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Abstract

Dynamic programming (DP) is a fundamental tool used
to obtain exact, optimal solutions for many combinato-
rial optimization problems. Among these problems, im-
portant ones including the knapsack problems and the
computation of edit distances between string pairs can
be solved with a kind of DP that corresponds to solving
the shortest path problem on a directed acyclic graph
(DAG). These problems can be solved efficiently with
DP, however, in practical situations, we want to solve
the customized problems made by adding logical con-
straints to the original problems. Developing an algo-
rithm specifically for each combination of a problem
and a constraint set is unrealistic. The proposed method,
BDD-Constrained Search (BCS), exploits a Binary De-
cision Diagram (BDD) that represents the logical con-
straints in combination with the DAG that represents the
problem. The BCS runs DP on the DAG while using the
BDD to check the equivalence and the validity of inter-
mediate solutions to efficiently solve the problem. The
important feature of BCS is that it can be applied to
problems with various types of logical constraints in a
unified way once we represent the constraints as a BDD.
We give a theoretical analysis on the time complexity of
BCS and also conduct experiments to compare its per-
formance to that of a state-of-the-art integer linear pro-
gramming solver.

Introduction
Dynamic programming (DP) is a fundamental tool used for
solving various kinds of optimization problems to obtain
exact, optimal solutions. Many important problems such as
the knapsack problem, the computation of edit distances be-
tween string pairs, and the shortest path problem on a graph
can be efficiently solved by using DP. To cover practical situ-
ations, a natural demand is to extend optimization problems
by adding some constraints. For example, suppose that we
want to solve a knapsack problem and we know that some
combinations of items must not be contained in the solution.
Then we represent this property as constraints and solve the
problem with them to obtain a solution that does not con-
tain the prohibited combinations of items. However, an opti-
mization problem that can be solved by DP becomes unsolv-
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able with the same method when we add constraints to the
problem. Efficient algorithms have been proposed for solv-
ing such constraint-added variants (e.g., (Oommen 1986)) of
DP-solvable problems, however, they are designed for spe-
cific combinations of a problem and a class of constraints,
and there may not exist any efficient algorithm for practi-
cal problems we want to solve. To develop a made-to-order
algorithm for each new combination of a problem and set
of constraints is unrealistic. In such cases, we usually resort
to using integer linear programming (ILP) solvers, however,
they lack theoretical guarantees on the computation time and
it is difficult to estimate the solution time.

We propose a unified method for solving a class of op-
timization problems that are made by adding constraints to
existing DP-solvable problems. Here we say that our method
is unified since it can solve optimization problems in the
same way regardless of the kinds of constraints added. The
class of problems our method can solve is the optimization
problems that can be solved using DP of finding the shortest
(or longest) path on a directed acyclic graph (DAG). Many
important optimization problems that are DP-solvable be-
long to this class. Typical examples in this class includes
the 0-1 knapsack problem (Kellerer, Pferschy, and Pisinger
2004), computation of the edit distance (Wagner and Fischer
1974) and the problem of finding the Viterbi path on a Hid-
den Markov Model (HMM) (Rabiner 1989).

The proposed method, named BDD-constrained search
(BCS), uses a binary decision diagram (BDD) (Akers 1978;
Bryant 1986) to represent additional logical constraints im-
posed on an optimization problem. Logical constraints are
constraints written as Boolean functions whose variables
correspond to edges of the DAG. In the above knapsack
problem example, the constraints on pairs of items can be
represented by Boolean functions. If there are no additional
constraints, a shortest path problem on a DAG can be solved
in time proportional to the number of edges due to the op-
timal substructure property. If additional logical constraints
exist, however, the problem loses this property and we have
to enumerate all possible paths to solve the problem. Our
key idea is to use a BDD as a “guide” to simultaneously
judge whether a partial path can be pruned, and find groups
of partial paths with which the optimal substructure property
holds, i.e., if the shortest path of the DAG contains any par-
tial path contained in the group, then the contained partial
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Figure 1: (a) An example weighted DAG and (b) an example
BDD that represents a Boolean function f = (e12 ∧ e45) ∨
e13. These examples are used throughout the paper.

path is always the shortest one in the group. These pruning
and grouping operations can drastically reduce the amount
of computation and contribute to achieving efficient search
under constraints, hence BCS can efficiently solve a broad
class of optimization problems.

The following are key virtues of the BCS.
A unified approach Our algorithm can solve many con-
strained problems once logical constraints are cast as a
BDD. Since BDD can represent any Boolean function, any
constraints represented as a Boolean function can be repre-
sented as a BDD and hence can be used in BCS.
Upper bounds on the running time We analyze the run-
ning time of BCS and show it is bounded by the size of the
BDD.
Efficiency We conduct experiments on situations where
constrained shortest path search on a DAG is used, and con-
firm that BCS is faster than CPLEX, a state-of-the-art com-
mercial general purpose ILP solver.

Preliminary
Notations Let G = (V,E) represent a directed acyclic
graph, where V is a set of nodes and E is a set of edges. We
use |V | and |E| to denote the number of nodes and edges,
respectively. Let δs(e) and δt(e) be the source node and the
target node of edge e. Each edge ei (i = 1, . . . , |E|) has
a (possibly negative) real value weight wi. We assume that
both nodes v1, . . . v|V | and edges e1, . . . , e|E| are in a topo-
logical sorted order. We also use the notation eij to repre-
sent the edge that satisfies δs(eij) = vi and δt(eij) = vj .
Let p be a path. A path is represented as a set of edges
{ep(1), . . . , ep(|p|)} where |p| is the number of edges con-
tained in p and p(i) is an integer in 1 ≤ p(i) ≤ |E|. Path p
satisfies δt(ep(i)) = δs(ep(i+1)) for i = 1, . . . , |p|−1. Given
two nodes s, t ∈ V , let Ps,t be the set of all possible paths
that start at s and end at t.
Binary Decision Diagram Binary Decision Diagram
(BDD) is a data structure that represents a Boolean function
of the form f(x1, . . . , xn), where x1, . . . , xn are in {0, 1}
and f returns {0, 1}. A BDD represents a Boolean function
as a DAG, where every node except leaf nodes has exactly
two outgoing edges, namely low-edge and high-edge. Let a
non-terminal node be an intermediate node. An intermediate
node has the label that represents the Boolean variable cor-

responding to the node. We use lo(n), hi(n), and label(n)
to represent the low-edge, the high-edge, and the label of
a BDD node n, respectively. We also use lo(n) and hi(n)
to represent the nodes pointed to by the low-edge and the
high-edge of node n, respectively. The intermediate node
that comes first in the topological sorted order is the root
node of the BDD, and we write it as root. A BDD has ex-
actly two leaf nodes ⊥ and > and we say these nodes are
terminal nodes. Figure 1(b) shows an example of a BDD
that represents Boolean function f = (e12 ∧ e45)∨ e13. The
numbers to the left of the intermediate nodes are IDs used
later, and the BDD has four intermediate nodes n1, . . . , n4.
An edge with dashed line represents the low-edge of an
intermediate node and a normal edge represents the high-
edge, and the symbol written in an intermediate node repre-
sents the label of the node. A path from the root node to
the >-terminal corresponds to an assignment of variables
that makes the Boolean function true. In the above example,
there are three such paths, and each of them represents vari-
able assignments: (e12 = 1, e13 = 1), (e12 = 0, e13 = 1)
and (e12 = 1, e13 = 0, e45 = 1). In the following, we as-
sume a BDD is ordered and reduced. We say that a BDD
is ordered if the order of the labels of intermediate nodes is
same for all paths from the root to a terminal, and we say that
a BDD is reduced if it is an ordered BDD with the minimum
number of nodes. It is known that a reduced and ordered
BDD is canonical, i.e., a Boolean function has the unique
reduced BDD representation for given variable order.

Problems Solved by DAG Path Search
Our BDD-Constrained Search (BCS) method can solve a
broad class of optimization problems that can be solved by
first constructing a DAG and then finding the shortest (or
longest) path on the DAG. We define the class of these prob-
lems as DAGOPTPATH. DAGOPTPATH contains many im-
portant problems such as the 0-1 knapsack problems, com-
putation of edit distance and its variants, and the problems
of finding the Viterbi path of a HMM.
The 0-1 knapsack problem The 0-1 knapsack prob-
lem (Kellerer, Pferschy, and Pisinger 2004) is the problem
of finding a subset of the items that maximizes the sum
of scores of selected items, while satisfying the constraint
that the sum of the costs of the selected items is less than
the limit K. If there are N items and the cost of each el-
ement is an integer value, it can be solved in θ(NK) time
by using DP. The DP algorithm prepares table T [i, j] with
(N + 1)× (K + 1) entries, and we can find the optimal so-
lution by recursively updating the elements of the table. We
can transform the table into a corresponding edge-weighted
DAG by regarding each entry in the table, T [i, j], as a node,
and setting edges between nodes that are used in the recur-
sive update of entries. For example, let ci and wi be the cost
and the score of the i-th item. Then we update T [i, j] as

T [i, j] = max(T [i− 1, j], T [i− 1, j − ci] + wi).

Then the corresponding DAG has two edges between the
pairs of nodes (T [i − 1, j], T [i, j]) and (T [i − 1, j −
ci], T [i, j]) whose weights are 0 and wi, respectively. We
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solve the longest path problem on the DAG to obtain the
optimal solution.
Computation of the edit distance The edit distance (Wag-
ner and Fischer 1974) is a popular metric used for measur-
ing the similarity between sequences. It is defined as the
minimum number of edit operations needed to transform
one sequence into another. The edit distance can also effi-
ciently be computed by using a DP algorithm that runs in
O(NM) time if the two strings have lengths of N and M .
The DP also can be formulated as a shortest path problem on
a DAG. Other than the computation of the edit distance, se-
quence alignment problems and dynamic time warping can
be solved with similar DP algorithm.
Finding the Viterbi path The Viterbi path is an assign-
ment of values to hidden states that maximizes the score
function, and the Viterbi algorithm is a DP algorithm that
can efficiently find the Viterbi path. The Viterbi algorithm
is used in many applications such as speech recognition
and part-of-speech (POS) tagging using a Hidden Markov
Model (HMM) (Rabiner 1989). Given a sequence of length
N and each symbol is labeled with one of K different la-
bels, the Viterbi algorithm can find the optimal assignments
of labels in O(NK2). This algorithm can be seen as find-
ing the longest path on a DAG that has N × K nodes and
(N − 1)×K2 +2K edges, and each edge has a weight that
is defined by the transition probability and emission proba-
bility of the HMM.

Shortest Path Search with Logical Constraints
Optimization problems that belong to DAGOPTPATH appear
in many practical situations, and it is natural to solve these
problems with additional logical constraints that reflect the
demands inherent in the problem domain. However, prob-
lems become far more difficult if we impose logical con-
straints in more complex forms like prohibiting pairs of
edges from being included in a path. One of the most fre-
quently used tools for solving problems with arbitrary forms
of logical constraints is the general purpose ILP solver.
Some ILP solvers can solve large-scale optimization prob-
lems in practical time, but they lack theoretical guarantees
on the computation time and it is difficult to estimate the
solution time.

BDD-constrained Search Algorithm
BDD-constrained search is a unified approach for solving
constrained shortest (or longest) path problems on a DAG.
The input of the method is a weighted DAG and a reduced
and ordered BDD. The DAG corresponds to the problem
we want to solve. The BDD represents the Boolean func-
tion f(e1, . . . , e|E|) that represents the logical constraints,
where e1, . . . , e|E| are Boolean variables corresponding to
edges in the DAG.

We first introduce an example problem used in the fol-
lowing explanation. We use the DAG shown in Fig.1 (a).
We assume the edges of the DAG are topologically sorted
and have the order e12, e13, e23, e24, e34, e45, e46, e56, e57,
e67. We use this order as the order of the BDD labels. The
weight of each edge is written in the figure. We try to find

the shortest path from node s = v1 to t = v7 under the logi-
cal constraint f = (e12 ∧ e45) ∨ e13. The BDD in Fig. 1 (b)
represents f .

We first review why the DAG shortest path search algo-
rithm can work in time proportional to the number of edges.
Suppose that we are trying to find the shortest path from s to
t that goes through node v. Then the set of all possible paths
is made by concatenating all possible combinations of a path
in Ps,v and a path in Pv,t. This means that when we search
for the shortest path, we only have to remember the shortest
path in Ps,v since it is always contained in the shortest path
from s to t that goes through v. The standard O(|E|) short-
est path algorithm on a DAG uses this property and only
updates information about the shortest path for each node.
This property is, however, not true for constrained shortest
path problems. If there exist two paths p1, p2 that go from s
to v, then the sets of paths from v to t that satisfy the logical
constraints may be different depending on the paths taken.
We thus have to store the information about both paths, p1
and p2, at node v, since the shorter path may not be con-
tained in the shortest path that satisfies the constraints. Since
the amount of information we have to store for a node de-
pends on the number of possible paths from s to the node
and it may grow exponentially with the number of edges in
a DAG, we need exponential computation time and memory
for constrained path search.

We use the DAG in Fig.1 (a) and the BDD in Fig. 1 (b) to
show what happens with a constrained shortest path search
problem. We try to find the shortest path that satisfies the
logical constraint f = (e12 ∧ e45) ∨ e13. We compare the
two paths p1 = v1 → v2 → v4 and p2 = v1 → v3 → v4
that go from v1 to v4. There are 3 different paths from v4 to
t = v7. If we take p1 then taking either v4 → v5 → v7 or
v4 → v5 → v6 → v7 can be a path satisfying the logical
constraint. If we take p2, then all three paths from v4 to t =
v7 satisfy the constraint. This difference requires us to store
two different pieces of information at node v4.

We can prevent this explosion in the amount of informa-
tion stored at a node by finding equivalent paths in terms of
the set of remaining paths. We compare path p1 with another
path p3 = v1 → v2 → v3 → v4 from s to v4. The set of
possible paths we can take from v4 to t when we take p3 is
the same as the case as when we take p1. This result means
we have to store the information of the shorter path of either
p1 or p3, since if p1 is shorter than p3, the shortest path that
contains p1 is always shorter than the shortest path that con-
tains p3. This suggests that the amount of information we
have to store for node v is decided by the number of groups
of equivalent paths from s to v, and a group of paths is de-
termined by the set of possible paths that connect the node
and t.

Definition 1. Given path p that starts at s and ends at v,
let the remaining paths R(p, f) be the set of paths that is a
subset of Pv,t and every p′ ∈ R(p, f) concatenated with p
satisfies constraint f .

BCS uses the BDD to (1) check whether a path satisfies
the constraints or not, and (2) manage the information about
the groups of equivalent paths. Since to explicitly represent
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Algorithm 1 BDD-constrained search algorithm
Input: Weighted DAG G = (V,E), a BDD representing the logi-

cal constraints on the path, s, t ∈ V
Output: The shortest path from s to t that satisfies the logical con-

straints
1: T [s][root]← 0,
2: for i = 1 to |E| do
3: vs ← δs(ei), vt ← δt(ei)
4: for all pair (n, l) stored in T [vs] do
5: n′ ← followBDD(ei, n)
6: if n′ = ⊥ then continue
7: if label(n′) = ei then
8: n′ ← hi(n′)
9: if T [vt][n′] > l + wi then

10: T [vt][n
′]← l + wi, B[vt][n

′]← (ei, n)
11: (e, n)← B[v|V |][>]
12: while δs(e) 6= v1 do
13: Output e; (e, n)← B[δs(e)][n]
14: return T [v|V |][>]

R(p, f) for each path p is unrealistic, we represent them by
the combination of node v in the DAG and the logical con-
straints imposed on the set of paths Pv,t that are represented
by a BDD node. Since the logical constraints determine the
remaining paths R(p, f), we can regard the two paths as
having the same set of remaining paths if the paths end at the
same node and the corresponding logical constraints are the
same. We can obtain the logical constraints that the edges
in Pv,t must satisfy by following BDD edges. Since a re-
duced and ordered BDD has canonical form, we can judge
the equivalency of two logical constraints represented by
BDDs by checking whether the two constraints correspond
to the same BDD node or not. We simultaneously follow
both the DAG and the BDD in order that the current posi-
tion at the BDD represents the logical constraints that must
be satisfied by the remaining set of paths. In other words, if
two partial paths are given, we follow the paths on the DAG
and on the BDD, and if they reach the same nodes both in the
DAG and the BDD, it means that the set of remaining paths
are equivalent. Similarly, if we follow the BDD edges and
if we reach the ⊥ terminal node, it means the path does not
satisfy the logical constraints and we terminate the search.

We show the BDD-constrained search algorithm in Alg. 1.
The input of the algorithm is a pair of a weighted DAG and
the BDD that represents the logical constraints. We first ini-
tialize two sets of tables, T and B, where T is used for stor-
ing the lengths of the possible paths, and B stores informa-
tion used for backtracking. Both sets consist of |V | tables
T [v] and B[v] for v ∈ V . Each T [v] is related to DAG node
v and is a table that takes BDD node n as a key and re-
turns the shortest path length l from node s to v among the
paths whose corresponding logical constraints imposed on
the remaining paths are represented by BDD node n. Each
B[v] is a table that also takes BDD node as a key and re-
turns the pair of a DAG edge e and BDD node n, which is
used in backtracking. We first initialize every T [v] and B[v]
(v ∈ V ) as empty tables, and then set T [s][root] ← 0 (line
1). Next, we consult every edge e ∈ E in topological sorted
order and update T [δt(e)] using T [δs(e)], where we use vs

and vt to represent T [δs(e)] and T [δt(e)], respectively (lines
2 to 10). For each pair (n, l) of BDD node n and path length
l stored in T [vs], we update the BDD node so as that it cor-
responds to the logical constraints after taking current edge
e, and store the results in T [vt]. Function followBDD(e, n)
takes edge e and BDD node n and returns the first BDD
node, n′, reached by following only the low-edges from n
and satisfies either the label of n′, which corresponds to an
edge of the DAG, is equal or larger than e, or n′ is a terminal
node. If we reach BDD node ⊥, it means the corresponding
path does not satisfy the given constraints and we terminate
the search (line 6). If label(n′) = ei, then we follow the
high-edge of node n′ to update n′ (lines 7 to 8). We then
use obtained n′ to update T [vt] and B[vt] (lines 9 to 10).
After traversing all edges, T [v|V |] will contain at most one
entry whose key is > and whose value l∗ = T [v|V |][>] cor-
responds to the length of the shortest path that satisfies the
given constraints. We then perform backtracking to recover
the optimal solution (lines 12 to 13).

Example 2. We use the DAG and the BDD shown in Fig.1.
First we set T [v1][n1] ← 0 where n1 = root. Then update
nodes by picking up edges in the order e12, e13, . . . , e67.
When we pick up the first edge e12, we lookup table T [v1]
and find key-value pair (n1, 0). We calculate the new score
and the new BDD node. The new score is 0 + w12 = 2, and
since the label of n1 is e12, followBDD(e12, root) returns
n1, and we obtain the new BDD node n3 ← hi(n1). We
store T [v2][n3] ← 2 and B[v2][n3] ← (e12, n1). After fin-
ishing the loop for edges e34, we have two key-value pairs
(>, 4) and (n4, 3) in T [v4]. There are three paths from s to
v4 but two paths v1 → v2 → v4 and v1 → v2 → v3 → v4
result in the same BDD node n4, only one entry is stored.
When we pick up e46 and update T [v6] from (>, 4) and
(n4, 3), since followBDD(e46, n4) = ⊥, we do not update
from the pair (n4, 3). Finally we get T [v7] = {(>, 6)} and
the length of the shortest path is 6 and the path v1 → v3 →
v4 → v6 → v7 is recovered from entries in B.

Theoretical Analysis
We give the upper bound on the time and space complex-
ity of the BCS algorithm. We can estimate them from the
number of edges of the DAG and the form of the BDD rep-
resenting the constraints.

Definition 3. Let the width of a BDD be the maximum num-
ber of nodes pointed to by the edges in a cut of the BDD at
a level of nodes.

Theorem 4. The time and space complexity of Algorithm 1
are O(|E|W ), where W is the width of the BDD.

Proof. The maximum numbers of entries in T [v] and B[v]
depend on the number of different BDD nodes used as keys.
Since followBDD(e, n) always returns a BDD node that is
the child of an edge that intercepts a cut of the BDD at a
level of nodes. It means followBDD(e, n) returns at mostW
different nodes for each v, and the update process in Alg.1
(lines 2 to 10) is performed at most |E|W times. The func-
tion followBDD(e, n) takes, in total, number of steps that is
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Table 1: Summary of the datasets.

Dataset |V | |E|
DAG 4,177 25,208

Knapsack 188,952 368,067
Edit distance 10,609 31,416
POS tagging 12,468 571,411

proportional to the number of BDD nodes. Hence the time
complexity of the algorithm is O(|E|W ).

This result suggests that our method runs efficiently if it
is applied to problems with logical constraints represented
as the BDD with small numbers of nodes.

Discussion
Constraints on the groups of edges The BCS algorithm im-
poses constraints on combinations of edges. We can extend
it to impose logical constraints on combinations on groups
of edges if some conditions are satisfied. This setting is more
natural when a group of edges have the same meaning in a
DAG. For example, in a DAG corresponding to solving a
0-1 knapsack problem, a edge means to choose an item or
not and more than one edge corresponds to the same action.
We use one BDD node to represent a group of DAG edges
that correspond to the same action. This representation can
reduce the size of the BDD that represents constraints.

We can use the constraints on groups of edges if (i) the
groups are ordered, i.e., let G1, G2 ⊆ E be groups, then
e < e′ is satisfied for all pairs of e ∈ G1 and e′ ∈ G2, and
(ii) a path must not have more than two edges that are con-
tained in the same group. If we use the groups of edges for
the 0-1 knapsack problem, the above two conditions will be
satisfied and the resulting BDD representation is compact.
In experiments, we use constraints on group representation
for two problems that corresponds to DP algorithms for the
0-1 knapsack Problem and the Viterbi algorithm.
Zero-suppressed binary Decision Diagram (ZDD) We can
use a Zero-suppressed binary Decision Diagram (ZDD) (Mi-
nato 1993) instead of a BDD in the BCS algorithm. A ZDD
is a variant of a BDD that can represent a Boolean function
that returns 0 for almost all inputs in a much smaller DAG
than a BDD; we can speed up the BGS algorithm by choos-
ing the smaller of either the BDD or ZDD representation.

Experiments
We conducted experiments to evaluate our BCS algorithm
in situations where the problems in the DAGOPTPATH are
solved with additional constraints.
Datasets We use four datasets, DAG, Knapsack, Edit dis-
tance, and Part-of-speech (POS) tagging, each of them are
typical datasets for four different tasks. DAG is the task
of finding a shortest path in the DAG that represents the
citation network of high energy physics phenomenology
papers on arXiv1. Since the original graph contains cy-
cles, we use the timestamp of the nodes to remove some

1https://snap.stanford.edu/data/cit-HepPh.html

edges to make it a DAG, and then extract the largest con-
nected components of the DAG. We randomly assign an in-
teger weight in the range [1, 100] to each edge. Knapsack
is the DAG that derives from the DP algorithm for a 0-
1 knapsack problem. We design a 0-1 knapsack problem
that consists of 200 items, and the cost and the weight of
an item are randomly selected from the range [1, 100]. We
set the size of the knapsack to 1000. Edit distance is the
DAG used in the computation of the edit distance between
two strings. The two strings are selected from the DBLP-
dataset2 which is frequently used in evaluating edit dis-
tance computation methods (e.g., (Wang, Li, and Feng 2012;
Zhang et al. 2010)). We selected the 2 strings that have me-
dian lengths in the dataset, each consists of 102 characters.
POS tagging is the DAG created when applying the HMM-
based POS tagging algorithm to a word sequence. We use
the HMM-based POS tagger contained in the Natural Lan-
guage Toolkit Python library3. The length of the word se-
quence we used consists of 271 words and we tagged the
sequence with 46 different labels. The weights of the DAG
are determined by the parameters of the POS tagger trained
using the Penn Treebank. The summaries of the DAGs are
shown in Tab.1.
Constraints We set two different constraints Checkpoint
and Disjunction on each dataset. Checkpoint first chooses
small groups of edges G1, . . . , GN ⊆ E and then sets a
constraint that path p must have at least one edge that is
common with each group, i.e., path p ⊆ E must satisfy
p ∩ Gi 6= ∅ for all i = 1, . . . , N . Checkpoint would be
appear in situations where we know a part of the desir-
able solutions in advance. Disjunction is defined by a set
of pairs of edges that must not be contained in the solution
path. Disjunction assumes the situation where we know the
combinations of edges that must not be contained in a feasi-
ble solution. The knapsack problem under disjunctive con-
straints is known as the disjunctively constrained knapsack
problem (DCKP) (Yamada, Kataoka, and Watanabe 2002;
Hifi and Michrafy 2006).

For Checkpoint constraints, we first randomly select
edges with probability ρ, and then partition the set of se-
lected edges into L groups. We used the pairs of parameters
(L, ρ) = (3, 0.01) and (5, 0.05) in experiments. We men-
tion these two settings as CHK1 and CHK2, respectively. For
Disjunction constraints, we first select the k-best edges that
have higher scores, and then randomly generate disjunctive
pairs of the selected edges with pair probability γ. We used
the pairs of parameters (k, γ) = (50, 0.01) and (100, 0.8) in
the experiments. We mention these two constraints as DIS1
and DIS2, respectively.
Settings Our BCS algorithm was implemented in C++, and
we used the CUDD library4 to construct the BDDs repre-
senting logical constraints. We compared our algorithm with
CPLEX 12.5.1.0, a state-of-the-art commercial general pur-
pose ILP solver. All experiments were run on a Linux server
with a Xeon X5680 3.33 GHz CPU and 48 GB RAM.

2http://www.informatik.uni-trier.de/∼ley/db/
3http://www.nltk.org/
4http://vlsi.colorado.edu/∼fabio/CUDD/
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Table 2: Comparison with CPLEX.

Dataset Constraints BDD nodes width Steps BDD time (ms) BCS time (ms) CPLEX time (ms)
DAG CHK1 1,010 8 72,862 40.6 8.8 170

CHK2 20,010 32 310,668 46.3 154 540
DIS1 98 24 25,763 40.8 2.3 100
DIS2 13,570 259 60,319 61.2 5.1 130

Knapsack CHK1 14 8 698,458 2.9 66.9 72,590
CHK2 188 32 3,714,558 3.1 331 146,880
DIS1 529 192 11,514,987 3.1 1,060 186,000
DIS2 13,352 257 45,593,454 40.4 3,961 >3,600 sec

Edit distance CHK1 1,222 8 230,140 45.6 14.1 2,590
CHK2 25,040 32 929,231 51.2 75.0 1,050
DIS1 238 64 121,674 9.0 8.0 1,790
DIS2 13,410 255 1,410,769 64.9 99.1 2,620

POS tagging CHK1 42 8 3,061,346 4.0 55.4 6,120
CHK2 948 32 14,770,508 4.1 304 7,770
DIS1 134 32 571,412 3.7 14.5 5,190
DIS2 13,862 268 74,739,926 41.9 138 14,400

Results Experimental results are shown in Tab.2, where
width is the width of the BDD, and the steps is the ac-
tual number of updating processes executed on the problem.
BCS time and BDD time are running time for BCS algo-
rithm and BDD construction, respectively. We can see that
for all settings the proposed method can find the optimal
path faster than CPLEX.

We can see that the gap between the theoretical upper
bound of steps derived from Theorem 4 and the practical
number of steps differs between settings. This difference is
caused by (i) the number of unused constraints, and (ii) the
difference between the width of the BDD and actual number
of different nodes of each level of the BDD. For example, if
we set logical constraints f = e12 ∧ e13 ∧ g on the DAG in
Fig. 1 (a) , where g is an arbitrary logical constraint, then the
search will soon terminate regardless of g since no paths sat-
isfy e12 ∧ e13. The upper bound, |E| ×W , is always bigger
than the actual number of steps, and we can directly estimate
the solution time from the number of steps. The upper bound
is useful for estimating the efficiency of the BCS algorithm.
Comparison with a state-of-the-art algorithm for DCKP

We compared the performance of the proposed algorithm
with a problem-specific state-of-the-art algorithm for DCKP.
The comparison used the exact solution algorithm proposed
in (Yamada, Kataoka, and Watanabe 2002), which solves a
DCKP instance by implicitly enumerating possible solutions
while applying pruning rules to reduce the number of possi-
ble intermediate states to enable efficient search 5. We used
datasets used in (Yamada, Kataoka, and Watanabe 2002) and
(Hifi and Michrafy 2006), made by randomly setting the cost
and weight of items, and then set disjunctive constraints on
the possible pairs of items. We use two schemes for setting
item cost and weight: the first scheme sets a randomly se-
lected integer in the range [1, 100] for both cost and weight,
while the second scheme first randomly sets the cost of an

5Since the algorithm proposed in (Hifi and Michrafy 2006) is an
approximation algorithm, we did not compared it with the proposed
algorithm.

Table 3: Experimental results on solving DCKP.

Dataset γ BCS time (ms) Yamada 02 time (ms)
Random 0.001 58.3 10.2

0.002 224 14.2
0.005 10,050 18.2

Correlated 0.001 58.1 403
0.002 228 7,613
0.005 10,056 54,377

item in the same way as the first scheme, then set the weight
of an item as item cost + 10. The second scheme generates
a correlated dataset. We set the number of items to 100, and
set disjunctive constraints on pairs of items with probability
γ = 0.001, 0.002, 0.005.

The results are shown in Tab. 3. We can see that the per-
formance of the baseline method become worse when it is
applied to correlated instances. This is because the perfor-
mance of the method depends on how well the pruning rules
work, and few candidates can be pruned if item costs and
weights are correlated. Since the proposed method does not
impose any pruning based on scores, its running time de-
pends only on the sizes of both the BDD and DAG, and
shows competitive performance when they are small.

Related Work
For each specific problem in DAGOPTPATH, algorithms for
solving it under some constraints have been proposed. The
0-1 knapsack problem has many variants with additional
constraints. For example, the tree knapsack problem (Lukes
1974; Hirao et al. 2013), the preceding knapsack problem
(Ibarra and Kim 1978), and the disjunctively constrained
knapsack problem (Yamada, Kataoka, and Watanabe 2002;
Hifi and Michrafy 2006) are problems made by adding
some constraints to the original 0-1 knapsack problem. Con-
strained Edit distance (Oommen 1986) is a variant of the edit
distance that sets constraints on the number of edit opera-
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tions. The Viterbi algorithm is used in many speech recog-
nition and natural language processing applications, and re-
cently constraints are used for compensating lack of suffi-
cient training data to improve the performance in POS tag-
ging (Zhao and Marcus 2012). Previous algorithms for solv-
ing constrained problems are specific in the sense that they
assume the constraint forms are specific. Our BCS frame-
work is general since it can handle arbitrary logical con-
straints represented by a BDD. We can use efficient oper-
ations for combining BDDs to easily combine different con-
straints to make another constraint.

The binary decision diagram (BDD) (Akers 1978; Bryant
1986) was originally used in the fields in digital-system de-
sign and related applications (Bryant 1992). In AI fields,
it is known as a kind of compiled knowledge representa-
tion (Darwiche and Marquis 2002), and is used in many
applications such as weighted model counting (Fierens et
al. 2011). BDD is known to be used for efficiently solv-
ing linear Boolean programming problems (Knuth 2011;
Lai, Pedram, and Vrudhula 1994), which is a combina-
torial optimization problem of finding x that maximizes
w1x1 + · · · + wnxn subject to f(x1, . . . , xn) = 1, where
f is a Boolean function represented by a BDD.

Recently, new algorithms for solving combinatorial op-
timization problems that use BDD and its variants have
been proposed (Bergman, van Hoeve, and Hooker 2011;
Bergman et al. 2014). Since the BDD that has all possi-
ble solutions may become huge, Bergman et al. construct
small BDDs named relaxed or restricted BDDs to compute
lower bound or approximate solutions. Our method is dif-
ferent from theirs in that we use BDD to represent the addi-
tional constraints and do not construct a BDD that represents
all possible solutions. This separation of the problem and the
additional constraints can make BDD size relatively small,
the manipulation of which is much easier.

Conclusion
We have proposed the BDD-Constrained Search (BCS) al-
gorithm. It can solve an important class of optimization
problems that can be efficiently solved with DP algorithm,
the problems solved as a shortest path search problem on
a DAG, with some additional constraints. The proposed
method is general since it can use arbitrary constraints rep-
resented as a BDD. Its time complexity can be estimated
from the size of the problem DAG and the constraint BDD,
and it shows better performance in experiments that assume
concrete dynamic programming problems than a commer-
cial ILP solver.
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