node c
with v−c = v+c , because in that case αc = βc. The first time
Algorithm 3 visits a leaf node s, it sets v−s = v+s = R(s),
so the algorithm never re-visits a leaf node, which means it
will have to terminate, at its latest, after visiting every leaf
node. According to Line 2, we have v−root = v+root at that
time. Since the way Algorithm 3 updates the value bounds
guarantees that they are always valid – that is, at any time
we have v−s ≤ V(s) ≤ v+s for any node s – we know that
v−root must equal V(root) when v−root = v+root.

Note that Theorem 1 shows a stronger “consistency”
property than that of some other rollout algorithms, such as
UCT (Kocsis and Szepesvári 2006), which only guarantees
to converge to V(root) if given infinite time. In contrast, Al-
gorithm 3 never re-visits a leaf even under a probabilistic
rollout policy, thus always terminating in finite time.

Two Rollout Policies: α-β and MT-SSS*
Since the rollout family of Algorithm 3 uses an α-β win-
dow to prune tree nodes during the computation, one may
wonder how the classic game-tree pruning algorithms are
compared to Algorithm 3. In this section we show that two

simple “greedy” policies in the family of Algorithm 3 are
equivalent, in a strict way, to an “augmented” version of the
classic α-β and MT-SSS* algorithm, respectively.

To establish the strict equivalence, we introduce a variant
of the classic alphabeta procedure, as Algorithm 4 shows,
which differs from the alphabeta procedure of Algorithm 1
only in two places: (1) The classic alphabeta procedure in
Algorithm 1 only returns a single value of g, but the alpha-
beta2 procedure in Algorithm 4 transmits a pair of values
{g−, g+} between its recursive calls. (2) The classic alpha-
beta procedure in Algorithm 1 initializes the (αs, βs) win-
dow directly with the received argument (α, β), while the al-
phabeta2 procedure in Algorithm 4 will further trim [αs, βs]
with the value range [v−s , v

+
s ].

Before comparing these two versions more carefully, we
first establish the equivalence between the alphabeta2 pro-
cedure, as well as the MT-SSS* algorithm based on the al-
phabeta2 procedure, with two simple rollout policies of the
algorithm family proposed in the last section. Specifically,
Theorem 2 shows that the alphabeta2 procedure is equiva-
lent to a “left-first” policy of Algorithm 3, in the sense not
only that they have the same footprints in leaf evaluation,
but also that given any coherent storage (not necessarily an
“empty” storage), they always leave identical content in their
respective storages when terminating. This means they are
still equivalent in a reentrant manner, even when used as
subroutines by other algorithms.
Theorem 2. Given any game tree T = (S, C,V) and any
coherent storage M = {[v−s , v+s ]}s∈S , Algorithm 3 always
evaluates the same set of leaf nodes in the same order as
the “augmented” α-β algorithm (Algorithm 4) does, if Al-
gorithm 3 is using the following selection policy:

c∗ = the leftmost c in As. (5)

Moreover, let Mrollout and Mαβ be the storage states when
Algorithm 3 and Algorithm 4 terminate, respectively. We
have Mrollout =Mαβ , when the policy of Eq.(5) is used.

Proof idea. Due to page limit we only give some intuition
here. To see the equivalence between the two algorithms,
consider the moment when the execution of Algorithm 3 at
a node s is about to end (for example, imagine we are at
Line 16). According to the rollout paradigm, the algorithm
will now update the value bounds of all ancestor nodes of
s, then re-start another rollout round from the root. Under
the specific policy of Eq.(5), the rollout process will always
select, at each layer of the tree, the leftmost active node c.
Here, by active we mean αc < βc. Notice that s is chosen
in the current round of rollout, which means all nodes at the
left side of s (in the same layer) are already “inactive”. Since
Lemma 2 shows that the [α, β] window is non-increasing for
any node, the current node swould still be chosen in the next
round of rollout as long as it is active at that time.

The key insight of the proof is to see that, in Algorithm 3,
we can indeed locally compute at node s its window [αs, βs]
of the next round, without bothering to update any ancestor
node of s through back-propagation. This observation en-
ables us to make lossless decision at node s: If we “foresee”
that αs < βs in the next round, we can immediately start

1170



a new rollout from node s (rather than from the root node),
as the rollout from the root will go through s anyway; Oth-
erwise if αs ≥ βs in the next round, we just leave node
s and continue the back-up phase, in which case we know
that the rollout will never come back to s later. Note that the
nodes below s can also play this trick, “pretending” that it is
running a single round of rollout in the view of s and other
ancestors. Extending this to the whole tree, we essentially
re-write the original rollout algorithm into a backtracking
algorithm. Further combined with some other optimizations,
we finally arrive at the alphabeta2 procedure in Algorithm 4.

The complete proof consists of a series of equivalent
transformations of algorithms, which can be found in our
full paper (Huang 2014).

It is easy to see from Theorem 2 that the MT-SSS* algo-
rithm, if using the “augmented” alphabeta2 procedure, can
also be implemented by a sequence of rollouts with the “left-
first” policy, although such a rollout algorithm will not be-
long to the family of Algorithm 3. Interestingly, however,
it turns out that the “augmented” MT-SSS algorithm can be
encompassed by the rollout paradigm in a more unified way.
In fact, Theorem 3 shows that the MT-SSS* algorithm is
strictly equivalent to another policy of the same rollout fam-
ily of Algorithm 3. Instead of selecting the leftmost node as
the rollout policy of α-β does, the rollout policy of MT-SSS*
selects the node with the largest βc.

Theorem 3. Given any game tree T = (S, C,V) and any
coherent storage M = {[v−s , v+s ]}s∈S , Algorithm 3 always
evaluates the same set of leaf nodes in the same order as
the “augmented” MT-SSS* algorithm (Algorithm 2 + Algo-
rithm 4) does, if Algorithm 3 is using the following selection
policy:

c∗ = the leftmost c in arg max
c∈As

βc (6)

Moreover, let Mrollout and MSSS∗ be the storages when Al-
gorithm 3 and Algorithm 4 terminate, respectively. We have
Mrollout =MSSS∗ , when the policy of Eq.(6) is used.

Proof idea. Again we only give the proof ideas here, and the
complete proof can be found in our full paper (Huang 2014).
Since Theorem 2 already proves the strict equivalence be-
tween the alphabeta2 procedure and the “leftmost” policy,
it directly follows that the MT-SSS* algorithm is equivalent
to repeatedly calling rollout(root, v+root − 1, v+root)until the
range [v−root, v

+
root] is closed.

Now we only need to prove that the “minimal-window
rollouts” under the left-most policy (i.e. Eq.(5)) is equiva-
lent to the “full-window rollouts” under the max-βc policy
(i.e. Eq.(6)). It is not hard to see that in the minimal-window
rollouts, every active successor node must have v+c ≥ v+root,
thus we can conclude that the leftmost policy essentially
choose the leftmost active node with v+c ≥ v+root. achieves
what we want. The key insight is to see that full-window
rollouts under the max-βc policy will do exactly the same.

Specifically, let s be the current node at some moment
during the rollouts. By induction we can assume that s has
v+s ≥ v+root, which means s must have at least one suc-
cessor node c with v+c ≥ v+root. In fact, all such successor

Algorithm 4: A variant of the alphabeta procedure,
which returns a pair of value bounds.

1 return alphabeta2(root, −∞, +∞)

2 Function alphabeta2(s, α, β)
3 retrieve [v−s , v

+
s ] ;

4 [αs, βs]← [max{α, v−s },min{β, v+s }] ;
5 if αs ≥ βs then return [v−s , v

+
s ];

6 if s is a Leaf node then
7 [g−, g+]← [R(s), R(s)] ;
8 else if s is a MAX node then
9 [g−, g+]← [−∞,−∞] ;

10 foreach c ∈ C(s) do
11 {g−c , g+c } ← alphabeta2(c, αs, βs) ;
12 [g−, g+]← [max{g−, g−c },max{g+, g+c }];
13 [αs, βs]← [max{αs, g−c }, βs] ;
14 end
15 else if s is a MIN node then
16 [g−, g+]← [+∞,+∞] ;
17 foreach c ∈ C(s) do
18 {g−c , g+c } ← alphabeta2(c, αs, βs) ;
19 [g−, g+]← [min{g−, g−c },min{g+, g+c }] ;
20 [αs, βs]← [αs,min{βs, g+c }] ;
21 end
22 end

23
[v−s , v

+
s ]← [g−, g+] ;

store [v−s , v
+
s ] ;

24 return {g−, g+}

node c will have the same βc = v+root. This is because by
definition βc equals the minimum among the upper bounds
of nodes between the root and the node c and by induc-
tion this minimum upper bound must the root’s, i.e. v+root.
It then immediately follows that the max-βc policy will have
to choose the leftmost one of these successor nodes (which
has v+c ≥ v+root) in this case.

The “augmented” α-β and MT-SSS*
Given the strict equivalence between the rollout algorithms
of Algorithm 3 and classic tree-search algorithms based on
the alphabeta2 procedure, we now examine the relationship
between the two variants of α-β presented in Algorithms
1 and 4. As mentioned before, the alphabeta2 procedure in
Algorithm 4 captures every aspect of the original alphabeta
procedure in Algorithm 1 except for two differences.

The alphabeta procedure in Algorithm 1 returns a single
value of g, while the alphabeta2 procedure in Algorithm 4
returns a value pair {g−, g+}. From the psuedo-code one
can check that g = g− = v−s when it is a fail-high and g =
g+ = v+s when it is a fail-low, otherwise g = g− = g+ =
V(s). This is consistent with the well-known protocol of the
original α-β algorithm. The difference is that the alphabeta2
procedure tries to update both bounds even in fail-high and
fail-low cases. As a result, we can expect that in some cases

1171



the alphabeta2 procedure will result in a storage with tighter
value bounds than the one of the classic alphabeta procedure.

Meanwhile, the classic alphabeta procedure in Algorithm
1 initializes the (αs, βs) window directly with the received
argument (α, β), while the alphabeta2 procedure in Al-
gorithm 4 will further trim [αs, βs] with the value range
[v−s , v

+
s ]. In other words, even given the same storage, the

alphabeta2 procedure may have a tighter pruning window
than its counterpart.

While the second difference may look like a small trick at
the implementation level, we believe that the “single-bound
v.s. double-bound” disparity is an inherent difference be-
tween the two versions. Since the storage-enhanced α-β al-
gorithm requires maintaining a pair of bounds anyway (even
for the “single-bound” version), it makes sense to update
both of them effectively at run time.

Interestingly, the “single-bound” vesion of the alphabeta
procedure performs exactly as well as its “double-bound”
version if they are working on an empty storage with only
one pass. This is directly followed from the well-known fact
that the classic alphabeta procedure is per-instance optimal
in all directional algorithms (Pearl 1984). However, when
used as subroutines, they will behave differently. It turns out
that the MT-SSS* algorithm using the alphabeta2 procedure
can outprune the one based on the single-bound version.

Theorem 4. Given any game tree T , let Lsss∗ be the se-
quence of leaf nodes evaluated by the original MT-SSS*
algorithm that calls Algorithm 1, and let Lsss+ be the se-
quence of leaf nodes evaluated by the “augmented” MT-
SSS* algorithm that calls Algorithm 4, then Lsss+ is a sub-
sequence of Lsss∗ .

Related Work
In terms of the techniques used in this paper, the idea of
maintaining pairs of value bounds in an in-memory tree (and
updating the bounds in a bottem-up manner) was proposed
by Hans Berliner in the B* algorithm (Berliner 1979). More
recently, Walsh, Goschin, and Littman (2010) proposed the
FSSS algorithm, a rollout algorithm that updates the value
bounds [v−s , v

+
s ] in the same way as Algorithm 3, in order to

have a theoretical guarantee of its performance when used
in reinforcement-learning applications. An algorithm with
similar idea was also proposed in the context of game-tree
evaluation (Cazenave and Saffidine 2011).

Weinstein, Littman, and Goschin (2012) further adapted
the FSSS algorithm into the game tree model and proposed a
rollout algorithm that outprunes the α-β algorithm. Their al-
gorithm also uses an (α, β) window to filter successor nodes,
but the window is manipulated in a different way from the al-
gorithm family proposed in this paper. Furthermore, there is
no domination between MT-SSS* and their algorithm, while
in this paper we argue that α-β and MT-SSS* themselves
can be unified under the rollout framework of Algorithm 3.

Chen et al. (2014) have recently presented a rollout algo-
rithm that captures the idea of the MT-SSS* algorithm. Their
algorithm uses the null window (v+root − 1, v+root) to filter
nodes, and thus does not manipulate the window at all during
rollouts. Besides, they did not formally characterize the re-

lationship between MT-SSS* and their null-window rollout
algorithm. Interestingly, the analysis of this paper suggests
that their algorithm is not exactly equivalent to the original
MT-SSS* algorithm.

Conclusion
Results from this paper suggest that the rollout paradigm
could serve as a unified framework to study game-tree eval-
uation algorithms. In particular, Theorems 2 and 3 show that
some classic minimax search algorithms could be imple-
mented by rollouts. This observation implies that we could
collect information in a single rollout for both minimax
pruning and MCTS sampling. In light of this, we may de-
sign new hybrid algorithms that naturally combine MCTS
algorithms with traditional game-tree search algorithms.

For example, by Theorem 3 we see that MT-SSS* cor-
responds to a rollout algorithm that prefers successor node
with the largest “absolute” upper-influence-bound βc, which
is powerful in completely pruning nodes without compro-
mising correctness. But the values of βc propagate upwards
slowly in large game trees. As a result, most nodes in the
upper layers of the tree may be left with the non-informative
bound +∞ at the early running stage of the algorithm, in
which case the MT-SSS* policy is essentially blind. On
the other hand, the UCT score can be seen as an upper
bound “with some confidence”, which is able to provide
informative guidances with much less rollouts, but could
respond slowly to the discriminative knowledge collected
in the search, probably due to its “amortizing” nature (Ra-
manujan, Sabharwal, and Selman 2012).

In light of this complementary role between βc and the
UCT score, one possible way to combine the ideas of UCT
and MT-SSS* is to select successor nodes based on a prior-
itized rule considering upper bound information with differ-
ent confidences. Such an algorithm may first check the upper
bound with the absolute confidence (i.e., βc). When there is
a tie, the algorithm turns to consider bounds with less con-
fidence, and selects the node with the largest UCT score.
Given a game tree, we expect that such an algorithm will
first follow the UCT score at the beginning, as essentially
all tree nodes have the same upper bound βc = +∞ at that
time. The hope is that the UCT score may be more likely to
guide the rollouts to good “successor nodes” than the blind
tie-breaking rule of the original MT-SSS* algorithm does,
and thus better “ordering” the search/rollout trajectories. If
these preferred nodes turn out to be sub-optimal, their abso-
lute upper bounds βc will later drop below αc, turning the
rollout to other candidates immediately. In the end, the al-
gorithm will completely shift to the MT-SSS* mode. It may
be an interesting future work to test the performance of this
hybrid algorithm in real-world benchmarks.

Meanwhile, it would also be interesting to see how the ob-
servations in this paper generalize to other models. For ex-
ample, it seems that Algorithm 3 could be adapted to an “in-
cremental” rollout algorithm when incorporating admissible
heuristic function at internal nodes (essentially an iterative-
deepening setting). Moreover, one could also consider the
problem in more general state-space topologies (such as
DAG) and/or value functions including operators other than

1172



max and min (such as the Weighted-Sum operator formu-
lated in stochastic games).

Acknowledgements
The author thanks Thomas Moscibroda (Microsoft Re-
search) and Aske Plaat (Leiden University) for their inspir-
ing comments on this work.

References
Abramson, B. 1990. Expected-outcome: A general
model of static evaluation. Pattern Analysis and Ma-
chine Intelligence, IEEE Transactions on 12(2):182–
193.
Baier, H., and Winands, M. H. 2013. Monte-carlo tree
search and minimax hybrids. In Computational Intelli-
gence in Games (CIG), 2013 IEEE Conference on, 1–8.
IEEE.
Berliner, H. 1979. The b tree search algorithm: A best-
first proof procedure. Artificial Intelligence 12(1):23–
40.
Bertsekas, D. P., and Castanon, D. A. 1999. Rollout
algorithms for stochastic scheduling problems. Journal
of Heuristics 5(1):89–108.
Bertsekas, D. P.; Tsitsiklis, J. N.; and Wu, C. 1997.
Rollout algorithms for combinatorial optimization.
Journal of Heuristics 3(3):245–262.
Campbell, M. S., and Marsland, T. A. 1983. A com-
parison of minimax tree search algorithms. Artificial
Intelligence 20(4):347–367.
Cazenave, T., and Saffidine, A. 2011. Score bounded
monte-carlo tree search. In Computers and Games.
Springer. 93–104.
Chen, J.; Wu, I.; Tseng, W.; Lin, B.; and Chang, C.
2014. Job-level alpha-beta search. IEEE Transactions
on Computational Intelligence and AI in Games.
Coulom, R. 2006. Efficient selectivity and backup op-
erators in monte-carlo tree search. In Computers and
games. Springer. 72–83.
Finnsson, H., and Björnsson, Y. 2008. Simulation-
based approach to general game playing. In AAAI, vol-
ume 8, 259–264.
Gelly, S.; Kocsis, L.; Schoenauer, M.; Sebag, M.; Sil-
ver, D.; Szepesvári, C.; and Teytaud, O. 2012. The
grand challenge of computer go: Monte carlo tree
search and extensions. Communications of the ACM
55(3):106–113.
Glover, F., and Taillard, E. 1993. A user’s guide to tabu
search. Annals of operations research 41(1):1–28.
Huang, B. 2014. Pruning game tree by roll-
outs. http://research.microsoft.com/
apps/pubs/?id=232042.
Knuth, D. E., and Moore, R. W. 1975. An analysis
of alpha-beta pruning. Artificial intelligence 6(4):293–
326.
Kocsis, L., and Szepesvári, C. 2006. Bandit based
monte-carlo planning. In Machine Learning: ECML
2006. Springer. 282–293.

Lanctot, M.; Saffidine, A.; Veness, J.; Archibald, C.;
and Winands, M. H. 2013. Monte carlo*-minimax
search. In Proceedings of the Twenty-Third interna-
tional joint conference on Artificial Intelligence, 580–
586. AAAI Press.
Marsland, T. A. 1986. A review of game-tree pruning.
ICCA journal 9(1):3–19.
Pearl, J. 1984. Heuristics. Addison-Wesley Publishing
Company Reading, Massachusetts.
Péret, L., and Garcia, F. 2004. On-line search for solv-
ing markov decision processes via heuristic sampling.
learning 16:2.
Plaat, A.; Schaeffer, J.; Pijls, W.; and de Bruin, A. 1996.
Best-first fixed-depth minimax algorithms. Artificial
Intelligence 87(1):255–293.
Ramanujan, R.; Sabharwal, A.; and Selman, B. 2012.
Understanding sampling style adversarial search meth-
ods. arXiv preprint arXiv:1203.4011.
Reinefeld, A., and Marsland, T. A. 1994. Enhanced
iterative-deepening search. Pattern Analysis and Ma-
chine Intelligence, IEEE Transactions on 16(7):701–
710.
Stockman, G. C. 1979. A minimax algorithm better
than alpha-beta? Artificial Intelligence 12(2):179–196.
Tesauro, G., and Galperin, G. R. 1996. On-line pol-
icy improvement using monte-carlo search. In NIPS,
volume 96, 1068–1074.
Walsh, T. J.; Goschin, S.; and Littman, M. L. 2010. In-
tegrating sample-based planning and model-based re-
inforcement learning. In AAAI.
Weinstein, A.; Littman, M. L.; and Goschin, S. 2012.
Rollout-based game-tree search outprunes traditional
alpha-beta. In EWRL, 155–167. Citeseer.
Zobrist, A. L. 1970. A new hashing method with ap-
plication for game playing. ICCA journal 13(2):69–73.

1173




