
RANSAC versus CS-RANSAC 

Geun-Sik Jo, Kee-Sung Lee, Devy Chandra, Chol-Hee Jang, Myung-Hyun Ga
Department of Computer & Information Engineering 

INHA University 
 Incheon, Korea 

gsjo@inha.ac.kr, lee.ks@outlook.kr, wiy_ch4n@hotmail.com, orange@eslab.inha.ac.kr, gagaman7777@eslab.inha.ac.kr 

Abstract 
A homography matrix is used in computer vision field to solve 
the correspondence problem between a pair of stereo images. 
RANSAC algorithm is often used to calculate the homography 
matrix by randomly selecting a set of features iteratively. CS-
RANSAC algorithm in this paper converts RANSAC algorithm 
into two-layers. The first layer is addressing sampling problem 
which we can describe our knowledge about degenerate features 
by mean of Constraint Satisfaction Problems (CSP). By dividing 
the input image into a ��� grid and making feature points into 
discrete domains, we can model the image into the CSP model to 
efficiently filter out degenerate features. By expressing the 
knowledge about degenerate feature samples using CSP in the 
first layer, so that computer has knowledge about how to skip 
computing the homography matrix in the model estimation step 
for the second layer. The experimental results show that the pro-
posed CS-RANSAC algorithm can outperform the most of vari-
ants of RANSAC without sacrificing its execution time. 

 Introduction
In recent years, augmented reality (AR) systems have re-
ceived considerable attention as an effective method for 
visualizing virtual information represented in text, still 
images, animations, videos, or 3D objects annotated on 
cameras or mobile device displays. Some studies have ex-
plored how to use an AR system to perform highly com-
plex and sophisticated tasks, such as aircraft maintenance 
and repair (Jo et al. 2014; Crescenzio et al. 2011; Lee, 
Rosli and Jo. 2012). However, to correctly annotate a vir-
tual object on a camera image in an AR system, it is neces-
sary to accurately estimate the pose of the virtual object, 
which can be done by calculating the homography matrix 
between reference and camera images.  

The calculation of a homography matrix can be solved 
using the RANSAC algorithm, where each sample set is 
randomly selected. The accuracy of the homography ma-

Copyright © 2015, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved. 

trix generated here depends heavily on the selected random 
features. However, RANSAC algorithm picks the features 
without considering their locations, which may lead to the 
selection of sets of features distributed linearly or too close 
to one another, resulting in an inaccurate homography ma-
trix. 

Figure 1 illustrates the pixels mapping (shown as green 
grid) from the reference images in left column to the cam-
era images in right column. The pixels mapping is done 
using a homography matrix calculated based on four se-
lected pairs of features (marked as yellow circles). In fig-
ure 1(A), the selected features lie on the same linear se-
quence, causing the homography matrix to be accurate 
only for estimating objects in some areas where the fea-
tures are selected (i.e. area inside the yellow rounded rec-
tangle), but fail in estimating the pose of other objects in 
other areas (e.g. the pitch trimmer annotated with orange 
circles). The same result happens when the selected fea-
tures lie too close to one another, as shown in figure 1(B). 
In contrast, as shown in figure 1(C), a desirable homogra-
phy matrix can be obtained to estimate the whole area of 
the image by selecting only well-distributed features.  

As illustrated in figure 1, accurately estimating the 
whole area is more important than estimating only a specif-
ic area of an image to avoid the failure of the tracking sys-
tem to track the target object as a result of some factors 
such as fast movements or occlusions, particularly in an 
AR system requiring a robust tracking system. To over-
come the problems described in the figure 1 and also to 
improve the existing variants of RANSAC, we are here 
proposing CS-RANSAC algorithm which embed CSP into 
the classic RANSAC.  

RANSAC Algorithm 
RANSAC algorithm basically consists of two steps: hy-
pothesis and evaluation (Zuliani 2012). In hypothesis step, 
a small subset of data is randomly selected to compute a 
model to fit the dataset. In evaluation step, this

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

1350



���������	
����

������

���������	
����

������

Reference image  Camera image 
(A) Collinear features set 

���������	
����

������

���������	
����

������

Reference image  Camera image 
(B) Adjacent features set 

���������	
����

������

���������	
����

������

Reference image  Camera image 
(C) Well-distributed features set 

Figure 1: Homography matrix calculation by RANSAC 
algorithm using different features sets. 

ed to determine a consensus set by checking which data 
from the dataset are consistent with the model (i.e. the 
number of inliers). These steps are iteratively repeated 
until the algorithm fails to find a better model to represent 
the dataset.  

Many studies have been conducted to improve the clas-
sic RANSAC algorithm for the calculation of a homogra-
phy matrix. Some studies focused on finding the true set of 
inliers, whereas some others on the sampling step by filter-
ing degenerate samples according to some conditions. LO-
RS algorithm (Chum, Matas, and Kittler 2003) improves 
the inlier rate of RANSAC algorithm by locally optimizing 
an area of the image that is highly condensed by features. 
Here, another RANSAC algorithm is run within each itera-
tion of the RANSAC algorithm. T-RS algorithm (Vincent 
and Laganiere 2001) computes the areas of four triangles 

determined by the random features and retains only those 
whose areas are greater than a given threshold. The thresh-
old value is set to a generous number at the first iteration 
and is tightened once the homography matrix becomes 
stable. MFF-RS algorithm (Wu and Fang 2007) applies 
two filters in the sampling step: angle and length filters. 
Each sample feature is considered as a vector and is re-
tained as an inlier only if its value is lower than the median 
flow value derived by comparing all the random features. 
All these techniques have successfully improved the clas-
sic RANSAC algorithm for calculating a data model, par-
ticularly the homography matrix of an image pair. Howev-
er, the resulting homography matrix may not be able to 
accurately estimate the pose of objects in the whole image 
because they could not express which feature samples are 
degenerate samples with the efficient computational model.  

CSP for RANSAC
Most of artificial intelligence (AI) problems can be formu-
lated as a constraint satisfaction problem (CSP) (Russell, 
and Norving 2010) defined by a set of variables 
������� ��� and a set of constraints�������� ���, where 
each variable �� has a nonempty domain �� of some possi-
ble values ��. The state of a problem is defined by an as-
signment of values to some or all of the variables 
�� � �� � ��� � �� �� . An assignment is said to be con-

sistent if it does not violate any constraints, and it is said to 
be complete if every variable is mentioned. 

A solution to the CSP is then the complete assignment 
that satisfies all the constraints (Russell, and Norving 
2010). Treating a problem as a CSP confers two important 
benefits in vision problems. One is to represent the 
knowledge in a form of constraints, the other is to develop 
effective and generic heuristics requiring no additional 
domain-specific knowledge. 

This paper proposes CS-RANSAC algorithm by intro-
ducing CSP into a computer vision problem of model esti-
mation, particularly a homography matrix. The sampling 
problem of RANSAC algorithm is modeled as a CSP mod-
el to help filter out degenerate configurations in this model 
(i.e. sets of collinear or adjacent features in the estimation 
of a homography matrix), and therefore, gain a homogra-
phy matrix with higher accuracy to estimate the whole area 
of an image.  

With the sampling problem of a RANSAC algorithm be-
ing considered as a CSP, the variable is defined as a set of 
feature points used to calculate the data model, denoted 
as��� with � � ����� � �  and � is the number of samples. 
To define the domain and value of each variable, particu-
larly in a model estimation problem for two corresponding 
images, the input image �� is first divided into an ��� 
grid to allow the CSP model to efficiently check the con-
straints of each feature pair. The value assignable to each 

1351



feature is defined as the location of the corresponding cell 
where the feature lies in, which can be represented by a 
two tuple������ ����. Therefore, features lie in the same 
cell will be mapped into a same value of a variable. With 
this, many degenerate features lying too close to one an-
other can be eliminated. The domain of each feature �� is a 
set of any possible locations of the corresponding cell in 
the grid. Together with the constraints defined in next sec-
tion, this ��� grid helps to reduce the search scope, such 
that only one sample can be selected in a cell, and thus, 
more time can be spent for some adjacent cells which satis-
fy constraints. 

Constraints for expressing knowledge about how to 
filter out degenerate features 
As shown in Table 1, the relationship between all the se-
lected random features is defined using a set of constraints 
�������

. In this paper, we employ a set of linear and dis-
tance constraints to filter the degenerate samples in a 
homography matrix calculation problem to remedy the 
problems described in the figure 1. By applying these con-
straints to Images from UKBench dataset (Nister and 
Stewenius 2006), we also would like to verify that CSP-
based filtering degenerate features samples generally out-
performs other variants of RANSAC algorithm. Linear 
constraints ensure that no selected samples lie on the same 
linear sequence, whereas distance constraints ensure that 
all samples lie far enough from one another. 

Table 1: Features relationships in CS-RANSAC Algorithm 
�� �� �� � �� 

�� �����
 �����

 � �����
 

�� �����
 � �����

 
�� � �����

 

� � 
� �������

 
�� 

Let ����� be a set of constraints between two features �� 
and��� . �����  is true when both linear and distance con-
straints are satisfied. With ���� and ���� are the row indi-
ces, and ���� and ���� are the column indices of the corre-
sponding cells of features��� and���, respectively, the linear 
and distance constraints are defined as follows. 

Definition 1 (Linear constraints) A set of ��features satis-
fies linear constraints iff: 
�� � � ��� �� ��

<���� � ����> is true and 
<���� � ����> is true and 
<���� � ���� � ���� � ���� > is true 

Definition 2 (Distance constraints) A set of ��features sat-
isfies distance constraints iff: 
�� � � ��� �� ��

< ���� � ���� � � ����� ���� � ���� � � > is true 
and 
< ���� � ���� � � ����� ���� � ���� � � > is true  

CS-RANSAC Algorithm 
Generally, RANSAC algorithm can be divided into two 
main steps: the sampling step and the model estimation 
step. CS-RANSAC algorithm modifies the sampling step 
of the RANSAC algorithm, where it incorporates a CSP 
model to filter out degenerate samples before they can be 
used in the model estimation step. As outlined in 

Algorithm 1 CS-RANSAC. 
Input: Extracted features from the input image, the maxi-

mum number of sampling iterations ��, the error 
threshold���. 

1:  Initialize ��= NULL, �������	�
� = 0, ����
��	����= 
1, ��	������	�� = 0, � = 0. 

2:  Repeat 
3: Initialize �� = NULL, ���= NULL, ���	���� = 0, 

����
��	����= 0, �� �= NULL 
4:  While �� is empty or �� is not consistent with the 

constraints in Definitions 1 and 2 do 
5: If ����
��	���� � �� do 
6: Sample � features �� randomly 
7: ����
��	���� � ����
��	���� � � 
8: Check the consistency of �� according to con-

straints in Definitions 1 and 2 
9: Else 
10: Sample � features �� based on similarity rank-

ings 
11: ��	������	�� � ��	������	�� +1 
12: Exit While 
13: End If 
14:   End While 
15:   �� � �� 
16:   Calculate �� based on �� 
17:  Calculate ���	���� according to �� 
18:   If ���	���� � �������	�
� do 
19:    � � �� 
20:    �������	�
� � ���	���� 
21:   End If 
22:   Calculate ����
��	��� using Eqn. 1 
23:   � � � � � 
24:  Until � � ����
��	��� 
Output: � 

1352



Algorithm 1, � features are first selected randomly from 
the extracted features of the input image���. The sampled 
features are then checked for their consistency by the con-
straints set defined in the previous section. They are con-
sidered for the next step only if all the constraints are satis-
fied. If any pair of features fails to satisfy any constraint, 
then CS-RANSAC first checks the sampling iteration de-
noted as�����
��	���. If ����
��	��� exceeds the prede-
fined threshold���, then CS-RANSAC instead samples an-
other set of � features with the highest similarity ranking 
based on the Euclidean distance. Here, ��  is set to 100 
sampling iterations to avoid the algorithm to loop forever, 
which have not happened or have not even reached to near 
that point yet in our real implementation. The rest of the 
CS-RANSAC algorithm is similar to that of the classic 
RANSAC algorithm, in which the data model is iteratively 
calculated and updated using a set of sampled features de-
rived from the previous step (i.e. either the features set 
selected by the CSP model or the similarity ranking). The 
data model is evaluated based on the number of inliers (i.e. 
the number of feature points agrees with the data model 
generated in current iteration with respect to an 
error threshold���). 

The number of iterations of the CS-RANSAC algorithm 
is updated at the end of each iteration as follows: 

����
��	���� �
��� �� �

��� �� �� � �
(1) 

where � is the probability of all sampled features being 
inliers, and is set to �������to obtain high accuracy. Con-
versely, � is the probability of at least one sampled feature 
being an outlier, calculated using Eq. 2. Finally, � is num-
ber of features used to calculate a data model. 

� � � �
�����������������

������������������������
(2) 

The data model with the largest number of inliers is re-
tuned as the best data model (i.e. homography matrix �) 
which corresponds all feature pairs between the source 
image �� and the destination image���. 

Experiments 
Images from UKBench dataset (Nister and Stewenius 
2006) with a size of ������� are used for evaluation. A 
ground truth tool is built to check the validity of the match-
ing results of the SURF features (Bay et al. 2008) based on 
the Euclidean distance. After extracting SURF features 
from all test images (i.e. both source and destination 
ima

Figure 2: Error rates for various grid sizes and numbers of 
features. 

Figure 3: Processing times for various grid sizes and num-
bers of features. 

Figure 4: Inlier rates for various grid sizes and numbers of 
features. 

Figure 5: Failure rates for various grid sizes and numbers 
of features. 

image pair are calculated by the Euclidean distance to  
generate pairs of matched feature points, which are then 
sorted and stored to be used when the proposed CSP model 
fails to sample a set of � constraints satisfying feature 
points. Finally, assuming that all feature points lie in a 
real-world plane, the homography matrix for each image 
pair is calculated. 

1353



Table 2: Comparison of several variants of RANSAC algorithm for the processing time (ms). 
G1 G2 G3 G4 G5 

Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std. 
RS 79.92 36.11 61.15 35.05 53.52 36.38 67.69 33.81 11.29 11.54 
T-RS 80.96 38.17 67.53 35.75 51.34 34.15 65.60 27.17 10.45 10.22 
MFF-RS 89.71 38.88 66.75 36.44 69.33 36.11 79.77 37.42 11.79 12.96 
LO-RS 58.34 27.74 65.29 33.80 44.65 23.21 52.13 17.81 13.46 10.33 
CS-RS 65.47 23.12 52.46 22.39 41.43 21.37 55.33 14.74 9.76 8.25 

Table 3: Comparison of several variants of RANSAC algorithm for the error rate (pixel). 
G1 G2 G3 G4 G5 

Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std. 
RS 81.57 36.89 35.59 11.62 48.01 22.50 128.99 97.98 41.93 29.80 
T-RS 88.71 104.58 37.28 33.11 48.48 28.56 124.82 76.07 39.12 32.96 
MFF-RS 99.84 94.69 37.99 14.03 49.00 23.66 157.78 156.88 44.54 43.99 
LO-RS 189.74 358.79 217.02 495.21 295.52 845.65 367.95 617.67 227.66 328.79 
CS-RS 75.12 26.620 34.51 10.68 44.63 20.48 105.13 46.80 32.30 20.59 

Table 4: Comparison of several variants of RANSAC algorithm for the number of inlier. 
G1 G2 G3 G4 G5 

Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std. 
RS 367.04 15.04 2779.16 33.77 1829.35 24.18 272.95 10.00 1637.34 26.66 
T-RS 368.33 14.43 2782.08 32.17 1828.94 22.61 272.19 9.83 1641.83 26.18 
MFF-RS 356.22 15.56 2755.89 68.31 1806.23 31.80 261.88 14.11 1625.64 38.21 
LO-RS 381.23 14.01 2806.44 14.85 1854.40 13.65 280.45 6.05 1660.93 12.55 
CS-RS 371.29 13.10 2788.31 24.12 1837.43 17.00 277.56 6.26 1651.10 18.76 

GT 434.58 91.13 2963.75 452.31 1884.14 438.95 306.83 61.83 1709.22 231.93 

All matching features are manually verified, one feature 
at a time. If there is any pair of features classified as an 
inlier (i.e. a pair of corresponding features by the Euclide-
an distance) but found to be an outlier (i.e. a pair of feature 
points that does not match with each other according to 
human vision), then it is manually classified as an outlier. 
A total of four measures are used to evaluate the proposed 
algorithm: error rate, processing time, inlier rate, and fail-
ure rate. Error rate refers to the accuracy of the homogra-
phy matrix, which is derived using the symmetric transfer 
error (Hartley and Zisserman 2004) as follows: 

���������� � � �� ��
����

� � � � ��
� ����

�

�

 (3) 

where �  is the Euclidean distance between two feature 
points. � and �� are any pixel in the source image and its 
estimation in the destination image according to �, respec-
tively. A ��� grid is overlaid onto the source image, and � 
is randomly selected from each cell of the grid.  

Processing time is the time required by each algorithm 
to generate a homography matrix � for each image pair, 
measured on Intel Core I5 CPU 1.80GHz. Inlier rate indi-
cates the probability of features agreeing with �.  

����������� �
�����������������

������������������
(4) 

Finally, failure rate refers to the rate at which the pro-
posed CSP model fails to find a set of � constraints satisfy-
ing feature points within 100 sampling iterations. 

��	��������� �
��	������	���

	���
��	�	��
(5) 

where ��	������	�� is the number of iterations which 
use top � features by similarity to calculate a homography 
matrix, and 	���
��	�	���is the number of iterations re-
quired by CS-RANSAC to generate � for each image pair. 

1354



G1 G2 G3 G4 G5 

Figure 6: The classification of test images based on feature distributions (G1: few features distributed over the whole image; 
G2: many features distributed over the whole image; G3: many features distributed at the center of the image; G4: few 
features distributed over a specific area in the image; G5: many features distributed over a specific area in the image). 

Results and Discussion 

Grid Size and Number of Samples for each Image 
Though four-point algorithm (Hartley and Zisserman 2004) 
has suggested to use sets of four matched points to estimate 
a planar homography, this experiment is conducted to de-
termine whether the grid size affects the suggestion of 
four-point algorithm. CS-RANSAC algorithm is executed 
to calculate a homography matrix � for each image pair. 
This experiment is conducted on various sizes of grid and 
samples using 33 pairs of images, to determine the optimal 
grid size and the optimal number of samples for each grid 
size in the proposed algorithm. Its performance is evaluat-
ed by the error rate, the processing time, the inlier rate, and 
the failure rate. The average value of each measure is cal-
culated and presented in graphs, as shown in figures 2, 3, 
4, and 5, which clearly show that using four samples in-
deed is also the optimal number of features in CS-
RANSAC. Compared to using a larger number of samples, 
it produces the lowest error and failure rates, requires the 
shortest processing time, and generates the highest inlier 
rate.  

For the grid size, as shown in figures 2 and 5, the error 
and failure rates decrease sharply when the value of N is 
three to four times the number of samples. This is because 
when the number of samples is greater than or equal to the 
value of N, it is not possible to find a set of features that 
satisfy all the defined constraints. Therefore, it will invoke 
the alternative sampling method and increase the failure 
rate. In addition, because the features are selected based 
only on their similarity rankings (i.e. there is no guarantee 
that the selected samples are well distributed), it increases 
the error rate. Similarly, as shown in figure 4, the highest 
inlier rate is observed when the value of N is three to four 

times the number of samples, but this comes at the expense 
of the processing time when the number of samples is larg
er than four, as shown in figure 3. These results therefore 
suggest four as the optimal number of samples and 17×17 
as the optimal grid size,  as shown in Table 2.

Table 5: Algorithm behaviors using four features and grid 
size of �����. 

Error rate Processing time Inlier rate Failure rate 

57.19 pixels 46.38 msec 70.71% 0% 

CS-RANSAC vs. Other RANSAC Algorithms 
In this experiment, five variants of RANSAC algorithm 
with different basic concepts are compared in terms of pro-
cessing time, error rate, and number of inliers. In CS- 
RANSAC algorithm, as described in previous section, all 
the selected samples have to satisfy the defined constraints 
to be used in the homography calculation step. In T-RS, the 
selected samples are filtered based on the area of triangles 
the features form. This only solves the distance problem, 
but not the linear problem, which may affect the results. 
The constraints in MFF-RS rely only on the length or angle 
of the features which are treated as vectors. Therefore, 
MFF-RS cannot ensure the distribution of the features. In 
contrast, LO-RS focuses only on optimizing the inlier rate, 
by employing only the inlier set found in previous steps to 
recalculate the homography matrix. With this, the number 
of inliers found by LO-RS is expected to be the best among 
five variants of RANSAC algorithm in this experiment. 
But worth to be noted, the error rate here is calculated 
based on the pixel mapping from whole area of the image, 
which is why LO-RS has a very high error rate. A total of 
50 images are selected and divided into five groups based 
on the features distribution pattern (figure 6) such that each 

1355



group has 10 pairs of images. Each algorithm is executed 
to produce a homography matrix for each image pair. Av-
erage (Avg.) and standard deviation (Std.) of the error rate, 
the processing time, and the number of inliers are calculat-
ed for evaluation.  

As shown in Table 3, CS-RANSAC generally provides 
better runtime compared to the others, with average reduc-
tions ranging from 6% to 20%. This is because only the 
constraints satisfying random samples are used, so that it 
can produce a correct homography matrix in each iteration 
(as shown in Table 4, CS-RANSAC provides lower error 
rate compared to other algorithms, with 3% to 85% im-
provement of the error rate), and thus requires lesser 
amount of time to produce the best homography matrix for 
each image pair. However, for images in G1 and G4, 
which have only a few feature points, LO-RS provides 
better execution time than CS-RANSAC by 6% and 12%, 
respectively. This is because there are only few features in 
the whole image area, so that the proposed CSP model has 
difficulty in finding the constraints satisfying features, 
which cause the increase of the sampling iteration and 
therefore, increase the processing time. For LO-RS, as ex-
pected, it provides the largest number of inlier (Table 5,) 
and thus it can accurately estimate only specific parts of 
the image, reflecting the case shown in figure 1(B). 
Because TS-RS does not solve the linear problem, it was 
found to have lower accuracy (i.e. higher error rate and 
smaller number of inliers) compared to the CS-RANSAC 
algorithm. In addition, by dividing the image into a grid, it 
helps to eliminate many degenerate features in early steps 
without any further calculation. However, T-RS has to 
calculate the relationship of each feature before it can elim-
inate some degenerate ones. 

Conclusions and Future Works 
The experimental results show that CS-RANSAC generally 
outperforms four other variants of RANSAC algorithm (i.e. 
classic RANSAC, T-RS, MFF-RS, and LO-RS) in terms of 
accuracy and processing time without sacrificing its execu-
tion time. The feature distribution by describing in terms of 
CSP strongly affects both the processing time and accuracy 
without sacrificing its execution time and inlier rate. Even 
though LO-RS provides the highest inlier rate, there is no 
significant difference between LO-RS and CS-RS. Howev-
er, the proposed CS-RANSAC also shows its superiority in 
estimating the pose of objects in whole image area, which 
can solve the problems described in the figure 1. In addi-
tion, it is worth noting that the CSP used in CS-RANSAC 
is more general and robust scheme than any other method-
ology used in four other variants of RANSAC compared in 
this research. Through the motivation derived from the 
figure 1 and the experiment with UKBench dataset (Nister 

and Stewenius 2006), we proved that the efficient filtering 
of degenerate features and guiding how to choose the right 
feature samples using CSP can improve overall perfor-
mance of RANSAC algorithm. 

The future work should be improving the CS-RANSAC 
algorithm by introducing different constraints for various 
types of images, in which the grid size can be also adjusted 
and allow CS-RANSAC to automatically select a set of 
constraints depending on the distribution pattern of its fea-
tures.  

References 
Bay, H.; Ess, A.; Tuytelaars, T.; and Gool, L. V. 2008. SURF: 
Speeded Up Robust Features. In Computer Vision and Image 
Understanding 110(3): 346-359. 
Crescenzio, F. D.; Fantini, M.; Persiani, F.; Stefano, L. D.; Az-
zari, P.; and Salti, S. 2011. Augmented Reality for Aircraft 
Maintenance Training and Operations Support. IEEE Computer 
Graphics and Applications 31(1): 96-101. 
Hartley, R., and Zisserman, A. 2004. Multiple View Geometry in 
Computer Vision Second Edition. Cambridge University Press. 
Jo,G.S.; Oh, K.J.; Ha, I.; Lee, K.S.; Hong, M. D.; Neumann, U.; 
and You, S. 2014. A Unified Framework for Augmented Reality 
and Knowledge-Based Systems in Maintaining Aircraft. In Pro-
ceedings of the Twenty-Sixth Annual Conference on Innovative 
Applications of Artificial Intelligence/AAAI, 2990-2997. 
Lee, K. S.; Rosli, A. N.; and Jo, G. S. 2012. A Method for Auto-
matically Creating an Interactive Semantic Video based on AR 
System. In IEEE International Conference on Systems, Man, and 
Cybernetics, 2626-2631. 
Nister, D., and Stewenius, H. 2006. Scalable Recognition with A 
Vocabulary Tree. In IEEE Conference on CVPR 2: 2161-2168. 
Russell, S., J., and Norving, P. 2010. Artificial Intelligence: A 
Modern Approach Third Edition. Prentice Hall. 
Vincent, E., and Laganiere, R. 2001. Detecting Planar Homogra-
phies in an Image Pair. In Proceedings of IEEE International 
Symposium on Image and Signal Processing and Analysis, 182-
187. 
Wu, F., and Fang, X. 2004. An Improved RANSAC Homography 
Algorithm for Feature Based Image Mosaic. In Proceedings of 
WSEAS International Conference on Signal Processing, Compu-
tational Geometry & Artificial Vision, 202-207. 
Zuliani, M. 2012. RANSAC for Dummies. MathWorks, 
URL:http://www.mathworks.com, November 2008. 

1356




