
Stochastic Local Search for Satisfiability Modulo Theories
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Abstract

Satisfiability Modulo Theories (SMT) is essential for many
practical applications, e.g., in hard- and software verification,
and increasingly also in other scientific areas like computa-
tional biology. A large number of applications in these areas
benefit from bit-precise reasoning over finite-domain vari-
ables. Current approaches in this area translate a formula over
bit-vectors to an equisatisfiable propositional formula, which
is then given to a SAT solver. In this paper, we present a novel
stochastic local search (SLS) algorithm to solve SMT prob-
lems, especially those in the theory of bit-vectors, directly
on the theory level. We explain how several successful tech-
niques used in modern SLS solvers for SAT can be lifted
to the SMT level. Experimental results show that our ap-
proach can compete with state-of-the-art bit-vector solvers on
many practical instances and, sometimes, outperform existing
solvers. This offers interesting possibilities in combining our
approach with existing techniques, and, moreover, new in-
sights into the importance of exploiting problem structure in
SLS solvers for SAT. Our approach is modular and, therefore,
extensible to support other theories, potentially allowing SLS
to become part of the more general SMT framework.

1 Introduction
Satisfiability Modulo Theories (SMT) represents the deci-
sion problem for logical formulas with respect to certain
background theories. It combines the problem of Bool-
ean satisfiability (SAT) with other areas, e.g., the theo-
ries of integers, real numbers, lists, arrays, and bit-vectors,
and has many different applications, predominantly in hard-
and software verification (De Moura and Bjørner 2009;
Barrett et al. 2009; Yuan, Pixley, and Aziz 2006; Godefroid,
Levin, and Molnar 2008; Naveh et al. 2007). While most
of the methods presented in this paper are generally applica-
ble, we focus on the theory of bit-vectors (quantifier-free and
fixed-size),which enjoys decidability, but pays the high price
of being NEXPTIME-complete, as (Kovásznai, Fröhlich,
and Biere 2012) have shown. Examples of state-of-the-
art SMT solvers with support for bit-precise reasoning are
Boolector (Brummayer and Biere 2009), MathSAT (Brut-
tomesso et al. 2008), and Z3 (De Moura and Bjørner 2008).
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Most approaches for solving this kind of formulas rely
on translating the input formula into SAT (dubbed ‘bit-
blasting’) and then handing it to a SAT solver, most often
of the conflict driven clause learning (CDCL) kind. In this
paper, we present a novel stochastic local search (SLS) al-
gorithm to solve bit-vector formulas directly on the theory
level. SLS is a heuristic method which has always played an
important role in AI and is successfully applied to many dif-
ferent problems in various areas, e.g., see (Hoos and Stützle
2005). Today, SLS is not a usual ingredient in SMT solvers.
We intend to close this gap by providing an SLS algorithm
(specialized for the theory of bit-vectors), which is, for the
most part, easy to adapt for other theories. Besides avoid-
ing the blowup in size that often comes with bit-blasting,
applying SLS techniques on the bit-vector level has sev-
eral advantages. For example, structural information, i.e.,
word-level information, is used to guide the search directly.
In contrast, a CDCL SAT solver operating on the proposi-
tional representation is not aware of this information. Nev-
ertheless, it is possible to profit from techniques used in
SAT solving also in SLS on the SMT representation. We
show how several techniques that are common in SLS SAT
solvers are successfully lifted to the SMT level. In many
cases of practical applications (Yuan, Pixley, and Aziz 2006;
Godefroid, Levin, and Molnar 2008; Naveh et al. 2007), in-
put formulas are actually expected to be satisfiable, making
them well-suited for SLS algorithms. The idea of integrat-
ing SLS solvers with other solvers has been explored before,
either by employing an SLS solver on the Boolean skeleton
of a formula (Griggio et al. 2011), or by explicit incorpora-
tion of high-level constraints, either learned automatically,
or provided by the user (Naveh 2004). Apart from this,
model-driven techniques (though, not local search based)
exist for arithmetic theories (de Moura and Jovanovic 2013).

Our experimental results show that the SLS approach we
present is competitive with state-of-the-art bit-vector solvers
on many practical instances and that it frequently outper-
forms existing SMT solvers based on bit-blasting. While
we found that bit-blasting solvers are still faster overall, this
offers an interesting line of research combining SLS with
existing techniques, with the goal of improving the state-
of-the-art for SMT solvers. Although having undergone
years of developement, existing SLS solvers for SAT turn
out to perform worse than our approach, sometimes by or-
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ders of magnitude. From a theoretical point of view, the
importance of exploiting problem structure in SAT solvers
has often been conjectured and discussed (Thiffault, Bac-
chus, and Walsh 2004; Belov, Järvisalo, and Stachniak 2011;
Drechsler, Junttila, and Niemelä 2009; Järvisalo, Junttila,
and Niemelä 2005; Pham, Thornton, and Sattar 2007). Nev-
ertheless, previous attempts have not yielded in efficient
techniques that play a role in state-of-the-art solvers so far.
However, the performance of our algorithm clearly demon-
strates that SLS solvers can indeed benefit from structural
information during search.

The remaining part of the paper is structured as follows:
In Sect. 2, we define the logic and the input format that
we use. A brief overview about stochastic local search and
the architecture of our algorithm is presented in Sect. 3. In
Sect. 4, we give details and concrete implementations of all
components used in our algorithm. Furthermore, we de-
scribe how several techniques used in SLS solvers for SAT
are adopted for SMT. We present an experimental evaluation
in Sect. 5 and further discuss insights we gained, as well as
possible future work in Sect. 6. Finally, we compare our
approach to related work in Sect. 7 and conclude in Sect. 8.

2 Preliminaries
The theory of fixed-width bit-vector logics (i.e., logics
where each bit-vector has a given, fixed bit-width) is dis-
cussed in many different settings (e.g., (Barrett, Dill, and
Levitt 1998; Bjørner and Pichora 1998; Bruttomesso and
Sharygina 2009; Cyrluk, Möller, and Rue 1997; Franzén
2010)). Several different formats for bit-vector logics exist,
perhaps currently the most common being the SMT-LIB for-
mat (Barrett, Stump, and Tinelli 2010). In this paper, we use
a restricted definition of a bit-vector logic, which is the input
that our SLS algorithm accepts. This form of (simplified)
formulas is easily obtained through the means of any SMT
solver that has facilities for converting to Negation Normal
Form (NNF; we use Z3 as our SMT solver). A bit-vector
formula F in NNF is defined by the following grammar:

F = < oexpr > ∧ · · · ∧ < oexpr >
< oexpr > = < aexpr > ∨ · · · ∨ < aexpr >
< oexpr > = Atom | ¬Atom
< aexpr > = < oexpr > ∧ · · · ∧ < oexpr >
< aexpr > = Atom | ¬Atom

Atoms are either Boolean variables or relations (=,≤) be-
tween two bit-vector expressions. We refer to the top-level
expressions of F as assertions. It is easy to check that every
bit-vector formula can be translated to an equivalent one in
this grammar with only polynomial growth. To see this, con-
sider that ≤ can be replaced by a combination of < and =,
≥ by negation, and <, and if-then-else constructs by using
implications on the Boolean level. In some cases, to achieve
conversion in polynomial time (and space), it is helpful to
introduce Tseitin-variables.

The concrete definition of a bit-vector term is left open on
purpose; the exact syntax and semantics of the terms are not
relevant in the context of our approach. All common opera-
tors, e.g. those from SMT-LIB (Barrett, Stump, and Tinelli

2010), can be used to build arbitrary syntactically valid ex-
pressions. The only condition we require is that there is a
function to evaluate expressions if fixed input values are as-
signed to all variables they contain.

Example 1 As a running example, consider the assertion

x+ 1 = y − 1 ,

where x and y are bit-vectors of size n (sometimes a large
number), and the + and− operations are as usual, i.e., with
overflow semantics. If we initialize the search at x = 0 and
y = 0, or in vector notation, at

x = [0, . . . , 0] , y = [0, . . . , 0] ,

then the assertion evaluates to

[0, . . . , 0, 1] = [1, . . . , 1, 1] .

Assuming that the cost functions for = is the relative number
of bits that are assigned equal, an SLS SAT solver that im-
plements only single bit-flip moves will require n−1 moves,
each of which slightly improving the cost.

3 Architecture
Given an optimization problem, a generic local search algo-
rithm starts from an initial state and then iteratively moves
to a neighbouring state. For the problem of propositional
satisfiability, a state corresponds to a truth assignment to all
Boolean variables of a given formula. The neighbourhood
of a given assignment α is usually defined to be the set of
all assignments that have a Hamming distance of 1 from α.
Therefore, a neighbouring assignment is obtained by flip-
ping the value of a single Boolean variable and a search con-
sists of repeatedly flipping the values of Boolean variables
until a satisfying assignment is found. Most SAT solvers
consider input formulas in conjunctive normal form (CNF),
i.e. formulas which are sets of clauses. In that case, a scor-
ing function for evaluating the quality of an assignment and
optimizing is naturally given by the number of unsatisfied
clauses. Actual implementations mainly differ in the heuris-
tics used during the search (Hoos and Stützle 2005).

We use a similar architecture to obtain an SLS solver for
SMT problems by generalizing the notion of states to assign-
ments to theory variables; our focus being on fixed-size bit-
vector variables. A natural neighbourhood relation is then
given by the set of assignments that are reached by flipping
a single bit of a bit-vector variable, or the value of a Boolean
variable. In the following, whenever we use the term ‘vari-
able’ without giving an explicit specification of its type, the
variable is either a bit-vector variable or Boolean. When
we have a set that contains both types of variables and we
only give a certain definition for the bit-vector variables, we
implicitely treat Boolean variables as bit-vector variables of
bit-width 1. Extensions to this neighbourhood relation are
discussed in Sect. 4. Fig. 1 describes the high-level concept
of our SLS algorithm for SMT.

To drive the search and to evaluate the quality of an as-
signment, we require a scoring function. We define the score
s of a nested expression with respect to an assignment α re-
cursively as a floating value:
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for i = 1 to∞
α = initialize(F )
for j = 1 to maxSteps(i)
V = selectCandidates(F, α)
move = findBestMove(f, α, V )
if move 6= none then α = update(α,move)
else α = randomize(α, V )

Figure 1: Pseudo-Code of our SLS architecture for SMT.

s(e1 ∨ · · · ∨ en, α) = max{s(e1, α), . . . , s(en, α)}
s(e1 ∧ · · · ∧ en, α) = 1

n · (s(e1, α) + · · ·+ s(en, α))

Further, the score of an atom is defined by

s(x[1], α) = x|α
if the atom is a Boolean variable and, for 0 ≤ c1 ≤ 1, by

s(t
[n]
1 = t

[n]
2 , α) =

{
1 if t1|α = t2|α
c1 · (1− h(t1|α,t2|α)

n ) otherwise

s(t
[n]
1 ≤ t

[n]
2 , α) =

{
1 if t1|α ≤ t2|α
c1 · (1− t2|α−t1|α

2n ) otherwise
,

with h being the Hamming distance, if the atom is a bit-
vector expression. Negated atoms are evaluated analog-
ously. The constant c1 allows to focus on satisfying expres-
sions by scaling all unsatisfied atoms. It is easy to check that,
given a formula F and an assignment α, s(F, α) evaluates
to 1 if and only if α is a satisfying assignment for F .

4 Implementation
Note that the algorithm in Fig. 1 contains two loops. The
inner loop describes a single round of search, while the outer
loop is used to implement restarts after a certain number of
search steps. Facilities for restarts are not strictly required,
but they increase performance in practice.
Initialization. An initial assignment is generated by setting
all variables to some specific value. While SLS solvers for
SAT usually use random values to initialize Boolean vari-
ables, setting all bit-vectors to 0 can sometimes be beneficial
in the context of verification domains. Note that setting all
bit-vectors to 0 does not correspond to setting all Boolean
variables to 0 in the CNF representation. Without explicit
tracking, this information is usually lost during bit-blasting.
Candidate Selection. The time spent in each search step is
directly proportional to the number of possible moves that
are considered. Checking the full neighbourhood of an as-
signment is often expensive. To avoid this, we look at the
restricted neighbourhood with respect to certain candidate
variables. Since we are looking for a satisfying assignment
and our input formula is a conjunction of top-level asser-
tions, it is reasonable to consider those variables as candi-
dates that occur in at least one unsatisfied assertion. Chang-
ing any other variable cannot increase the score by defini-
tion. This is a well-known concept in SLS for SAT; simi-
lar to the one applied in selection heuristics of the so-called

class of GSAT algorithms. The set of candidate variables is
then further shrunk by considering only variables from one
unsatisfied assertion, which is selected according to some
heuristic beforehand. This is inspired by the so-called class
of WalkSAT algorithms for SAT. While this comes at the cost
of potentially missing the best move with respect to the score
function, the overall performance of the algorithm often im-
proves because it performs more moves per second and, at
the same time, it is guaranteed that each clause has at least
one variable with a wrong assignment. Further, not pick-
ing the best move with respect to the overall score is even
beneficial sometimes, because it offers some diversification
and makes the algorithm more robust with respect to local
minima of the search space. For those reasons, WalkSAT
architectures are often preferred for SAT. More details and
a discussion of the GSAT and WalkSAT architectures are
found in (Hoos and Stützle 2005).

For SAT, clause selection in most WalkSAT algorithms is
usually done randomly. However, recent work shows that
clause selection has a strong impact on the performance
of WalkSAT algorithms and random selection is sometimes
suboptimal. For example, breadth-first selection heuristics
sometimes achieve better results (Balint et al. 2014). Still,
clause selection has to be rather simple because SLS solvers
for SAT often perform several million moves per second. In
contrast, fast assertion selection is less important for our ar-
chitecture, due to the fact that a single move is much more
complicated compared to SAT. This allows us to use more
sophisticated heuristics for assertion selection without the
risk of it becoming the bottleneck of our algorithm.

Running some preliminary experiments showed that it
is frequently better to select assertions that already have
a high score (i.e., are almost satisfied). Given the results
from (Balint et al. 2014), it is likely that some diversification
is beneficial as well. Therefore, we use a heuristic inspired
by the field of bandit theory used in the UCB (Upper Con-
fidence Bounds) algorithm (Agrawal 1995). Let ai be the
assertions of a given formula and c2 be some constant. We
select the unsatisfied assertion that maximizes the term

s(ai, α) + c2 ·
√

log selected(ai)

moves
,

where selected(ai) is the number of times, the specific as-
sertion ai has already been selected and moves is the total
number of search steps that have been performed so far.
Move Selection. Given a candidate set, we inspect the
neighbourhood of the current assignment with respect to all
candidate variables. In particular, this implies evaluating
the score of each possible assignment obtained by flipping
any bit of any candidate variable. Given a set of candidate
variables {x[n1]

1 , . . . , x
[nk]
k }, the neighbourhood is of size

N = Σini. Compared to SAT, the neighbourhood used in
our architecture is way larger. Further, evaluating the score
function implies updating the whole formula. This is again
in contrast to SAT, where the score change is either cached
or easy to compute on the fly (Balint et al. 2014). Evaluat-
ing possible moves therefore is the bottleneck of our current
implementation. As pointed out in Sect. 3, we try to maxi-
mize the score function. One important feature to use during
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score computation is early pruning. In our solver, a formula
is saved in a directed acyclic graph (DAG) structure. When
evaluating a new assignment, we have to proceed bottom-
up. We start evaluating the atoms and then iteratively con-
tinue evaluating parent expressions. We do this in a breadth
first way and save all current expressions in a queue struc-
ture. Due to the definition of the score function and the fact
that our formula does not contain any negations other than
those at the atom level, we can immediately stop evaluating
a specific assignment if, at one point, the queue only con-
tains expressions with lower scores than those for the same
expressions with respect to the original assignment.

In the end, the move with the largest improvement in score
is selected. If no improvement in score is possible, no move
is returned. This is similar to the behaviour of many SLS
algorithms for SAT. For example, the state-of-the-art solver
Sparrow (Balint and Fröhlich 2010) also applies a similar
deterministic highest-reward strategy in one of its compo-
nents. In order to prevent getting stuck in local minima,
we optionally allow random walks (Selman, Kautz, and Co-
hen 1994). With a certain walk probability wp, a random
move is selected (even if it is non-improving). From a the-
oretical point of view, a random walk additionally causes
our algorithm to be probabilistically approximately com-
plete (PAC) (Hoos and Stützle 2005).

Example 2 Consider the assertion in Example 1 and the
state of the search being such that both variables are as-
signed 0 and of size n:

[0, . . . , 0, 1] = [1, . . . , 1, 1] .

While any single-bit flip would only increase the score by
1/n, negating either x or y improves the score by (n−2)/n,
assuming c1 = 1, resulting in either

[1, . . . , 1, 0] = [1, . . . , 1, 1], or
[0, . . . , 0, 1] = [0, . . . , 0, 0].

Update. After an improving move was found, the assign-
ment is updated and propagated through the DAG structure
of the formula. As mentioned before, scores are also stored
for each subexpression when updating, in order to allow
early pruning in the next search steps.
Randomization. Whenever no improving move was found,
we simply set one of the candidate variables to a random
value within its range and update all nodes in the formula
DAG. This strong kind of randomization enables the algo-
rithm to efficiently escape many local minima and allows to
traverse new parts of the search space. In contrast to ran-
dom walks during move selection, this part of the algorithm
is essential for solving practical instances. Nevertheless, us-
ing only this kind of randomization does not guarantee the
PAC-property from the theoretical point of view.
Assertion Weights. In SLS solvers for SAT, clause weight-
ing schemes were an important novelty and are part of
many efficient algorithms (Hoos and Stützle 2005). PAWS
was the first solver to apply an additive weighting scheme
and the same approach can still be found in many modern
solvers (Thornton et al. 2004). We adopted this approach
to SMT and used it to dynamically assign weights to the

top-level assertions of an input formula during search. Each
assertion ai of F gets assigned a weight wi. Initially, all
weights are set to 1. Updates occur whenever no increasing
move is possible, i.e., when we randomize, in the following
way: With probability (1−sp), increase the weight wi of all
unsatisfied assertions by c3. With probability sp, decrease
the weight wi of all satisfied assertions by c3 to a minimum
of 1. Whenever the score of the formula F with respect to an
assignment α is evaluated in order to select the best move,
we do so according to

s(F, α) = w1 · s(a1, α) + · · ·+ wn · s(an, α) .

Although this new score function is not normalized any-
more, this does not affect the correctness of the algorithm.
Restarts. While restarts are one of the most important fea-
tures of CDCL solvers, they are usually not beneficial in SLS
solvers for SAT. For our bit-vector approach restarts turn
out to be beneficial. We implemented an exponential restart
scheme, similar to those that are used in CDCL solvers,
specifically, the Luby scheme (Luby, Sinclair, and Zucker-
man 1993). We define the maximum number of steps in the
i-th round as

maxSteps(i) :=

{
c4, if i is odd
c4 · 2

i
2 , if i is even

This is different to existing schemes in the sense that it has
more very short runs but at the same time it grows faster.

Note that restarts in our implementation only refer to a re-
set of the current assignment. In contrast, they do not imply
a reset of information gathered during search, e.g., how of-
ten an assertion has already been selected or the weight of
an assertion. Preliminary experiments showed that it is ben-
eficial to keep those values. Intuitively, this allows learning
from previous runs to make better decisions in later ones.
Extended Neighbourhoods. As pointed out in Sect. 3, a
simple neighbourhood relation is given by flipping single
bits of bit-vector variables which is very similar to the neigh-
bourhood considered in SLS solvers for SAT. It is easy to
see that this neighbourhood relation already allows travers-
ing the full search space. Nevertheless, extended neighbour-
hoods tailored towards bit-vectors often have advantages.
We therefore included three additional moves for bit-vector
variables in our algorithm: Incrementing by 1, decrementing
by 1, and bitwise negation. Given a set of candidate vari-
ables {x[n1]

1 , . . . , x
[nk]
k }, the neighbourhood then is of size

N ′ = Σi(ni + 3). Considering the fact that ni often is 16 or
32 in bit-vector applications, the overhead is relatively small
and usually outweighted by the benefit of permitting those
natural bit-vector moves. We also tried implementing other
moves, such as shifts by 1, multiplication by 3, or unary mi-
nus, but could not further improve performance by doing so,
in general. For future work, it will be interesting to com-
bine our approach with techniques used in the context of
Variable Neighbourhood Search (VNS) (Mladenović 1995;
Hansen, Mladenovi, and Moreno Prez 2008). Preliminary
experiments showed promising results.
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Example 3 We left Example 2 at one of the two states:

(a) [1, . . . , 1, 0] = [1, . . . , 1, 1], or
(b) [0, . . . , 0, 1] = [0, . . . , 0, 0],

both of which are very close to solutions if our neighbour-
hood considers increment or decrement moves, e.g., x + 1
or y − 1 in (a), and x − 1 or y + 1 in (b). Thus we finally
arrive at a solution for this example in only two moves. Note
that the number of moves does not depend on the size of the
vectors; n separate bit-flip moves are replaced by two more
complex moves.

5 Experimental Results
To evaluate the performance of our algorithm, we ran exper-
iments on two different sets of benchmarks. The first bench-
mark family is the QF BV benchmark set, which can be
found in the SMT-LIB and is also part of the SMT Competi-
tion. The QF BV benchmark set is a huge and broad collec-
tion of benchmarks, consisting of many smaller families and
is the standard reference for measuring the performance of
bit-vector solvers. We ran Z3 (De Moura and Bjørner 2008)
on the full benchmark set of 33068 instances and removed
all those which Z3 proved to be unsatisfiable within 1200
seconds. From the remaining 11715 instances, we further
filtered out those 4543 formulas, that were shown to be sat-
isfiable only by using pre-processing techniques. This left us
with a total of 7498 instances in the QF BV set for the fol-
lowing experiments. A second benchmark family is given by
the SAGE2 benchmark set. Those problems were generated
as part of the SAGE project at Microsoft (Godefroid, Levin,
and Molnar 2008), describing some testcases for automated
whitebox fuzz testing. Older benchmarks from the SAGE
project can also be found as part of the QF BV benchmark
set. The SAGE2 set consists of 8017 instances (filtered
out of original 17920 instances, 9903 were shown to be un-
satisfiables within 1200 seconds, none were solved by pre-
processing only) which are known to be hard for state-of-
the-art SMT solvers. All experiments were run on a Win-
dows HPC cluster of dual Quad-Xeon (E54xx) machines,
16 GB RAM, and used a time limit of 1200 seconds.

We compared our new solver BV-SLS to the most recent
version of the state-of-the-art SMT solver Z3, which is based
on bit-blasting and then running a CDCL SAT solver on the
propositional encoding. For all benchmarks, we used the de-
fault configuration of BV-SLS: All variables are initialized
to 0, candidate selection occurs using the UCB scheme, con-
stants are set to c1 = 0.5, c2 = 20, c3 = 0.025, c4 = 100,
wp ≈ 0.1, sp ≈ 0.05, and it uses the extended neighbour-
hood relation that additionally allows increment by 1, decre-
ment by 1, and bitwise negation.

To evaluate the direct benefit of using bit-vector informa-
tion for SLS, we ran several state-of-the-art SLS solvers for
SAT on propositional encodings of our benchmarks as CNF.
To obtain those encodings, we used the bit-blasting compo-
nent of Z3. This conversion was done together with pre-
processing in advance to the experiments (also using a time
limit of 1200 seconds). We did not add this to the actual run-
time of the solvers, assuming that the input is directly given

QF BV SAGE2
CCAnr 5409 64
CCASat 4461 8
probSAT 3816 10
Sparrow 3806 12
VW2 2954 4
PAWS 3331 143
YalSAT 3756 142
Z3 (Default) 7173 5821
BV-SLS 6172 3719

Table 1: Number of solved instances.

as a pre-processed CNF. In theory, this gives an advantage
to the SAT solvers. Further, CNF conversion did not suc-
ceed for all instances. This was either because Z3 ran out of
memory (M/O) or because it did simply not terminate in the
given time limit (T/O). In total, CNF conversion produced
21 M/O and 75 T/O results for QF BV, and 29 T/O results for
SAGE2. We considered those instances as not being solved
by the SAT solvers, since it was not feasible to obtain a CNF
representation in the first place. Z3, using bit-blasting, could
not solve any of those either. BV-SLS was also not able to
solve any of the corresponding QF BV instances, but found
a solution in 13 cases for the SAGE2 formulas.

As SLS SAT solvers, we used several versions of
CCA (Cai and Su 2012), probSAT (Balint and Schöning
2012), Sparrow (Balint and Fröhlich 2010), YalSAT (Biere
2014), and the implementations of PAWS (Thornton et al.
2004) and VW2 (Prestwich 2005) in UBCSAT (Tompkins
and Hoos 2005). CCASat, probSAT, and Sparrow have con-
sistently achieved good results over the last SAT Compe-
titions. CCAnr, PAWS and VW2 are known for perform-
ing particularly well on some application benchmarks. Yal-
SAT was among the few ‘pure’ SLS solvers (i.e. not using
a CDCL component) that produced good results in the ap-
plication track of the latest SAT Competition. We also tried
to include Sattime2014r (Li and Li 2012), but encountered
difficulties porting it to Windows. However, Sattime2014r
had very similar performance to YalSAT in the application
track of the SAT Competition 2014.

The number of solved instances is given in Table 1. The
scatter plots and heat maps in Figs. 2a, 2b, and 2c provide
details about the runtime behavior of our implementation.
All solvers were run once (i.e. with one seed) per instance.

6 Discussion
The results from Sect. 5 provide several insights. First of
all, comparing our SLS algorithm on the bit-vector respre-
sentation with SLS solvers for SAT showed that we can ac-
tually profit from using additional word-level information,
especially on the SAGE2 benchmark set (Tab. 1). This is
particularly interesting in the context of SAT solvers. While
SLS solvers for SAT are known to perform well on randomly
generated formulas and, sometimes, on hard combinatorial
benchmarks, CDCL solvers usually perform much better on
so-called structured formulas, often coming from practical
problems in industry which have been reencoded into propo-
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(a) QF BV (b) QF BV (c) SAGE2

Figure 2: Scatter plots and heat maps comparing BV-SLS to CCAnr on QF BV and to Z3 on both benchmark sets.

sitional logic. This is often attributed to the fact that CDCL
solvers are able to learn during search and make inferences,
extracting this kind of original structure from a propositional
formula. In contrast, most SLS solvers only use very local
information. Exploiting structure for SLS SAT solvers has
been looked at before, but did not yield in efficient solvers
so far. Our results clearly show that SLS solvers can actually
profit from using structural information during search.

Although there is still a gap between the average per-
formance of our solver compared to state-of-the-art SMT
solvers based on bit-blasting and CDCL (Tab. 1), our ap-
proach can actually outperform Z3 on several instances, es-
pecially among those contained in the SAGE2 benchmark
set (Fig. 2c). This is interesting from two different points
of view. First, our algorithm is a completely new approach,
which has not yet had several years of research, development
and tuning that CDCL algorithms have seen. It is very likely
that data structures, implementation and heuristics can still
be improved easily for our approach. For example, improve-
ments might be found by adopting further techniques which
have already been applied successfully in SAT solving or by
using more complex heuristics that are not possible to real-
ize in the propositional case. Since SLS solvers are known to
be very sensitive with regard to their parameters, automated
configuration, as applied for SAT (Hutter et al. 2009), could
be beneficial for our approach too. Second, combinations of
our algorithm with existing SMT solvers seem promising,
because both kind of solvers often perform well on distinct
kind of problems (Fig. 2c). Simply running an SLS compo-
nent for a very short time before the actual SMT solver could
already help finding solutions for many additional problems,
potentially improving the state-of-the-art in SMT by SLS. In
a further step, solvers could also start to exchange informa-
tion between each other, as it has already been tried for SLS
and CDCL solvers for SAT (Kroc et al. 2009), e.g. by ini-
tializing the VSIDS values of the CDCL solver according to
information gained by a previous SLS run.

Another possibility for future work is the extension of our
algorithm to allow other theories apart from bit-vectors. As
described in Sect. 3, the underlying architecture of our al-

gorithm is very general. The only time we actually use bit-
vector information is in the definition of the score function
for bit-vector expressions and the neighbourhood relation.
All other components, as described in Sect. 4, as well as
their improvements by techniques known from SAT solving,
only take into account the Boolean part of a given formula.
To allow dealing with arbitrary other theories, it is sufficient
to provide a score function for the theory expressions as well
as a neighbourhood relation on the theory variables.

7 Related Work
(Griggio et al. 2011) define the WalkSMT algorithm, which
uses an SLS solver for the Boolean abstraction of a given
problem, but they do not exploit SLS on the theory level. An
additional theory solver is used to check satisfying Boolean
assignments for theory consistency and, if they are inconsis-
tent, to refine the abstraction in a lazy way.

(Naveh 2004) present a stochastic CSP solver that applies
a bit-string encoding and then uses a stochastic search al-
gorithm. However, their description is rather high-level and
no concrete implementation is given. The most significant
difference to our work can be found in the fact that we ex-
plicitely look at the problem from an SMT perspective. By
doing so, we are able to successfully lift many sophisticated
techniques from SAT solving to our approach. The exper-
imental evaluation in (Naveh 2004) is only performed on a
limited set of crafted benchmarks. By using the full QF BV
benchmark for our evaluation, we provide a more detailed
picture of the overall performance of our solver.

8 Conclusion
In this paper, we proposed an approach towards bridging the
gap between SMT and SLS. We presented a novel SLS al-
gorithm to solve bit-vector formulas directly on the theory
level. Furthermore, we explained how several techniques
used in SLS solvers for SAT can be lifted to the SMT level
and gave experimental results, confirming the benefit of ap-
plying local search directly on the bit-vector representation
instead of using a propositional encoding. This gave new
insights into the importance of exploiting problem structure

1141



also in SLS solvers for SAT. While there is still a gap in
performance compared to state-of-the-art bit-vector solvers,
our approach outperforms Z3 on many instances of practical
relevance. This offers interesting possibilities in combining
our solver with existing approaches, potentially improving
the performance of both.
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Kovásznai, G.; Fröhlich, A.; and Biere, A. 2012. On the
complexity of fixed-size bit-vector logics with binary en-
coded bit-width. In Proc. SMT’12, 44–55.
Kroc, L.; Sabharwal, A.; Gomes, C. P.; and Selman, B.
2009. Integrating systematic and local search paradigms:
A new strategy for MaxSAT. In Proc. IJCAI’09.
Li, C. M., and Li, Y. 2012. Satisfying versus falsifying in
local search for satisfiability. In Proc. SAT’12, 477–478.
Luby, M.; Sinclair, A.; and Zuckerman, D. 1993. Optimal
speedup of Las Vegas algorithms. Information Processing
Letters 47:173–180.
Mladenović, N. 1995. A variable neighborhood algorithm –
a new metaheuristics for combinatorial optimization. In Ab-
stracts of Papers Presented at Optimization Days. Montral.
Naveh, Y.; Rimon, M.; Jaeger, I.; Katz, Y.; Vinov, M.;
s Marcu, E.; and Shurek, G. 2007. Constraint-based random
stimuli generation for hardware verification. AI Magazine
28(3):13–30.
Naveh, Y. 2004. Stochastic solver for constraint satisfaction
problems with learning of high-level characteristics of the
problem topography. In Proc. LSCS’04, 17.
Pham, D. N.; Thornton, J.; and Sattar, A. 2007. Building
structure into local search for sat. In Proc. IJCAI’07, 2359–
2364.
Prestwich, S. 2005. Random walk with continuously
smoothed variable weights. In Proc. SAT’05, 203–215.
Selman, B.; Kautz, H. A.; and Cohen, B. 1994. Noise strate-
gies for improving local search. In Proc. AAAI’94, 337–343.
Thiffault, C.; Bacchus, F.; and Walsh, T. 2004. Solving
non-clausal formulas with DPLL search. In Proc. CP’04.

1142



Thornton, J.; Pham, D. N.; Bain, S.; and Jr., V. F. 2004.
Additive versus multiplicative clause weighting for SAT. In
Proc. AAAI’04, 191–196.
Tompkins, D. A. D., and Hoos, H. H. 2005. UBCSAT: An
implementation and experimentation environment for SLS
algorithms for SAT and MAX-SAT. In Proc. SAT’04.
Yuan, J.; Pixley, C.; and Aziz, A. 2006. Constraint-based
verification. Springer.

1143




