Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

Answering Conjunctive Queries over ££ Knowledge Bases
with Transitive and Reflexive Roles

Giorgio Stefanoni and Boris Motik
Department of Computer Science, University of Oxford
Wolfson Building, Parks Road,

Oxford, OX1 3QD, UK

Abstract

Answering conjunctive queries (CQs) over ££ knowledge
bases (KBs) with complex role inclusions is PSPACE-hard
and in PSPACE in certain cases; however, if complex role
inclusions are restricted to role transitivity, a tight upper com-
plexity bound has so far been unknown. Furthermore, the ex-
isting algorithms cannot handle reflexive roles, and they are
not practicable. Finally, the problem is tractable for acyclic
CQs and ELH, and NP-complete for unrestricted CQs and
ELHO KBs. In this paper we complete the complexity land-
scape of CQ answering for several important cases. In par-
ticular, we present a practicable NP algorithm for answering
CQs over ELHO® KBs—a logic containing all of OWL 2
EL, but with complex role inclusions restricted to role transi-
tivity. Our preliminary evaluation suggests that the algorithm
can be suitable for practical use. Moreover, we show that,
even for a restricted class of so-called arborescent acyclic
queries, CQ answering over ££ KBs becomes NP-hard in
the presence of either transitive or reflexive roles. Finally, we
show that answering arborescent CQs over ELHO KBs is
tractable, whereas answering acyclic CQs is NP-hard.

1 Introduction

Description logics (DLs) (Baader et al. 2007) are a family of
knowledge representation languages that logically underpin
the Web Ontology Language (OWL 2) (Cuenca Grau et al.
2008). DL knowledge bases (KBs) provide modern informa-
tion systems with a flexible graph-like data model, and an-
swering conjunctive queries (CQs) over such KBs is a core
reasoning service in various applications (Calvanese et al.
2011). Thus, the investigation of the computational proper-
ties of CQ answering, as well as the development of practi-
cable algorithms, have received a lot of attention lately.

For expressive DLs, CQ answering is at least exponential
in combined complexity (Glimm et al. 2008; Ortiz, Rudolph,
and Simkus 2011)—that is, measured in the combined size
of the query and the KB. The problem is easier for the DL-
Lite (Calvanese et al. 2007) and the ££ (Baader, Brandt,
and Lutz 2005) families of DLs, which logically underpin
the QL and the EL profiles of OWL 2, respectively, and
worst-case optimal, yet practicable algorithms are known
(Kontchakov et al. 2011; Rodriguez-Muro, Kontchakov, and

Copyright (© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1611

Zakharyaschev 2013; Eiter et al. 2012; Venetis, Stoilos, and
Stamou 2014). One can reduce the complexity by restricting
the query shape; for example, answering acyclic CQs (Yan-
nakakis 1981) is tractable in relational databases. Bienvenu
et al. (2013) have shown that answering acyclic CQs in DL-
Lite.,,. and £LH is tractable, whereas Gottlob et al. (2014)
have shown it to be NP-hard in DL-Lite.

In this paper, we consider answering CQs over KBs in
the £L family of languages. No existing practical approach
for £L supports complex role inclusions—a prominent fea-
ture of OWL 2 EL that can express complex properties of
roles, including role transitivity. The known upper bound
for answering CQs over ££ KBs with complex role in-
clusions (Krotzsch, Rudolph, and Hitzler 2007) runs in
PSPACE and uses automata techniques that are not prac-
ticable due to extensive don’t-know nondeterminism. More-
over, this algorithm does not handle transitive roles specifi-
cally, but considers complex role inclusions. Hence, it is not
clear whether the PSPACE upper bound is optimal in the
presence of transitive roles only; this is interesting because
role transitivity suffices to express simple graph properties
such as reachability, and it is a known source of complexity
of CQ answering (Eiter et al. 2009). Thus, to complete the
landscape, we study the combined complexity of answering
CQs over various extensions of ££ and different classes of
CQs. Our contributions can be summarised as follows.

In Section 3 we present a novel algorithm running in
NP for answering CQs over £ LHO® KBs—a logic contain-
ing all of OWL 2 EL, but with complex role inclusions re-
stricted to role transitivity—and thus settle the open question
of the complexity for transitive and (locally) reflexive roles.
Our procedure generalises the combined approach with fil-
tering (Lutz et al. 2013) for ELHO by Stefanoni, Motik,
and Horrocks (2013). We capture certain consequences of an
ELHO? KB by a datalog program; then, to answer a CQ, we
evaluate the query over the datalog program to obtain candi-
date answers, and then we filter out unsound candidate an-
swers. Transitive and reflexive roles, however, increase the
complexity of the filtering step: unlike the filtering proce-
dure for ELHO, our filtering procedure runs in nondeter-
ministic polynomial time, and we prove that this is worst-
case optimal—that is, checking whether a candidate answer
is sound is an NP-hard problem. To obtain a goal-directed
filtering procedure, we developed optimisations that reduce

the number of nondeterministic choices. Finally, our filtering
procedure runs in NP only for candidate answers that de-
pend on both the existential knowledge in the KB, and tran-
sitive or reflexive roles—that is, our algorithm exhibits pay-
as-you-go behaviour. To evaluate the feasibility of our ap-
proach, we implemented a prototypical CQ answering sys-
tem and we carried out a preliminary evaluation. Our results
suggest that, although some queries may be challenging, our
algorithm can be practicable in many cases.

In Section 4 we study the complexity of answering acyclic
CQs over KBs expressed in various extensions of ££. We
introduce a new class of arborescent queries—tree-shaped
acyclic CQs in which all roles point towards the parent. We
prove that answering arborescent queries over ££ KBs with
either a single transitive role or a single reflexive role is NP-
hard; this is interesting because Bienvenu et al. (2013) show
that answering acyclic queries over £LH KBs is tractable,
and it shows that our algorithm from Section 3 is optimal
for arborescent (and thus also acyclic) queries. Moreover,
we show that answering unrestricted acyclic CQs is NP-hard
for ELHO, but it becomes tractable for arborescent queries.

All proofs of our results are provided in a technical re-
port (Stefanoni and Motik 2014).

2 Preliminaries

We use the standard notions of constants, (ground) terms,
atoms, and formulas of first-order logic with the equality
predicate ~ (Fitting 1996); we assume that T and 1 are
unary predicates without any predefined meaning; and we
often identify a conjunction with the set of its conjuncts.
A substitution o is a partial mapping of variables to terms;
dom(o) and rng(o) are the domain and the range of o, re-
spectively; for convenience, we extend each o to identity on
ground terms; o| 4 is the restriction of o to a set of variables
S; and, for « a term or a formula, o(«) is the result of si-
multaneously replacing each free variable = occurring in «
with o (). Finally, [¢, j] is the set {i, i+ 1,...,5 — 1,5}.

Rules and Conjunctive Queries An existential rule is
a formula VZVY.0(Z, §) — 3Z.4(Z, Z) where ¢ and ¢ are
conjunctions of function-free atoms over variables z U ¢ and
T U Z, respectively. An equality rule is a formula of the form
VZ.o(Z) — s = t where ¢ is a conjunction of function-free
atoms over variables Z, and s and ¢ are function-free terms
with variables in Z. A rule base ¥ is a finite set of rules and
function-free ground atoms; X is a datalog program if Z = ()
for each existential rule in X. Please note that ¥ is always
satisfiable, as T and L are ordinary unary predicates. We
typically omit universal quantifiers in rules.

A conjunctive query (CQ) is a formula ¢ = 3§.4(&, §)
where 1) is a conjunction of function-free atoms over vari-
ables & U ¢/. Variables &' are the answer variables of q. Let
Ny (q) = ZU ¢ and let Ny (q) be the set of terms occurring
in g. When Z is empty, we call ¢ a Boolean CQ.

For 7 a substitution, let 7(¢) = 32.7(¢), where Z is ob-
tained from ¢ by removing each variable y € ¢ such that
7(y) is a constant, and by replacing each variable y € ¢ such
that 7(y) is a variable with o (y).

1612

Table 1: Translating ELHO® Axioms into Rules

Type | Axiom Rule
1| ACB ~ A(z) — B(z)
2 | AE{a} ~ Alx) vz =~a
3| AANACA ~ Ai(z) A Ax(z) = A(x)
4| 3RACA ~ R(z,y) N A1(y) — A(x)

S(z, x,
>|SER ~ Selfé())—> Self(R(3
6 | range(R, A) ~ R(z,y) — A(y)
7| AiC3RA ~ Ai(z) = 3z.R(z, z) A A(2)
8 | trans(R) ~ R(z,y) A R(y,2) = R(z,2)
9 | refl(R) ~ T(x) = R(z,x) A Selfr(x)
10 | AC3RSelf ~ A(z) = R(z,z) A Selfg(x)
11 | ARSelf C A Selfg(z) — A(x)

Let X be a rule base and let ¢ = 37.4(Z,) be a CQ over
the predicates in 2. A substitution 7 is a certain answer to q
over X, written ¥ |= 7(q), if dom(7) = Z, each element of
rng(r) is a constant, and Z = 7(g) for each model Z of X.

The DL £LHO? is defined w.r.t. a signature consisting of
mutually disjoint and countably infinite sets N¢, Ng, and
Nj of atomic concepts (i.e., unary predicates), roles (i.e.,
binary predicates), and individuals (i.e., constants), respec-
tively. We assume that T and | do not occur in N¢. Each
ELHO? knowledge base can be normalised in polynomial
time without affecting CQ answers (Krotzsch 2010), so we
consider only normalised KBs. An ELHO® TBox T is a fi-
nite set of axioms of the form shown in the left-hand side
of Table 1, where A;) € No U{T}, Be NcU{T, L},
S,R € Ng, and a € Ny; furthermore, TBox 7 is in ELHO
if it contains only axioms of types 1-7. Relation C- is the
smallest reflexive and transitive relation on the set of roles
occurring in 7 such that S T3 R foreach SE Re T. A
role R is simple in T if trans(S) ¢ T for each S € Ny with
S C% R. An ABox A is a finite set of ground atoms con-
structed using the symbols from the signature. An ELHO?
knowledge base (KB) is a tuple K = (T, A), where T is an
ELHO?® TBox and an A is an ABox such that each role R
occurring in axioms of types 10 or 11 in 7 is simple.

Let ind be a fresh atomic concept and, for each role R, let
Selfg be a fresh atomic concept uniquely associated with
R. Table 1 shows how to translate an ELHO® TBox T
into a rule base =7. Furthermore, rule base clsg contains
an atom ind(a) for each individual a occurring in K, a rule
A(xz) — T(x) for each atomic concept occurring in &, and
the following two rules for each role R occurring in K.

ind(x) A R(z,z) — Selfg(x) (1)
R(z,y) = T(x) A T(y))

For K a KB, let =x = Z U clsic U A; then, K is unsatis-
fiable iff E¢ = Jy.L(y). For ¢ a CQ and 7 a substitution,
we write KC |= 7(q) iff KC is unsatisfiable or Zx = m(g). Our
definition of the semantics of £L£HO? is unconventional, but
equivalent to the usual one (Krétzsch 2010).

b a b

i

Y1 Y3 %2

fGomn |
(J18.C

2 ‘ -
rRT| RT\RT| / RT-RI / \ ,
\ 2 /| RT\RT\ [RTRT/RT

6T.D \ 24

D LR

2TD

v v v

Figure 1: The models of Zx and Dy, and the skeleton for ¢

3 Answering CQs over ELHO® KBs

In this section, we present an algorithm for answering CQs
over £ELHO® KBs running in NP. In the rest of this section,
we fix I = (T, .A) to be an arbitrary ELHO® KB.

Certain answers to a CQ over Zx can be computed by
evaluating the CQ over a so-called canonical model that can
be homomorphically embedded into all other models of Z.
It is well known (Krotzsch, Rudolph, and Hitzler 2007) that
such models can be seen as a family of directed trees whose
roots are the individuals occurring in Ex, and that contain
three kinds edges: direct edges point from parents to chil-
dren or to the individuals in Zi; transitive edges introduce
shortcuts between these trees; and self-edges introduce loops
on tree nodes. We call non-root elements auxiliary. More-
over, each auxiliary element can be uniquely associated with
a rule of the form A;(x) — Jz.R(x, z) A A(z) in Ex that
was used to generate it, and we cal R, A the element’s type.
Example 1 illustrates these observations.

Example 1. Let K = (T, A) be an ELHO® KB whose T
contains the following axioms and A = {A(a), B(b) }.

AC3S.C EC3T.D G C {a}
C C 35.Self BC3IT.F DC3T.D
CC3rTD FC3T.D TCR
ACIdTE FCITG trans(7T')

The left part of Figure 1 shows a canonical model I of Zx.
Each auxiliary element is represented as a number show-
ing the element’s type. Transitive and self-edges are dashed,
with the latter shown in grey. All other edges are solid, apart
from the dotted edges that encode repetition of solid edges.
Due to axiom D T 3T.D, model I is infinite.

A canonical model I of Zx can be infinite, so a terminat-
ing CQ answering algorithm for ££LHO? cannot materialise
I and evaluate CQs in it. Instead, we first show how to trans-
late /C into a datalog program Dy that finitely captures the
canonical model I of =x; next, we present a CQ answering
procedure that uses D to answer CQs over Z.

Datalog Translation

Krotzsch, Rudolph, and Hitzler (2008) translate X into dat-
alog for the purposes of ontology classification, and Ste-
fanoni, Motik, and Horrocks (2013) use this translation to
answer CQs over ELHO KBs. Let o, 4 be an auxiliary in-
dividual not occurring in N; and uniquely associated with
eachrole R € Ng and each atomic concept A € No U {T}
occurring in [C; intuitively, or, 4 represent all auxiliary terms

1613

of type R, A in a canonical model I of Zx. We extend this
translation by uniquely associating with each role R a direct
predicate dg to represent the direct edges in I.

Definition 1. For each axiom o € T not of type 7, set D1
contains the translation of « into a rule as shown in Table 1;
moreover, for each axiom A CIR.A € T, set Dy con-
tains rule A;(x) — R(xz,0r 4) Ndr(z,0r,4) N A(or,4);
finally, for each axiom S T R € T, set D contains rule
ds(z,y) = dg(x,y). Then, Dix =Dy Uclskc U A is the
datalog program for /C.

Example 2. The middle part of Figure 1 shows model J
of the datalog program Dy for the KB from Example 1.
For clarity, auxiliary individuals or 4 are shown as R, A.
Note that auxiliary individual or g is ‘merged’ in model J
with individual a since Dic = or ¢ =~ a. We use the notation
from Example 1 to distinguish various kinds of edges.

The following proposition shows how to use Di to test
whether /C is unsatisfiable.

Proposition 2. KC is unsatisfiable iff Dxc |= Jy.L(y).

The CQ Answering Algorithm

Program Dy can be seen as a strengthening of Z: all exis-
tential rules A;(z) — 3z.R(z, z) A A(2) in E are satisfied
in a model J of Dy using a single auxiliary individual og 4.
Therefore, evaluating a CQ ¢ in J produces a set of candi-
date answers, which provides us with an upper bound on the
set of certain answers to q over Zi.

Definition 3. A substitution 7 is a candidate answer fo a CQ
q = 3GU(Z, §) over Dx if dom(7) = Ny (q), each element
of rng(7) is an individual occurring in Dy, and D = 7(q).
Such a candidate answer 7 is sound if Zx = 7|2 (q).

Stefanoni, Motik, and Horrocks (2013) presented a filter-
ing step that removes unsound candidate answers; however,
Example 3 shows that this step can be incomplete when the
query contains roles that are not simple.

Example 3. Let IC be as in Example 1 and let
q = 3y.-A(z1) A R(z1,y) A B(w2) A R(z2,y) A D(y).

Moreover; let T be the substitution such that 7(x1) = a and
m(x2) = b, and let T be such that 1 C 7 and 7(y) = or,p.
Using models I and J from Figure 1, one can easily see that
Ex | 7(q) and Dk |= 7(q). However, q contains a ‘fork’
R(z1,y) A R(xa,y), and T maps y to an auxiliary individ-
ual, so this answer is wrongly filtered as unsound.

Algorithm 1 specifies a procedure isSound(q, Dx, 7) that
checks whether a candidate answer is sound. We discuss the
intuitions using the KB from Example 1, and the query ¢ and
the candidate answer 7 from Example 4.

Example 4. Let q and T be as follows. Using Figure I, one
can easily see that D = 7(q).

q=37. S(x,y1) A S(y1,y1) A R(z,y3) A D(ys) A
R(y2,y3) N F(y2) AT (y2,)

T={x—a, y1 = 0s,c, Y2 > OT,F, Y3 > OT,D}

We next show how isSound(gq, Dic, 7) decides that 7 is
sound—that is, that a substitution m mapping the variables
in ¢ to terms in I exists such that 7(z) = a and 7(q) C I.
Substitution 7 already provides us with some constraints on
m: it must map variable y; to 1 and variable y5 to 5, since
these are the only elements of I of types S, C and T', F, re-
spectively. In contrast, substitution 7 can map variable y3 to
either one of 2, 4, and 6. Each such substitution 7 is guar-
anteed to satisfy all unary atoms of ¢, all binary atoms of ¢
that 7 maps to direct edges pointing towards (non-auxiliary)
individuals from Ny, and all binary atoms of ¢ that contain a
single variable and that 7 maps to the self-edge in .J. Atoms
T(ya,x) and S(y1,y1) in ¢ satisfy these conditions, and so
we call them good w.r.t. 7. To show that 7 is sound, we must
demonstrate that all other atoms of ¢ are satisfied.

Step 1 of Algorithm 1 implements the ‘fork’ and ‘aux-
acyclicity’ checks (Stefanoni, Motik, and Horrocks 2013).
To guarantee completeness, we consider only those binary
atoms in ¢ that contain simple roles, and that 7 maps onto di-
rect edges in J pointing towards auxiliary elements. We call
these atoms aux-simple as they can be mapped onto the di-
rect edges in I pointing towards auxiliary elements. In step 1
we compute a new query g~ by applying all constraints de-
rived by the fork rule, and in the rest of the algorithm we
consider ¢.. instead of ¢. In our example, atom S(z, 1) is
the only aux-simple atom, so g does not contain forks and
g~ = q. When all binary atoms occurring in ¢ are good or
aux-simple, step 1 guarantees that 7 is sound. Query ¢ from
Example 4, however, contains binary atoms that are neither
good nor aux-simple, so we proceed to step 3.

Next, in step 3 we guess a renaming o for the variables
in g~ to take into account that distinct variables in ¢~ that 7
maps to the same auxiliary individual can be mapped to the
same auxiliary element of I, and so in the rest of Algorithm 1
we consider o(g..) instead of ¢... In our example, we guess
o to be identity, so o(g~) = g~ = q.

In step 4, we guess a skeleton for o(q..), which is a finite
structure that finitely describes the (possibly infinite) set of
all substitutions 7 mapping the variables in o (g..) to distinct
auxiliary elements of I. The right part of Figure 1 shows the
skeleton S for our example query. The vertices of S are the
(non-auxiliary) individuals from Dy and the variables from
o(g~) that 7 maps to auxiliary individuals, and they are ar-
ranged into a forest rooted in Ny. Such S represents those
substitutions 7 that map variables y; and y3 to auxiliary el-
ements of I under individual a, and that map variable y, to
an auxiliary element of I under individual b.

In steps 5-15, our algorithm labels each edge (v',v) € S
with a set of roles L(v', v); after these steps, S represents
those substitutions 7 that satisfy the following property (E):

for eachrole P € L(v',v), a path from 7(v') to 7(v) in
J exists that consists only of direct edges labelled by
role P pointing to auxiliary individuals.

We next show how atoms of o(g..) that are not good con-
tribute to the labelling of S. Atom S(x, y1) is used in step 6
to label edge (a,y;). For atom R(x,ys), in step 8 we let
P = T and we label edge {(a,ys) with P. Using Figure 1
and the axioms in Example 1, one can easily check that the

1614

conditions in steps 8 and 9 are satisfied. For atom R(ys, y3),
variables g2 and y3 are not reachable in S, so we must split
the path from ys to y3. Thus, in step 8 we let P = T', and
in step 13 we let a; = a; hence, atom R(y2,y3) is split into
atoms T'(yo, a) and T'(a, y3). The former is used in step 14
to check that a direct path exists in J connecting o7 p with
a, and the latter is used to label edge (a, y2).

After the for-loop in steps 7-15, skeleton S represents
all substitutions satisfying (E). In step 17, function exist ex-
ploits the direct predicates from Dx to find the required di-
rect paths in J, thus checking whether at least one such sub-
stitution exists (see Definition 11). Using Figure 1, one can
check that substitution = where 7(y3) = 4 and that maps all
other variables as stated above is the only substitution satis-
fying the constraints imposed by S; hence, isSound returns
t, indicating that candidate answer 7 is sound.

We now formalise the intuitions that we have just pre-
sented. Towards this goal, in the rest of this section we fix a
CQ ¢’ and a candidate answer 7’ to ¢’ over D.

Due to equality rules, auxiliary individuals in Dx may be
equal to individuals from N7, thus not representing auxiliary
elements of /. Hence, set auxp,. in Definition 4 provides us
with all auxiliary individuals that are not equal to an individ-
ual from N;. Moreover, to avoid dealing with equal individ-
uals, we replace in query ¢’ all terms that 7" does not map to
individuals in auxp, with a single canonical representative,
and we do analogously for 7'; this replacement produces CQ
q and substitution 7. Since ¢ and 7 are obtained by replacing
equals by equals, we have D = 7(q). Our filtering proce-
dure uses g and 7 to check whether 7/ is sound.

Definition 4. Let > be a total order on ground terms such
that or, 4 > a for all individuals o s and a € Ny from Di.
Set auxp,. contains each individual u from D for which no
individual o € N exists such that D = u = a. For each
individual u from Dy, let ur, = w if u € auxp,.; otherwise,
let u~, be the smallest individual a € Ny in the ordering
> such that D |= u = a. Set indp,. contains a for each
individual a € Ny occurring in Dx. Then query q is ob-
tained from q' by replacing each term t € Nr(q') such that
7/(t) & auxp, with 7/(t)x~,; substitution T is obtained by
restricting 7' to only those variables occurring in q.
Next, we define good and aux-simple atoms w.r.t. 7.

Definition 5. Let R(s,t) be an atom where 7(s) and 7(t)
are defined. Then, R(s,t) is good if 7(t) € Ny, or s =1
and D |= Self g(7(s)). Furthermore, R(s,t) is aux-simple
if s #t, Ris a simple role, T(t) € auxp,., and 7(s) = 7(t)
implies Dic [= Self g(7(s)).

Note that, if R(s,t) is not good, then ¢ is a variable and
7(t) € auxp,. Moreover, by the definition of Dy, if atom
R(s,t) is aux-simple, then Dx = dg(7(s),7(t)). The fol-
lowing definition introduces the query ¢., obtained by apply-
ing the fork rule by Stefanoni, Motik, and Horrocks (2013)
to only those atoms that are aux-simple.

Definition 6. Relation ~ C Nr(q) x Nr(q) for q and T
is the smallest reflexive, symmetric, and transitive relation
closed under the fork rule.
(fork) s’ ~t R(s, s'? and P(t,t') are aux-simple
s~t atoms in q W.r.t. T

Query q~. is obtained from query q by replacing each term
t € Np(q) with an arbitrary, but fixed representative of the
equivalence class of ~ that contains t.

To check whether ¢.. is aux-acyclic, we next introduce
the connection graph cg for q and 7 that contains a set Fg
of edges (v, v) for each aux-simple atom R(v',v) € ¢~.In
addition, cg also contains a set F; of edges (v',v) that we
later use to guess a skeleton for o (g~) more efficiently. By
the definition of aux-simple atoms, we have F; C E,.

Definition 7. The connection graph for ¢ and 7 is a triple
cg = (V, Eq, Ey) where Eq, E; CV XV are smallest sets
satisfying the following conditions.

e V =indp,. U{z € Ny(q~) | 7(2) € auxp, }.

e Set E; contains (v',v) for all v';v € V for which a role
R exist such that R(v',v) is an aux-simple atom in q...

e Set E; contains (v',v) for all v',v € V such that indi-
viduals {uy, . ..,un} C auxp, and roles Ry, ..., R, ex-
ist with n > 0, u,, = 7(v), and D |= dg, (u;—1,u;) for
each i € [1,n] and ug = 7(v').

Function isDSound(gq, Di, 7) from Definition 8 ensures

that 7 satisfies the constraints in ~, and that ¢.. does not
contain cycles consisting only of aux-simple atoms.

Definition 8. Function isDSound(q, D, 7) returns t if and
only if the two following conditions hold.

1. Forall s,t € Nr(q), if s ~ t, then T(s) = 7(t).
2. (V, Ey) is a directed acyclic graph.

We next define the notions of a variable renaming for ¢
and 7, and of a skeleton for ¢ and o.

Definition 9. A substitution o with dom(o) =V N Ny (q)
and rng(o) C dom(o) is a variable renaming for g and 7 if

1. for each v € dom(o), we have T(v) = 7(0(v)),

2. foreachv € rng(o), we have o(v) = v, and

3. directed graph (o(V),o(FEs)) is a forest.

Definition 10. A skeleton for q and a variable renaming o
is a directed graph S = (V,E) where V = o(V), and &
satisfies 0(Es) C € C o(Ey) and it is a forest whose roots
are the individuals occurring in V.

Finally, we present function exist that checks whether one
can satisfy the constraints imposed by the roles L(v’, v) la-
belling a skeleton edge (v',v) € &.

Definition 11. Given individuals v’ and u, and a set of roles
L, function exist(v’, u, L) returns t if and only if individuals
{u1,...,un} C auxp, withn > 0 and u,, = u exist where

o if S € L exists such that trans(S) & T, thenn = 1; and
e uy = u, and Di = dg(u;—1,u;) for each R € L and
each i € [1,n].
Candidate answer 7’ for ¢’ over Dy is sound, if the nonde-

terministic procedure isSound(g, Dic, 7) from Algorithm 1
returns t, as shown by Theorem 12.

Theorem 12. Let 7’ be a substitution. Then Zx = 7' (¢') iff
K is unsatisfiable, or a candidate answer 7' to q' over Dx
exists such that 7'| . = 7’ and the following conditions hold.:

1615

Algorithm 1: isSound(q, D, 7)

if isDSound(q, Di, 7) = f then return f
return t if each R(s, t) € g~ is good or aux-simple
guess a variable renaming o for ¢ and 7
guess a skeleton S = (V, £) for ¢, o, and 7
for (v',v) € &, let L(v',v) =0
for aux-simple atom R(s,t) € o(¢~), add R to L(s,t)
for neither good nor aux-simple R(s,t) € o(q~) do
guess role P s.t. D = P(7(s),7(t)) and P C3 R
if (s,t) ¢ £ and trans(P) ¢ T then return f
if s reaches t in € then
let vo, . .., v, be the path from sto ¢ in £
else
let a; be the root reaching ¢ in & via vo, . . .
if Dk (£ P(7(s), a:) then return f
fori € [1,n],add P to L(vi—1,v;)
for (v',v) € £ do
if exist(7(v"), 7(v), L(v',v)) = f then return f
return t

T N T N O S

P e
Lo S

,'Un

— e e e
® N &

1. for each x € T, we have 7' (x) € Ny, and

2. a nondeterministic computation exists such that function
isSound(q, Dxc, 7) returns t.

The following results show that our function isSound runs
in nondeterministic polynomial time.

Theorem 13. Function isSound(q, Di,T) can be imple-
mented so that

1. it runs in nondeterministic polynomial time,

2. ifeach binary atom in q is either good or aux-simple w.r.t.
T, it runs in polynomial time, and

3. if the TBox T and the query q are fixed, it runs in poly-
nomial time in the size of the ABox A.

Each rule in Dx contains a fixed number of variables,
so we can compute all consequences of Dx using polyno-
mial time. Thus, we can compute CQ ¢ and substitution 7
in polynomial time, and by Proposition 2, we can also check
whether K is unsatisfiable using polynomial time; hence, by
Theorem 13, we can check whether a certain answer to ¢’
over =i exists using nondeterministic polynomial time in
combined complexity (i.e., when the ABox, the TBox, and
the query are all part of the input), and in polynomial time
in data complexity (i.e., when the TBox and the query are
fixed, and only the ABox is part of the input).

The filtering procedure by Stefanoni, Motik, and Hor-
rocks (2013) is polynomial, whereas the one presented in
this paper introduces a source of intractability. In Theorem
14 we show that checking whether a candidate answer is
sound is an NP-hard problem; hence, this complexity in-
crease is unavoidable. We prove our claim by reducing the
NP-hard problem of checking satisfiability of a 3CNF for-
mula ¢ (Garey and Johnson 1979). Towards this goal, we
define an ELHO® KB K, and a Boolean CQ ¢, such that ¢
is satisfiable if and only if E;Cw = g, Furthermore, we de-
fine a substitution 7, and we finally show that 7, is a unique
candidate answer to g, over Dy .

Theorem 14. Checking whether a candidate answer is
sound is NP-hard.

Table 2: Evaluation results

q; q a5 a3
C UF N|CU NlCcC UF N|C UF N
0

73K 12 1.71 7.55| 3K 0 0. 157K 66 1.07 8.6 | 30K 63 2.44 109

149K 12 1.68 7.54| 6K 0 0.01 0|603K 81 1.20 9.6 | 61K 63 2.44 109

313K 12 1.66 7.55|12K 0 0.01 0]2.6M 90 1.28 10.3|129K 63 2.44 10.9

Preliminary Evaluation

We implemented our algorithm in a prototypical system,
and we conducted a preliminary evaluation with the goal of
showing that the number of consequences of Dy is reason-
ably small, and that the nondeterminism of the filtering pro-
cedure is manageable. Our prototype uses the RDFox (Motik
et al. 2014) system to materialise the consequences of Dy.
We ran our tests on a MacBook Pro with 4GB of RAM and
a 2.4Ghz Intel Core 2 Duo processor.

We tested our system using the version of the LSTW
benchmark (Lutz et al. 2013) by Stefanoni, Motik, and Hor-
rocks (2013). The TBox of the latter is in ELHO, and we ex-
tended it to ELHO?® by making the role subOganizationOf
transitive and by adding an axiom of type 5 and an axiom
of type 7. We used the data generator provided by LSTW
to generate KBs U5, U10, and U20 of 5, 10, and 20 univer-
sities, respectively. Finally, only query ¢} from the LSTW
benchmark uses transitive roles, so we have manually cre-
ated four additional queries. Our system, the test data, and
the queries are all available online.! We evaluated the practi-
cality of our approach using the following two experiments.

First, we compared the size of the materialised conse-
quences of Dx with that of the input data. As the left-hand
side of Table 2 shows, the ratio between the two is four,
which, we believe, is acceptable in most practical scenarios.

Second, we measured the ‘practical hardness’ of our fil-
tering step on our test queries. As the right-hand side of Ta-
ble 2 shows, soundness of a candidate answer can typically
be tested in as few as several milliseconds, and the test in-
volves a manageable number of nondeterministic choices.
Queries ¢4 and ¢}, were designed to obtain a lot of candidate
answers with auxiliary individuals, so they retrieve many un-
sound answers. However, apart from query ¢4, the percent-
age of the candidate answers that turned out to be unsound
does not change with the increase in the size of the ABox.
Therefore, while some queries may be challenging, we be-
lieve that our algorithm can be practicable in many cases.

4 Acyclic and Arborescent Queries

In this section, we prove that answering a simple class of
tree-shaped acyclic CQs—which we call arborescent—over
ELHO KBs is tractable, whereas answering acyclic queries
is NP-hard. In addition, we show that extending ££ with
transitive or reflexive roles makes answering arborescent
queries NP-hard. This is in contrast with the recent result
by Bienvenu et al. (2013), who show that answering acyclic

"http://www.cs.ox.ac.uk/isg/tools/EOLO/

Inds. Unary Binary Total ~ Ratio T
atoms atoms atoms a3
U5 |before | 100,848 | 169,079 | 296,941 | 466,020 CU F
after|100,873| 511,115 |1,343,848| 1,854,963 3.98 U510 0 0.0
UT0| before | 202,387| 339,746 | 598,695 | 938,441 U10]22 0 0.06 0
after[202,412(1,026,001 2,714,214 (3,740,215 3.98 U20]43 0 0.07 0
U20 | before | 426,144 | 714,692 |1,259,936| 1,974,628
after|426,169(2,157,172|5,720,670| 7,877,842 3.99

(C) total number of candidate answers (U) percentage of unsound answers (F) average filtering time in ms
N) average number of nondeterministic choices required for each candidate answer

CQs over £LH KBs is tractable. We start by introducing
acyclic and arborescent queries.

Definition 15. For q a Boolean CQ, dg, = (Nv (q), E) is
a directed graph where (z,y) € E for each R(z,y) € q.
Query q is acyclic if the graph obtained from dg,, by remov-
ing the orientation of edges is acyclic; q is arborescent if
q contains no individuals and dg, is a rooted tree with all
edges pointing towards the root.

Definition 16 and Theorem 17 show how to answer ar-
borescent CQs over £LHO KBs in polynomial time. Intu-
itively, we apply the fork rule (cf. Definition 6) bottom-up,
starting with the leaves of ¢ and spread constraints upwards.

Definition 16. Let K be an ELHO KB, let Dy be the dat-
alog program for IC, let indp,. and auxp, be as specified
in Definition 4, and let q be an arborescent query rooted
inr € Ny(q). For each y € Ny (q) with y # r, and each
V C Nv(q), sets r,, and Py are defined as follows.

ry ={R € Nr | R(y,x) € qwith x the parent of y in dg, }
Py ={y € Nv(q) | 3z € V with x the parent of y in dgq}

Set RT is the smallest set satisfying the following conditions.

o {r} € RT and the level of {r} is 0.

e Foreach set V € RT with level n, we have Py, € RT and
the level of Py is n + 1.

e For each set V € RT with level n and each y € Py, we
have {y} € RT and the level of {y} isn + 1.

Foreach'V € RT, set cy contains each u € auxp, Uindp,
such that Dic |= B(u) for each unary atom B(x) € q with
x € V. By reverse-induction on the level of the sets in RT,
each'V € RT is associated with a set Ay C indp,. U auxp,..

e Foreach set V € RT of maximal level, let Ay = cy.

e For V € RT a set of level n where Ay is undefined but
Aw has been defined for each W € RT of level n + 1, let
Ay = cy N (iy Uay), where iy and ay are as follows.

iy = {u c indD,C | Vy S Pvﬂul S A{y}.D)C ': R/\ R(u',u)}
Ery

ay = {u € auXp, | FJu € Apvvy € Py.Dg ': /\ dR(u',u)}
Rery

Function entails(Di, q) returns t if and only if A,y is

nonempty.

Theorem 17. For K a satisfiable ELHO KB and q an
arborescent query, function entails(Dx, q) returns t if and
only if Zx = q. Furthermore, function entails(Dic, q) runs
in time polynomial in the input size.

1616

Finally, we show that (unless PTIME = NP), answering
arbitrary acyclic queries over ELHO KBs is harder than an-
swering arborescent queries, and we show that adding tran-
sitive or reflexive roles to the DL ££ makes answering ar-
borescent queries intractable.

Theorem 18. For K = (T,.A) a KB and q a Boolean CQ,
checking KC |= q is NP-hard in each of the following cases.

1. The query q is acyclic and the TBox T is in ELHO.

2. The query q is arborescent and the TBox T consists only
of axioms of type 1 and 7, and of one axiom of type 8.

3. The query q is arborescent and the TBox T consists only
of axioms of type 1 and 7, and of one axiom of type 9.

5 OQutlook

In future, we shall adapt our filtering procedure to detect un-
sound answers already during query evaluation. Moreover,
we shall extend Algorithm 1 to handle complex role inclu-
sions, thus obtaining a practicable approach for OWL 2 EL.

Acknowledgements

This work was supported by Alcatel-Lucent; the EU FP7
project OPTIQUE; and the EPSRC projects MASI?, Score!,
and DBOnto.

References

Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.;
and Patel-Schneider, P. F,, eds. 2007. The Description
Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press.

Baader, F.; Brandt, S.; and Lutz, C. 2005. Pushing the ££
envelope. In Kaelbling, L. P, and Saffiotti, A., eds., IJCAI
2005, 364-369.

Bienvenu, M.; Ortiz, M.; Simkus, M.; and Xiao, G. 2013.
Tractable queries for lightweight description logics. In 1J-
CAI 2013.

Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2007. Tractable reasoning and efficient query
answering in description logics: The DL-Lite family. J. of
Automated Reasoning 39(3):385-429.

Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
Poggi, A.; Rodriguez-Muro, M.; Rosati, R.; Ruzzi, M.; and
Savo, D. F. 2011. The Mastro system for ontology-based
data access. Semantic Web Journal 2(1):43-53.

Cuenca Grau, B.; Horrocks, 1.; Motik, B.; Parsia, B.; Patel-
Schneider, P.; and Sattler, U. 2008. OWL 2: The next step
for OWL. Journal of Web Semantics 6(4):309-322.

Eiter, T.; Lutz, C.; Ortiz, M.; and Simkus, M. 2009. Query
answering in description logics with transitive roles. In 1J-
CAI 2009, 759-764.

Eiter, T.; Ortiz, M.; Simkus, M.; Tran, T.-K.; and Xiao, G.
2012. Query rewriting for Horn-SHZ Q plus rules. In AAAI
2012.

Fitting, M. 1996. First-order logic and automated theorem
proving (2nd ed.). Springer-Verlag New York, Inc.

1617

Garey, M. R., and Johnson, D. S. 1979. Computers and
Intractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman & Co.

Glimm, B.; Horrocks, I.; Lutz, C.; and Sattler, U. 2008. Con-
junctive query answering for the description logic SHZ Q.
Journal of Artif. Intell. Res. 31:151-198.

Gottlob, G.; Kikot, S.; Kontchakov, R.; Podolskii, V. V.;
Schwentick, T.; and Zakharyaschev, M. 2014. The price of
query rewriting in ontology-based data access. Artif. Intell.
213:42-59.

Kontchakov, R.; Lutz, C.; Toman, D.; Wolter, F.; and Za-
kharyaschev, M. 2011. The combined approach to ontology-
based data access. In Walsh, T., ed., IJCAI 2011, 2656-2661.

Krotzsch, M.; Rudolph, S.; and Hitzler, P. 2007. Conjunctive
queries for a tractable fragment of OWL 1.1. In Aberer, K.,
et al., eds., ISWC 2007, 310-323.

Krotzsch, M.; Rudolph, S.; and Hitzler, P. 2008. ELP:
Tractable rules for OWL 2. In Sheth, A., et al., eds., ISWC
2008, 649-664.

Krotzsch, M. 2010. Efficient inferencing for OWL EL. In
JELIA 2010, volume 6341, 234-246.

Lutz, C.; Seylan, I.; Toman, D.; and Wolter, F. 2013. The
combined approach to OBDA: Taming role hierarchies using
filters. In ISWC 2013, volume 8218, 314-330.

Motik, B.; Nenov, Y.; Piro, R.; Horrocks, I.; and Olteanu,
D. 2014. Parallel materialisation of datalog programs in
centralised, main-memory RDF systems. In AAAI 2014.

Ortiz, M.; Rudolph, S.; and Simkus, M. 2011. Query
answering in the Horn fragments of the description logics
SHOIQ and SROZQ. 1In Walsh, T., ed., IJCAI 2011,
1039-1044.

Rodriguez-Muro, M.; Kontchakov, R.; and Zakharyaschev,
M. 2013. Ontology-based data access: Ontop of databases.
In ISWC 2013, 558-573. Springer.

Stefanoni, G., and Motik, B. 2014. Answering conjunctive
queries over £ L knowledge bases with transitive and reflex-
ive roles. CoRR abs/1411.2516.

Stefanoni, G.; Motik, B.; and Horrocks, I. 2013. Introducing
nominals to the combined query answering approaches for
EL. In AAAI 2013.

Venetis, T.; Stoilos, G.; and Stamou, G. B. 2014. Query
extensions and incremental query rewriting for OWL 2 QL
ontologies. J. Data Semantics 3(1):1-23.

Yannakakis, M. 1981. Algorithms for acyclic database
schemes. In VLDB 1981, 82-94.

