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Abstract

Effective tutoring requires personalization of the in-
teraction to each student. Continuous and efficient as-
sessment of the student’s skills are a prerequisite for
such personalization. We developed a Bayesian active-
learning algorithm that continuously and efficiently as-
sesses a child’s word-reading skills and implemented
it in a social robot. We then developed an integrated
experimental paradigm in which a child plays a novel
story-creation tablet game with the robot. The robot
is portrayed as a younger peer who wishes to learn
to read, framing the assessment of the child’s word-
reading skills as well as empowering the child. We
show that our algorithm results in an accurate repre-
sentation of the child’s word-reading skills for a large
age range, 4-8 year old children, and large initial read-
ing skill range. We also show that employing child-
specific assessment-based tutoring results in an age- and
initial reading skill-independent learning, compared to
random tutoring. Finally, our integrated system enables
us to show that implementing the same learning algo-
rithm on the robot’s reading skills results in knowledge
that is comparable to what the child thinks the robot has
learned. The child’s perception of the robot’s knowl-
edge is age-dependent and may facilitate an indirect as-
sessment of the development of theory-of-mind.

Introduction
Socially assistive robotics is an emerging field which strives
to create socially interactive robots that aid people in many
different aspects such as care for the elderly and educa-
tion (Tapus, Maja, and Scassellatti 2007; Fasola and Mataric
2013). Educational assistive robots interact with children
and help them develop in an educational setting (Movel-
lan et al. 2009; Saerbeck et al. 2010; Kory, Jeong, and
Breazeal 2013; Fridin 2014). However, in order to tutor chil-
dren in an effective manner, one must personalize the inter-
action and the curriculum to each child. This personaliza-
tion can be achieved by proper assessment of the student’s
current skill and adaptation of the behavior and material
taught to the student’s level (Wise, Ring, and Olson 2000;
Chambers et al. 2011). However, as opposed to standard-
ized tests or tablet educational games, the robot should per-
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form these tasks while being engaging (Brown, Kerwin,
and Howard 2013), believable and social (Saerbeck et al.
2010), i.e. a companion for the child (Breazeal and Scas-
sellati 1999). Thus, an integrated approach is required, that
takes into account personalization, AI of the robot, curricu-
lum and entertainment aspects.

In this contribution we have developed an integrated
child-tablet-robot (Jeong et al. 2014) experimental design
that attempts to address these specific concerns, in the con-
text of learning how to read words. The setup consists of a
social robot that is portrayed as a younger peer who wishes
to learn to read, thus putting the child in the empowering
position of the teacher. This also enables continuous assess-
ment of the child, by having the robot ask questions as a
less informed companion. Crucially, we developed an algo-
rithm that allows the proper and efficient assessment of the
child’s word-reading skills and adapted the interaction be-
tween robot and child to each child’s specific level. A unique
tablet app was also developed to facilitate an engaging story-
making game that can be co-played by the child and robot.

We show that the algorithm developed adequately rep-
resents the child’s word-reading skills. Moreover, we show
that across a wide age range (4-8 years old), the same algo-
rithm properly assesses each child’s skills. We further show
that an active-learning approach, in which assessment is per-
formed via maximizing expected information gain (MacKay
1992), results in a better assessment than other tested meth-
ods, e.g. random and border-of-knowledge assessments.

Finally, we ask whether children properly perceive their
own teaching skills. This question is addressed by having the
robot actually acquire knowledge with the same algorithm
that assesses the child’s knowledge, and testing the agree-
ment between the child’s perception of the robot’s reading
skills and its actual child-like learning. We show that this
agreement, which relates to theory-of-mind (Astington and
Jenkins 1999), is age dependent, wherein below 5 years of
age, children wrongly over-estimate the robot’s skill, and
above that age, a more accurate representation of the robot’s
reading skill is developed.

Bayesian Active Learning Algorithm
The goal of the developed algorithm is to properly and ef-
ficiently assess a child’s word-reading skills, which is here
defined as the probability that the child knows how to read
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words. We first describe the knowledge representation and
update and then different assessment methods employed.

Knowledge representation and update
The knowledge is represented by a vocabulary of words, V ,
wherein each word w ∈ V has an associated probability
p(w) = p(wcorrect), which represents the child’s probabil-
ity of correctly knowing how to read word w. Thus the algo-
rithm should result in a proper matching between palgo(w)
and the true knowledge of the child ptrue(w), ∀w ∈ V .
Knowledge is updated according to Bayes’s rule, by observ-
ing the child’s reading of specific words and ascertaining
their connectedness, i.e. wcorrect

obs , wwrong
obs means the child

reads wordwobs correctly and incorrectly, respectively. Thus
the knowledge update, which occurs on all the words in the
vocabulary, w ∈ V , is given by:

p(w|wcorrect
obs ) = p(w)

p(wcorrect
obs |wcorrect)

p(wcorrect
obs )

(1)

p(w|wwrong
obs ) = p(w)

p(wwrong
obs |wcorrect)

1− p(wcorrect
obs )

(2)

The vocabulary is constructed from all possible observed
words during the interaction, such that p(w), ∀w ∈ V is
assessed throughout the interaction.

The conditional probability p(w1|wcorrect
2 ) means, what

is the probability the child knows how to read word w1,
given that she knows how to read word w2. Alternatively,
p(w1|wwrong

2 ) means, what is the probability the child
knows how to read word w1, given that she does not know
how to read word w2. We have constructed a heuristic for
this conditional probability, based on a phonetic distance
metric between the words, d(w1, w2), defined as:

d̂(w1, w2) =

|w1|∑
i=1

|w1|−i∑
j=0

δ(w1[i : (i+ j)] ∈ w2)

j + 1
(3)

n(w1, w2) =

|w1|∑
i=1

|w1|−i∑
j=0

1

j + 1
(4)

δ(w1[i : j] ∈ w2) =


1 letter sequence i, ..., j

inwordw1

appears inwordw2

0 otherwise

(5)

d(w1, w2) = d̂(w1, w2)/n(w1, w2) (6)

where |w| is the number of letters in word w, d̂(w1, w2) is
the un-normalized distance metric and n(w1, w2) is the nor-
malization, which simply represents the total number of pos-
sible joint letter-sequences. This distance metric represents
the fact that the more letter-sequences appear in both words,
the more similar they are. Also, the effects of longer letter-
sequences are smaller than shorter ones, which reflects that
reading occurs from the letter to phonetic to whole words.
Put differently, words with different letters are more dissim-
ilar than words with dissimilar bi-letters.

This normalized distance metric is used in a heuristic ex-
ponential model to estimate the conditional probability func-

tions:

p(w1|wcorrect
2 ) =

(
1 + e−d(w1,w2)/b

)
/2 (7)

p(w1|wwrong
2 ) =

(
e−d(w2,w1)/b

)
/2 (8)

The rationale behind these heuristics definitions is that the
more similar the words, the more probable their informing
one on another. Put differently, if a child does not know how
to read a single letter, this will have a more dramatic effect
on knowing how to read a word with that letter.

After each probability update, the probability of each
word is bounded: 0.05 ≤ p(w) ≤ 0.95, ∀w ∈ V . This
is done in order to introduce some uncertainty in the fi-
nal knowledge, such that even though many words were
un/known, the un/certainty of reading other words is still
bounded.

Assessment methods
During the interaction, the child is verbally “probed” to se-
lect a word out of several other presented ones (see Experi-
mental Setup). For example, when a sentence appears, a sin-
gle word is verbally spoken and the child is required to se-
lect it. We used four different methods to select which word,
w, out of the list of words, W , to ask the child. The base-
line method is a random selection of the word (Random),
i.e. not using any acquired knowledge of the child’s word-
reading skill. The second method is a “border of knowledge”
method (Border), wherein the word closest to 0.5 probabil-
ity is selected, i.e. the word which the model estimates the
child have a fifty-fifty chance of knowing and not knowing.
This method challenges the child, but not too much. In addi-
tion, when the assessed child’s knowledge is complete, i.e.
p(w) = 0.95, ∀w ∈ W , the longest word is selected, so as
to potentially challenge the child.

The third method is an “active learning” method (Ac-
tive), which aims to optimally increase the knowledge of the
child’s reading skill. This method selects the word with the
highest expected information gain (MacKay 1992), i.e. the
word that maximally decreases the uncertainty in the proba-
bility distribution in the vocabulary. The measure is defined
as follows:

I(w) =
∑
w′∈V

(
p(w′)DKL(p(w

′|wcorrect)||p(w′))

+(1− p(w′))DKL(p(w
′|wwrong)||p(w′))

)
(9)

wselect = argmaxw∈W I(w) (10)

where DKL is the Kullback-Leibler divergence. The ratio-
nale behind this method is to select a word that reduces
uncertainty weighted by the probability that she knows it
or not. For example, a word that greatly informs as to the
child’s knowledge, but that is certain to be readable, is not
likely to be selected.

The fourth method selects the word based on prior inter-
action (Select), e.g. assessing the child on a previously in-
correctly identified word. This allows post-test assessment
of the learning process.
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Experimental Setup
Robotic platform
For the social robotic platform we used DragonBot (Setapen
2012), a squash-and-stretch Android smartphone based
robot. The facial expression, sound generation and part of
the logic is generated on the smartphone, which is mounted
on the face of the robot. The robot appears to be a soft, furry,
fanciful creature that is designed to engage children. Drag-
onBot is a very expressive platform and has a large reper-
toire of possible facial expressions and actions. We installed
a commercial child-like voice for the text-to-speech software
on the smartphone, to facilitate a more generic and engaging
interaction.

Initial assessment
During the introduction to the study, the child is asked to
spell her name, and is informed that she is going to play
word games with the experimenter and then with the robot.
The first “word game” is the TOWRE word assessment test,
in which the experimenter asks the child to read words from
lists, as fast as she could, for 45 seconds. The raw TOWRE
score is defined as the total number of correctly read words
during these 45 seconds. We administered both sight and
phonetic word lists, where the total raw score reported here
is the sum of the two tests’ raw score. We used this informa-
tion, i.e. which words are read correctly and which are not,
to initialize the knowledge of the child’s reading skill. Thus,
even prior to the interaction, there is some baseline of the
child’s reading vocabulary.

Robot interaction
The child sits next to a small table upon which there is a
tablet and the robot, Fig. 1. The robot is “sleeping”, i.e. its
eyes are closed, and it is introduced as “Parle, a young robot
that just learned how to speak and wants to learn to read”.
The robot awakens, yawns (an overt motion and sound), and
introduces itself: “I am Parle, we are going to play word
games together.” The speech is interspersed with facial ex-
pressions and sounds, to create a more engaging interaction.

The first phase of interaction is a pre-test, during which
the robot asks the child to teach it some words. It verbally
asks the child to show it a word, e.g. “dragon”, whereupon
the word, and four distractors appear on the tablet. The child
then needs to tap on the correct word. During this phase, the
word is chosen according to the active-learning method, i.e.
the word is the one that maximizes the expected informa-
tion gain. The distractors are selected from the same vocab-
ulary: two words which are most similar, i.e. smallest dis-
tance metric from the selected word; one word that the child
should know, according to the assessment; and one word that
the child should not know how to read. This is repeated ten
times, to get a thorough assessment of the child’s reading
knowledge. The robot physically expresses excitement after
each word taught and at the end of the assessment phase.

The second, and main phase of the interaction, the story
phase, is based on an in-house developed app game that en-
ables the child to co-create a story with the robot. The game
contains three scenes, and several characters. The child can

Figure 1: The experimental setup.

move any character that appears on the screen. After each
movement, a sentence is automatically generated using a
novel auto-generation mechanism, which (i) randomly se-
lects an adjective for the character; (ii) detects the clos-
est other character for the story interaction; (iii) follows an
XML script of the plot of the story; and (iv) uses an open-
source natural language generation library to construct a full
sentence.

The XML plot files are constructed in a generic fashion,
such that (i) each character has a list of possible adjectives
(e.g. red, big), motions (e.g. fly, jump) and speech (e.g. roar,
squeak); (ii) the plot line is constructed of a sequence of
movements, speech, feelings and resolutions; and (iii) the
story conversation is constructed such that any sequence of
character selection generates a coherent story line. The result
of each movement is thus a full sentence that describes the
progression of the story plot. After several such sentences,
the scene changes and new characters are introduced, while
some of the old ones are taken away. There are three scenes
to the story, which ends with a final resolution sentence.

In the child-tablet-robot interaction, when the child moves
a character, the robot first speaks the generated sentence, and
then the sentence appears on the tablet above the scene. In
50% of the sentences, the robot expresses a shy face and
asks the child to show it a word, e.g. “I don’t know how to
read the word dragon. Can you show it to me?”. This re-
sulted in an average of 11 words per interaction. The child is
then required to tap on the correct word. Each tapping on a
word on the tablet results in the tablet speaking that word. In
this sense, the tablet is an informant, whereas the child and
robot are both the students. If the child is correct, the robot
becomes excited, i.e. moves in an excited manner, thanks
the child and the story continues. If the child is wrong, the
robot expresses frustration and asks the the word again. If
the child is wrong again, the tablet shows the correct word
in an emphasized manner and speaks it. The game then con-
tinues until the end of the story.

In the last stage of the interaction, the post-test, the robot
again asks the child to teach it some words, similar to the
pre-test phase. During this phase, the words that were asked
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during the story phase are asked again, with priority to those
the child got wrong, then those that she got right and finally
the most informative words, i.e. the ones that maximize the
expected information gain. A total of ten words are asked
during this phase.

In order to increase believability and engagement with
the robot, we inserted randomness to the expressions and
sentences the robot asked, so as to avoid boring repetition.
For example, during the pre- and post-test phases, the robot
asked: “Can you show me the word X?”, “That is a new
word, X. Can you tap on it?”, “I don’t know the word X.
Can you show it to me?” This increased diversity and ran-
domness in the robot’s behavior proved to be essential for
the children’s engagement, a major factor in educational in-
teractions.

Conditions and subjects
There were two conditions in the experiment, which differed
only in the story phase. In the “border” (B) condition, the
border-of-knowledge method selected the words. Further-
more, we implemented the ceiling, i.e. if the child was as-
sessed to know all the words, the longest one was selected.
In the “random” (R) condition, the robot asked about a ran-
dom word in the sentence.

More specifically, the methods employed in each con-
ditions were the following: in the “border” condition, ini-
tial assessment employed “active-learning”, story-phase em-
ployed “border of knowledge” and final assessment em-
ployed “select” method; in the “random” condition, ini-
tial assessment employed “active-learning”, story-phase em-
ployed “random” and final assessment employed “select”
method.

There were 49 children subjects of ages 4-8 of both
genders. They were recruited via e-mail lists of family
groups from the general surrounding. All participant’s par-
ents signed consent forms. Out of these subjects, only 34
completed the task with usable data (nB = 20, nR = 14).

Results
We first describe the general performance of the algorithm in
representing each child’s reading skill. We then analyze the
results across ages and initial reading skills, as assessed by
the TOWRE tests, followed by results pertaining to the dif-
ferent assessment methods. The child’s actual learning dur-
ing the interaction is described next, followed by discussion
and implications for children’s theory-of-mind development.

Algorithm represents child’s knowledge
Each subject was asked 10 words during the pre-test
phase, W pre, 10 words during the post-test phase, W post

and a variable number of words during the story phase,
(|W story| = 11±1 SE words), due to the probabilistic nature
of the interaction. In order to assess the algorithm, we calcu-
lated the actual probability, ptruei , that the child was correct
over all asked words,w ∈W total =W pre∪W story∪W post,
i.e. during the entire interaction, and compared it to the av-

Figure 2: Algorithm assessed knowledge represented by
child’s probability of being able to read words, palgo, as
a function of child’s actual word-reading skill represented
by the probability to correctly identify a prompted written
word, ptrue.

erage assessed word probability palgo(w), w ∈W total:

ptruei =
|W correct|
|W total|

(11)

palgoi =
1

|W total|
∑

w∈W total

p(w) (12)

where i represents each subject. In Fig. 2 we show the results
of this comparison. As can be seen, the algorithm captures
quite accurately each child’s word-reading skills, measured
by the probability of its ability to detect a prompted written
word (n = 34, R = 0.959, p < 0.01).

Children word learning
The child’s only opportunity for learning is during the story
phase, in which the tablet game serves as the informant. The
robot is framed as a younger peer who wants to learn from
the child, and if the child cannot teach it, the tablet can.
Thus, subjects can learn new words only during the short
(5-10 minutes) interaction with the story game. Surprisingly,
learning, defined as an incorrectly identified word during the
story phase followed by a correct identification in the post-
test phase, does occur. Out of the 34 subjects, 20 learned at
least one new word, to the total of 29 new words over all
subjects. The words learned ranged from “are” and “ball” to
“castle” and “enchanted”.

To quantify the learning process, we calculated how many
wrongly identified words in the story phase (44) were cor-
rectly identified during the post-phase (29) and how many
were not. This means that 66% of the words were identified,
much greater than 20% chance during the post-test.

Personalization
To further study the algorithm’s ability to personalize to spe-
cific children, we analyzed the algorithm’s assessment error
and the words learned as a function of both age and TOWRE
score, Fig. 3.
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R=-0.04, p=0.8 R=0.08, p=0.7

R=-0.13, p=0.6
R=-0.30, p=0.3

R=-0.14, p=0.6
R=-0.63, p=0.07

(a) (b)

(c) (d)

Figure 3: Personalization expressed as dependence of algo-
rithm’s assessment error (a,b) and words learned (c,d) on age
(a,c) and TOWRE score (b,d). In (c,d), blue and red denote
the Border and Random condition, respectively.

The algorithm’s error was calculated for each child as
palgoi − ptruei . Fig. 3(a) shows that the error is low and does
not depend on age. In other words, the algorithm adapts
equally well to every child, regardless of age. Furthermore,
Fig. 3(b) shows that the error also does not depend on the
raw TOWRE score, i.e. even though children differed greatly
in their initial reading abilities, the algorithm correctly as-
sessed their reading skill. It is important to note that the
words in the TOWRE test were different than those used
during the interaction, i.e. the algorithm transferred the in-
formation from the TOWRE test into the general vocabulary
and then continued the assessment during the interaction.
Furthermore, as can be seen, several subjects scored zero on
the TOWRE test, i.e. they could not read a single word cor-
rectly from the lists. Still, during the interaction they were
able to correctly identify some words, which were correctly
assessed by our algorithm.

More evidence for successful personalization is the fact
that the number of words learned in the Border condition
does not depend on age or TOWRE score, Fig. 3(c,d), re-
spectively. Without such personalization, i.e. in the Random
condition, there is a much stronger dependence on both age
and TOWRE score. While the absolute number of words
learned is not significantly different between the two condi-
tions, the Border condition, which employs personalization,
is more uniform across subjects, thus guaranteeing that chil-
dren learn regardless of their word-reading skills.

Assessment method analysis
During the interaction several assessment methods were em-
ployed, namely, Random, Border, Active and Select (see As-
sessment methods above). While all subjects were assessed
with the Active (during the pre-test) and Select (during the
post-test) methods, they were divided among the two exper-
imental conditions (B and R).

During each assessment method applied, specific words
were prompted and assessed. We calculated for each such
method, for each subject (as noted above), the true proba-
bility of correctly reading a word, ptrue,method

i and the algo-

Figure 4: Average error between computed algorithm as-
sessed word-reading skill and true word-reading skill for the
different assessment methods (error bars represent SE). Ac-
tive represents pre-test active-learning method; Border rep-
resents story border-of-knowledge method; Random repre-
sents story random selection and Select represents the post-
test selected words.

rithm’s prediction of it palgo,method
i . We calculated for each

method the error in algorithm prediction: |ptrue,method
i −

palgo,method
i |. In Fig. 4 we show the mean and standard error

of each method, averaged over subjects. While not signif-
icant, the Active method’s error is small compared to the
Random and Border ones, even though it is based on less
knowledge. Put differently, during the story phase, the al-
gorithm had more words to assess the child’s knowledge,
namely, those asked during the pre-test. Still, the assessment
of the algorithm, due to the appropriate selection of words,
outperforms the other methods. The Select method, which
occurs in the post-test, is the best due to the words chosen,
which were already asked before, and because it is at the end
of the interaction.

Robot word learning and children’s
theory-of-mind development
We wanted to assess the children’s perception of their teach-
ing, i.e. how much children think they taught the robot.
For this purpose, after the robot interaction we asked them
whether they thought the robot could read six selected
words. Put differently, after showing the robot words, did the
children think the robot knew how to read? For each word
the child could answer “Yes”, “No” or “I do not know” if the
robot knew how to read, for which we assigned qj = 1.0, 0.0
and 0.5 probabilities, respectively, where j = 1 . . . , 6. These
represent pchildi = 1

6

∑6
j=1 qj for each subject.

Concurrently, we run the same Bayesian update algorithm
on the robot. The initial vocabulary probabilities were set
to 0.05, representing lack of knowledge. Then, according to
Eq. (8), for each correctly taught word,w, the robot’s knowl-
edge was updated, whereas for each incorrectly identified
word, the robot knowledge was updated twice, for the asked
word and for the incorrectly identified one. The latter rep-
resented that the robot was misinformed on both words. For
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Figure 5: Error between children’s perception of robot read-
ing skills and actual reading skills as computed by the sug-
gested algorithm, as a function of age.

each subject we then compared the average child’s percep-
tion and the robot’s learning according to our algorithm.

We hypothesize that the discrepancy between child and
algorithm is age-dependent, as theory-of-mind develops
around the age-range we studied. Fig. 5 indeed shows an
age dependency, with a logistic fit suggesting a turning point
around 5 years of age (R2 = 0.573). The discrepancy
plateaued around 0.2, comparable to the errors of the algo-
rithm in the previous analysis. Finally, it shows that young
children over-estimate the robot’s learning capabilities.

Related Work
There is a large body of knowledge related to intelligent tu-
toring systems (ITS) (VanLehn 2011; Polson and Richard-
son 2013). A recent tutoring system, Guru, uses an interac-
tive dialogue tutoring system that was modeled after 50 ex-
pert tutors in the domain of high-school biology (Olney et al.
2012). It was shown that the Guru system was comparable to
human tutoring in post- and delayed-tests on the taught ma-
terial, and significantly better than classroom-only teaching.
In this contribution we employed a mathematical-based tu-
toring method, as opposed to human tutor-based, as well as
targeting much younger students. Another study compared
the effects of specific ITS employing an early literacy com-
puter game as well as computer feedback-tutoring system
on young children (Kegel and Bus 2012). It was shown that
the literacy game was effective only when combined with
the computer feedback tutoring. In this contribution we em-
ployed an active-learning tutoring, as opposed to only feed-
back, and introduced an embodied agent, as opposed to a
computer-based tutor.

On the other hand, the development and research of robot
tutors have recently been flourishing. RUBI-4 is a humanoid
robot with articulated arms, an expressive face, and a tablet
embedded in its midsection, with which it played simple
vocabulary games with preschool children (Movellan et al.
2009). In this contribution, the robot was a peer companion
that played an educational tablet game with children ages
4-8.

Studying the role of teaching as an effective learning strat-
egy, Tanaka and Matsuzoe’s robot played a verb-learning
game, in which the experimenter asked either the preschool
child or the robot to act out novel verbs (Tanaka and Mat-
suzoe 2012). They found that teaching the robot helped
children remember the verbs, as well as inspiring further
teaching-verbs play. We employed a similar empowerment
concept, yet integrated a personalization algorithm to match
each child’s skill.

Recently, personalization of robot tutors, even via simple
algorithms, has been shown to greatly increase tutoring ef-
fectiveness (Leyzberg, Spaulding, and Scassellati 2014). By
contrast, our contribution used an active learning-based al-
gorithm and focused on children’s word-reading skills and
not adult’s game strategies.

Employing active-learning algorithms in a human-robot
interaction paradigm has been shown to be more effective
than supervised learning alone (Cakmak, Chao, and Thomaz
2010). Furthermore, subjects exhibited a more accurate per-
formance estimate in the interactive modes using active
learning than in the passive supervised learning mode. How-
ever, in this paper we have employed the active-learning
paradigm on child’s assessment and not interaction, as our
main goal has been tutoring.

Conclusions
We have presented an integrated system that addresses the
challenge of effective child-robot tutoring. Our system in-
corporates: (i) a social robot with an engaging social interac-
tion, framed as a younger peer; (ii) an effective state-of-the-
art assessment algorithm, based on a Bayesian active learn-
ing approach; (iii) an interactive story-making tablet app that
allows an engaging co-play of robot and child.

By studying a large age-range of children subjects, we
were able to show that the assessment algorithm and the en-
tire system personalizes to different age-groups and initial
reading skills. This short interaction resulted in actual word
learning in an entertaining setup.

The results presented above indicate that another level of
assessment is possible, i.e. the developmental level of the
theory-of-mind of the child. The combination of an engag-
ing, empowering and entertaining experimental paradigm
facilitated the acquisition of the data. These results can only
be obtained in an integrated system, with a social robot, an
effective learning algorithm and a large age-range of chil-
dren.

We believe that this paper represents critical steps to-
wards an effective robot tutor for young children. Future
work will incorporate a more interactive engagement be-
tween robot and child, such as incorporating reactions to
the child’s posture (Sanghvi et al. 2011), facial expres-
sions (Baur et al. 2013) and speech (Bolaos et al. 2013;
Cheng et al. 2014). A larger curriculum can also be em-
ployed that encompasses phonology, orthography, morphol-
ogy, syntax and semantic meanings (Wolf et al. 2009), en-
abling a better personalization of the taught material. Devel-
oping the assessment Bayesian active-learning algorithm to
these knowledge domains is another challenge we will ad-
dress in the future.
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To conclude, we have presented an integrated system that
properly and efficiently assesses a child’s word-reading skill
during an engaging child-tablet-robot interaction, and uses
the acquired knowledge to teach the child, in an empowering
situation, new reading skills.
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