
An Abstract View on Modularity in Knowledge Representation

Yuliya Lierler
Department of Computer Science
University of Nebraska at Omaha

Omaha, NE 68182, USA
ylierler@unomaha.edu

Miroslaw Truszczynski
Department of Computer Science

University of Kentucky
Lexington, KY 40506, USA

mirek@cs.uky.edu

Abstract

Modularity is an essential aspect of knowledge representation
theory and practice. It has received substantial attention. We
introduce model-based modular systems, an abstract frame-
work for modular knowledge representation formalisms, sim-
ilar in scope to multi-context systems but employing a sim-
pler information-flow mechanism. We establish the precise
relationship between the two frameworks, showing that they
can simulate each other. We demonstrate that recently in-
troduced modular knowledge representation formalisms inte-
grating logic programming with satisfiability and, more gen-
erally, with constraint satisfaction can be cast as modular sys-
tems in our sense. These results show that our formalism of-
fers a simple unifying framework for studies of modularity in
knowledge representation.

Introduction
Modularity is crucial in design, analysis and reasoning
about complex systems. It has long been recognized as
one of the key techniques in software development. Mod-
ularity has also played an important role in artificial in-
telligence and, in particular, in knowledge representation
and reasoning. Formalisms and implemented systems sup-
porting modular knowledge representation and exploiting
modularity in efficient reasoning include logic program-
ming modules (Oikarinen and Janhunen 2006), modular
logic programs (Lierler and Truszczynski 2013), HEX-
programs (Eiter et al. 2005), constraint answer set program-
ming (Lierler 2014), and logics FO(ID) (Denecker and Ter-
novska 2008; de Cat et al. 2014) and SM(ASP) (Lierler and
Truszczynski 2011). These formalisms address issues in (i)
knowledge modeling such as principled modular knowledge
base design, and (ii) reasoning where they exploit modular
structure to improve the performance of solvers.

To identify and study general principles of modularity
in knowledge representation, researchers proposed several
general frameworks such as:

• Abstract multi-context systems (Brewka and Eiter 2007)
that provide an abstract view on multi-context systems
(McCarthy 1987; Giunchiglia 1993). These systems are
constructed from contexts, each being a theory in some

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

logic. An essential element of a multi-context system is
the notion of a bridge rule used to model information flow
between contexts. The formalism of Brewka and Eiter
achieves its generality thanks to an abstract notion of a
logic that eliminates syntactic and semantic particulars
from consideration.

• Mx-systems (Tasharrofi and Ternovska 2011) that view a
theory as a representation of a set of interpretations. Con-
sequently, modules in the mx-system setting are simply
sets of interpretations of some vocabulary. Modules have
inputs and outputs. That allows them to be composed into
larger modular systems. An mx-system may have several
module components and a (possibly) complex structure
that describes information flow between modules.

• Abstract modular inference systems (Lierler and
Truszczynski 2014) that are designed to facilitate mod-
eling solvers of multi-logic systems. Abstract modular
inference systems represent theories in a logic in abstract
terms: via inferences these theories support.

The focus of the first framework, abstract multi-context sys-
tems, is on knowledge modeling in multi-logic, modular en-
vironments. The focus of the latter two formalisms is on
principles of reasoning in such environments.

In this work, we propose the notion of an abstract model-
based modular system, a conceptually simpler alternative
to nonmonotonic multi-context systems by Brewka and
Eiter (2007). Modeling contextual information and the flow
of information among contexts have long been among the
central problems of knowledge representation (McCarthy
1987; Giunchiglia 1993). Applications in multi-agent sys-
tems provide a compelling motivation for formal frame-
works to represent multi-context systems and study their
properties. The contexts are commonly modeled by theories
in some logics, and the information flow between contexts
is modeled by bridge rules. To develop a general framework
for studies of multi-context systems, Brewka and Eiter in-
troduced an abstract representation of a logic and extended
the concept of a bridge rule. Since their inception, multi-
context systems have received substantial attention and in-
spired implementations of hybrid reasoning systems includ-
ing DMCS (El-Din Bairakdar et al. 2010).

We base our abstract modular systems on a slightly modi-
fied notion of the abstract logic by Brewka and Eiter (2007).

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

1532

Modules are just like Brewka and Eiter’s contexts. The main
and essential difference is in the way we model the informa-
tion flow. We do away with bridge rules and instead rely on
a simple idea of information sharing via variables (or atoms)
that are common in modules. We show that our abstract
framework is well suited for representing concrete modular
knowledge systems studied in the literature such as modu-
lar logic programs (Lierler and Truszczynski 2013), logic
SM(ASP) (Lierler and Truszczynski 2011), and constraint
answer set programming (Lierler 2014). We also show that
despite their simplicity, abstract modular systems can actu-
ally simulate multi-context systems of Brewka and Eiter. In
fact, the two formalisms are of the same expressive power
since, as we also show, the converse holds, too.

The primary focus of model-based systems is on mod-
ularity in knowledge modeling, just as in the case of ab-
stract multi-context systems. However, the connection be-
tween model-based modular systems, on the one hand,
and mx-systems by Tasharrofi and Ternovska (2011), logic
SM(ASP) and constraint answer set programming, on the
other, show that abstract modular systems also have a poten-
tial to offer insights into reasoning tools for hybrid modular
knowledge representation formalisms.

We start by introducing model-based modular systems.
We then illustrate how these systems capture modular logic
programs, logic SM(ASP), and constraint answer set pro-
gramming. Next, model-based systems are formally related
to multi-context systems. The paper concludes with a discus-
sion on the connection between model-based modular sys-
tems and mx-systems.

Model-based Modular Systems
A language is a set L of formulas. A theory is a subset of L.
Thus the set of theories is closed under union and has the
least and the greatest elements: ∅ and L. This definition ig-
nores any syntactic details behind the concepts of a formula
and a theory. A vocabulary is an infinite countable set of
atoms. Subsets of a vocabulary σ represent (classical propo-
sitional) interpretations of σ. We write Int(σ) for the family
of all interpretations of a vocabulary σ.

Definition 1. A logic is a tripleL = (LL, σL, semL), where

1. LL is a language (the language of the logic L)
2. σL is a vocabulary (the vocabulary of the logic L)
3. semL : 2LL → 2Int(σL) is a function assigning collec-

tions of interpretations to theories in LL (the semantics of
L)

If a logicL is clear from the context, we omit the subscript
L from the notation of the language, the vocabulary and the
semantics of the logic.

This definition of a logic is a slight specialization of the
one used by Brewka and Eiter (2007). Namely, the seman-
tics function sem maps theories into “belief sets” that are
interpretations of some vocabulary σ rather than elements
from some arbitrary set.

We are now ready to present the two central concepts of
our paper.

Definition 2. Let L = (LL, σL, semL) be a logic. A theory
of L, that is, a subset of the language LL is called a (model-
based) L-module (or a module, if the explicit reference to its
logic is not necessary). An interpretation I ∈ Int(σL) is a
model of an L-module B if I ∈ semL(B).

For an interpretation I , by I|σ we denote an interpretation
over vocabulary σ constructed from I by dropping all its
members not in σ. For example, let σ1 be a vocabulary such
that a ∈ σ1 and b 6∈ σ1, then {a, b}σ1

= {a}.
Definition 3. A collection of modules, possibly in different
logics and over different vocabularies is a (model-based) ab-
stract modular system. For a modular system H, the union
of the vocabularies of the logics of modules in H forms the
vocabulary of H, denoted by σH. An interpretation I ∈
Int(σH) is a model of H if for every B ∈ H, if B is an
L-module for some logic L, I|σL is a model of B.

Modular Logic Programs and Logic SM(ASP)
as Model-based Modular Systems

We start this section by briefly reviewing logic programs
and two modular formalisms based on logic programming
and propositional logic — modular logic programs (Lier-
ler and Truszczynski 2013), and the logic SM(ASP) (Lier-
ler and Truszczynski 2011). We then show that these for-
malisms can be seen as instantiations of our general concept
of a modular system.

Literals over a vocabulary σ are expressions a and ¬a,
where a ranges over σ. A logic program over σ is a set of
rules of the form

a0 ← a1, . . . , a`, not a`+1, . . . , not am, (1)

where a0 is an atom in σ or⊥ (empty), and each ai, 1 ≤ i ≤
m, is an atom in σ.

The expression a0 is the head of the rule. The expression
on the right hand side of the arrow is the body. We write
hd(Π) for the set of nonempty heads of rules in Π. We refer
the reader to the paper by Lifschitz, Tang and Turner (1999)
for details on the definition of an answer set.
Definition 4 (Lierler and Truszczynski 2011). A set X of
atoms from a vocabulary σ is an input answer set of a logic
program Π over σ if X is an answer set of the program Π ∪
(X \ hd(Π)).

Brewka and Eiter (2007) showed that their abstract no-
tion of a logic captures default logic, propositional logic, and
logic programs under the answer set semantics. For example,
the logic L = (L, σ, sem), where
1. L is the set of propositional formulas over σ,
2. sem(F), for a theory F ⊆ L, is the set of propositional

models of F over σ,
captures propositional logic. We call this logicL the pl-logic
and modules in the pl-logic, pl-modules.

Similarly, abstract logics of Brewka and Eiter subsume
the formalism of logic programs under the input answer set
semantics. Indeed, let us consider a logic L = (L, σ, sem),
where
1. L is the set of logic program rules over σ,

1533

2. sem(Π), for a program Π ⊆ L, is the set of input answer
sets of Π over σ,

We call this logic the ilp-logic and modules in this logic,
ilp-modules.
Definition 5 (Lierler and Truszczynski 2013). A modular
logic program over a vocabulary σ is a set of logic programs
over σ. A set X ⊆ σ is an answer set of a modular logic
program P if X is an input answer set of every program
Π ∈ P .
The following result is a direct consequence of definitions.
Proposition 1. Let P = {Π1, . . . ,Πn} be a modular logic
program, where each Πi, 1 ≤ i ≤ n, is a program over
a vocabulary σi. An interpretation X ⊆ σ =

⋃n
i=1 σi is

an answer set of the modular logic program P if and only
ifX is a model of an abstract modular system (Π1, . . . ,Πn),
where each Πi, 1 ≤ i ≤ n, is viewed as an ilp-module.

It follows that abstract modular systems over the ilp-logic
capture modular logic programs. Since modular logic pro-
grams subsume the formalism of lp-modules by Oikarinen
and Janhunen (2006), the same is true also for lp-programs.

Another class of modular knowledge representation for-
malisms combine logic programs with propositional theo-
ries. For example, satisfiability modulo ASP or SM(ASP)
(Lierler and Truszczynski 2011), a formalism that is closely
related to the logic PC(ID) (Mariën et al. 2008), combines a
single propositional theory with a single logic program.
Definition 6 (Lierler and Truszczynski 2011). Theories of
SM(ASP) are pairs [F,Π], where F is a set of propositional
clauses over a vocabulary σpl and Π is a logic program over
a vocabulary σlp. For an SM(ASP) theory [F,Π], a set X of
atoms over σpl ∪ σlp is a model of [F,Π] if X is a model
of F and an input answer set of Π.

As before, directly from this definition it follows that
SM(ASP) theories can be viewed as abstract modular sys-
tems combining a pl-module with an ilp-module.
Proposition 2. Let [F,Π] be an SM(ASP) theory, where F
is a collection of clauses over a vocabulary σpl and Π is
a logic program over a vocabulary σlp. An interpretation
X ⊆ σpl ∪ σlp is a model of [F,Π] if and only if X is a
model of an abstract modular system (F,Π), where we treat
F as a pl-module over σpl and Π as an ilp-module over σlp.

Constraint Answer Set Programs as Modular
Systems

Constraint answer set programming (CASP) (Lierler 2014)
is a promising research direction that integrates answer
set programming with constraint processing. Its potential
stems from (i) its support to model constraints directly, and
(ii) the availability of fast CASP solvers including CLING-
CON (Gebser, Ostrowski, and Schaub 2009), and EZCSP
(Balduccini 2009). In this section we show how constraint
answer set programming can be cast in terms of model-based
modular systems. We start by reviewing the basic concepts
of CASP.

Let V be a set of variables and D a set of values for vari-
ables in V , or the domain for V . A constraint over V and D

is a pair 〈t,R〉, where t is a tuple of some (possibly all) vari-
ables from V and R is a relation on D of the same arity as t.
A collection of constraints over V and D is a constraint sat-
isfaction problem (CSP) over V and D. An evaluation of V
is a function assigning to every variable in V a value fromD.
An evaluation ν satisfies a constraint 〈(x1, . . . , xn),R〉 (or is
a solution of this constraint) if (ν(x1), . . . , ν(xn)) ∈ R. An
evaluation satisfies (or is a solution to) a constraint satisfac-
tion problem if it satisfies every constraint of the problem.

Let c = 〈t,R〉 be a constraint and D the domain of its
variables. Let k denote the arity of t. The constraint c =
〈t,Dk \ R〉 is the complement (or dual) of c. Clearly, an
evaluation of variables in t satisfies c if and only if it does
not satisfy c.

Let σr and σc be two disjoint propositional vocabularies.
We refer to their elements as regular and constraint atoms.
Also, let C be a class of constraints. A constraint answer
set program (CAS program) in C and over the vocabulary
σ = σr∪σc is a triple 〈Π,B, γ〉, where Π is a logic program
over the vocabulary σ such that hd(Π) ∩ σc = ∅, B is a set
of constraints such that B ⊆ C, and γ is a function from
the set At(Π) ∩ σc of constraint atoms of Π to the set B of
constraints.

For a CAS program P = 〈Π,B, γ〉 over the vocabulary
σ = σr ∪ σc (understood as above), a set X ⊆ σ is an
answer set1 of P if

• X ∩ σr ⊆ hd(Π) and X ∩ σc ⊆ At(Π)

• X is an input answer set of Π, and

• the following CSP has a solution

{γ(a) : a ∈ X ∩ σc} ∪ {γ(a) : a ∈ (At(Π) ∩ σc) \X}.

We will now introduce model-based modular systems de-
signed to represent CAS programs in a class C of constraints.

We start by defining a csp-logic determined by C. Theo-
ries of that csp-logic are meant to model constraint satisfac-
tion problems constructed from constraints in C. By σC we
denote the vocabulary formed by the set of (fresh) names of
the constraints in C (we write cn for the name of the con-
straint c ∈ C and so, σC = {cn : c ∈ C}). For a subset B of
C, we define semC(B) to contain an interpretation I of σC
precisely when the following CSP has a solution

{c : c ∈ B and cn ∈ I} ∪ {c : c ∈ B and cn 6∈ I}.

We call the logic (C, σC , semC) a csp-logic determined by C
and modules in this logic, csp-modules over C.

Next, we define mapping modules. Let P = 〈Π,B, γ〉
be a CAS program in a class C of constraints and over a
vocabulary σr ∪ σc. A mapping module with respect to P is
a pl-module over the vocabulary σc ∪ σC that is denoted by
Mγ and defined by

Mγ = {a↔ (γ(a))n : a ∈ At(Π) ∩ σc}.

1The definition of answer sets for CAS programs as proposed
by Lierler (2014) is different. One can show that the definition we
present here is equivalent to the original one.

1534

Finally, for a logic program Π over the vocabulary σr∪σc
we define

Πc = Π ∪ {⊥ ← a : a ∈ σr \ hd(Π)}
∪ {⊥ ← a : a ∈ σc \At(Π)}.

Let C be a class of constraints and P = 〈Π,B, γ〉 a CAS
program in C over a signature σr ∪ σc of regular and con-
straint atoms. We define a modular system Pm by setting
Pm = (Πc,B,Mγ), where Πc is an ilp-module over the
signature σr ∪ σc ∪ σC , B ⊆ C is a csp-module over C, and
Mγ is a mapping module with respect to P . The following
theorem shows that a CAS program P can be viewed as a
modular system Pm:
Theorem 3. Let C be a class of constraints and P =
〈Π,B, γ〉 a CAS program in C over a signature σr ∪ σc.
A set X ⊆ σr ∪ σc is an answer set for P if and only if
X ∪ {(γ(a))n : a ∈ X ∩ σc} is a model of the modular
system Pm.

Proof. Let us set Xn
γ = {(γ(a))n : a ∈ X ∩ σc}.

Left-to-right: Let X be an answer set of P . By the definition
of an answer set, (i) X ∩σr ⊆ hd(Π) and X ∩σc ⊆ At(Π),
(ii) X is an input answer set of Π, and (iii) the CSP

{γ(a) : a ∈ X ∩σc}∪ {γ(a) : a ∈ (At(Π)∩σc) \X} (2)

has a solution. From (ii), it follows that X is an answer set
of Π ∪ (X \ hd(Π)). From (i), it follows that X satisfies all
constraints in {⊥ ← a : a ∈ σr \ hd(Π)} ∪ {⊥ ← a : a ∈
σc \At(Π)}. Thus, X is an answer set of

Π ∪ (X \ hd(Π)) ∪ {⊥ ← a : a ∈ σr \ hd(Π)}
∪ {⊥ ← a : a ∈ σc \At(Π)}.

Since hd(Π) = hd(Πc), X is an answer set of Πc ∪ (X \
hd(Πc)). Thus, X is an input answer set of Πc and, conse-
quently, a model of the ilp-module Πc. Since atoms (γ(a))n

are not in σr ∪ σc, X ∪Xn
γ is a model of Πc, too.

It remains to show that X ∪Xn
γ is a model of B and Mγ .

To illustrate the former we have to show that the CSP

{c : c ∈ B and cn ∈ Xn
γ } ∪ {c : c ∈ B and cn 6∈ Xn

γ } (3)

has a solution. By the definition of CAS programs, γ is a
function from the set At(Π)∩σc to the set B. From the defi-
nition ofXn

γ , it follows that CSP (3) coincides with CSP (2).
By (iii), CSP (2) has a solution. The fact that X ∪ Xn

γ is
a model of Mγ follows immediately from the definition of
Xn
γ .

Right-to-left: Let X ∪ Xn
γ be a model of (Πc,B,Mγ). It

follows thatX∪Xn
γ is an input answer set of Πc. Reasoning

as before, we obtain that X is an input answer set of Πc.
Consequently, X is an answer set of the program Π ∪ (X \
hd(Π) and it satisfies all the constraints. The former implies
that X is an input set of Π. The latter implies the inclusions
X ∩ σr ⊆ hd(Π) and X ∩ σc ⊆ At(Π).

Since X ∪Xn
γ is a model of (Πc,B,Mγ), it also follows

thatX ∪Xn
γ is a model of B, andX ∪Xn

γ is a model ofMγ .
These two properties imply that the CSP (2) has a solution
using the same arguments as above.

Multi-context Systems
In this section we show that modular systems can ex-
press multi-context systems introduced by Brewka and
Eiter (2007). Let us first review the notion of a multi-context
system. Let L1, . . . ,Ln be logics, say Li = (Li, σi, semi),
1 ≤ i ≤ n, and let us assume that the vocabularies σi of
these logics are pairwise disjoint. A bridge rule over the log-
ics L1, . . . ,Ln is an expression

b← p1, . . . , pk,not pk+1, . . . ,not pm, (4)

where b ∈ Li for some logic Li, 1 ≤ i ≤ n, and each pj ,
1 ≤ j ≤ m, is an element of the vocabulary σk of some
logic Lk such that k 6= i. We call b the head and the ex-
pression to the right of ‘←’ the body of the bridge rule (4).
We denote the head of a bridge rule r by hd(r) and its body
by bd(r). If the head of a bridge rule is an element of Li,
we say that the bridge rule is into Li. For an interpretation
I of σ, we say that a rule r is applicable in I if I satisfies
the body of the rule r identified with a propositional formula
p1 ∧ . . . ∧ pk ∧ ¬pk+1 ∧ . . . ∧ ¬pm, written I |= bd(r).

We are now ready to define multi-context systems and
their semantics. A multi-context system (MCS) over log-
ics L1, . . . ,Ln (with pairwise disjoint vocabularies) is an
(n + 1)-tuple M = (M1, . . . ,Mn, R), where for each i,
1 ≤ i ≤ n, Mi is an Li-module, and R is a set of bridge
rules over L1, . . . ,Ln. In the sequel, by Ri we will denote
the set of all bridge rules in R that are into the logic Li. An
interpretation I of σ is an equilibrium model of M if for
every i, 1 ≤ i ≤ n,

I|σi
∈ semi(Mi ∪ {hd(r) : r ∈ Ri, r applicable in I}),

where for every i, 1 ≤ i ≤ n.
Brewka and Eiter (2007) considered bridge rules that

could have theories – sets of elements from Li – as their
heads. We can simulate such a rule B ← ϕ, where B ⊆ Li
and ϕ is a conjunction of literals over σ, by a set of bridge
rules {b ← ϕ : b ∈ B}. Thus, the restricted form of bridge
rules that we consider does not entail any loss of generality.

The main idea behind casting an arbitrary multi-context
system (M1, . . . ,Mn, R) as a modular system is to express
each module Mi together with all bridge rules in Ri as a
single module in an appropriately defined logic.

Let Li = (Li, σi, semi), 1 ≤ i ≤ n, be logics with pair-
wise disjoint vocabularies, and let σ = σ1 ∪ · · · ∪ σn. We
define logicsKi = (Ki, σ, semi), 1 ≤ i ≤ n, as follows. We
setKi to consist of all expressions of the form b← ϕ, where
b ∈ Li and ϕ is a conjunction of literals over σ. If ϕ = >
(empty conjunction), we simplify the notation to just b. In
this way, we can see Li as a sublanguage of Ki. In the same
time, expressions b ← ϕ allow us to model bridge rules.
Having defined the language Ki, 1 ≤ i ≤ n, we specify
the function semi. Namely, for a theory T ⊆ Ki, we define
semi(T) to contain an interpretation I ∈ Int(σ) if and only
if I|σi

∈ semi({hd(t) : t ∈ T , I |= bd(t)}).
Let H = (M1, . . . ,Mn, R) be a multi-context system

over logics L1, . . . ,Ln with pairwise disjoint vocabularies.
We define M ′

i = Mi ∪Ri. By the comments above, we can
see M ′

i as a subset of Ki. Thus, M ′
i is a Ki-module and

1535

(M ′
1, . . . ,M

′
n) is a modular system over logics K1, . . . ,Kn.

We denote this system by ms(H).

Theorem 4. Let H = (M1, . . . ,Mn, R) be a multi-context
system over logics L1, . . . ,Ln with pairwise disjoint vo-
cabularies σi. An interpretation I ∈ Int(σ), where σ =
σ1 ∪ . . . ∪ σn, is an equilibrium model of H if and only if I
is a model of the modular system ms(H).

Proof. Let I be an interpretation of σ. By the definition, I
is an equilibrium model of H if and only if for every i, 1 ≤
i ≤ n,

I|σi
∈ semi(Mi ∪ {hd(r) : r ∈ Ri, r applicable in I}).

Since r ∈ Ri is applicable in I if and only if I |= bd(r),

Mi ∪{hd(r) : r ∈ Ri, r applicable in I}
= Mi ∪ {hd(r) : r ∈ Ri, I |= bd(r)}.

Also by the definition, I is a model of ms(H) if and only
if for every i, 1 ≤ i ≤ n, I ∈ semi(M

′
i), that is,

I|σi
∈ semi({hd(r) : r ∈M ′

i , I |= bd(r)}.

Since M ′
i = Mi ∪ Ri and all elements in Mi have empty

body,

{hd(r) : r ∈M ′
i , I |= bd(r)}

= Mi ∪ {hd(r) : r ∈ Ri, I |= bd(r)}.

Thus, the assertion follows.

Modular Systems as Multi-context Systems
Up to now we focused on demonstrating the expressive
power of model-based modular systems. Specifically, we
proved that they capture several other modular frameworks
studied in the literature. In this section we note that multi-
context systems are as general as modular systems: every
modular system can be cast as a multi-context system. The
idea is to simulate the atom-sharing model of communi-
cation between modules employed in modular systems by
means of bridge rules in multi-context systems.

We start by noting that each modular system M =
(M1, . . . ,Mn) over some logics Li = (Li, σi, semi), 1 ≤
i ≤ n, can be regarded as a modular system in logics
L′
i = (Li, σ, sem

′
i), where

• σ = σ1 ∪ . . . ∪ σn and

• for each i and each B ⊆ Li, sem ′
i(B) contains an inter-

pretation I ∈ Int(σ) if and only if I|σi
∈ semi(B).

Informally, the logics L′
i are extensions of the logics Li to a

larger, common, vocabulary so that new symbols in the vo-
cabulary do not affect the meaning of the theory. The follow-
ing simple result is a direct consequence of the definitions.

Proposition 5. LetM = (M1, . . . ,Mn) be a modular sys-
tem over logics Li = (Li, σi, semi), 1 ≤ i ≤ n. An in-
terpretation X ∈ Int(σ) is a model of M if and only if I
is a model of M viewed as a modular system over logics
L′
i = (Li, σ, sem

′
i), 1 ≤ i ≤ n, where sem ′

i is defined as
above.

From now on, without loss of generality, we consider mod-
ular systems over logics that have the same vocabulary.

Thus, letM = (M1, . . . ,Mn) be a modular system over
logics Li = (Li, σ, semi), 1 ≤ i ≤ n. We now construct
a multi-context system mcs(M), over different but closely
related logics, that captures the semantics ofM.

For i = 1, . . . , n and for every a ∈ σ, we introduce a fresh
symbol ai so that ai /∈ L1 ∪ . . .∪Ln. By θi we denote a vo-
cabulary {ai : a ∈ σ}, whereas by θ we denote a vocabulary
θ1 ∪ . . . ∪ θn. For every i, 1 ≤ i ≤ n, we set Lei = Li ∪ θi.
Since Li ∩ θi = ∅, there is never any ambiguity between el-
ements of the two sets. For every B ⊆ Lei , by ŝemi(B) we
denote the set that contains an interpretation Ji ∈ Int(θi)
precisely when the following two conditions hold:
1. {a ∈ σ : ai ∈ Ji} ∈ semi(B ∩ L).
2. for every ai ∈ θi, condition ai ∈ B holds if and only if

condition ai ∈ Ji holds.
Logic Ni is a triple (Lei , θi, ŝemi). It is clear that every Li-
module B is also an Ni-module and its meaning in Ni is
the same as in Li (modulo the correspondence between the
elements of the vocabularies θi and σ). This logic is also
capable to represent bridge rules for simulating the atom-
sharing communication model of modular systems.

We now represent modular systems over the logics
Li by multi-context systems over the logics Ni. For
a modular system M = (M1, . . . ,Mn) over logics
Li = (Li, σ, semi), we define the multi-context system
mcs(M) = (M1, . . . ,Mn, R), where every Mi is a mod-
ule over the logic Ni, 1 ≤ i ≤ n, and R is a set of bridge
rules R = {ai ← aj : a ∈ σ, i 6= j}. These are indeed
correctly formed bridge rules, as expressions ai showing in
the heads belong to the language Lei of the logicNi. We note
that R depends only on n and on the common vocabulary σ
of the logics L1, . . . ,Ln, and not on any particular choice of
modules in a modular system over these logics.
Theorem 6. Let M = (M1, . . . ,Mn) be a modular sys-
tem over logics Li = (Li, σ, semi). An interpretation I ∈
Int(σ) is a model ofM if and only if

⋃n
i=1{ai : a ∈ I} is

an equilibrium model of the multi-context system mcs(M).
Moreover, every equilibrium model of mcs(M) is of such
form.

Proof. For I ∈ Int(σ), we define Ii = {ai : a ∈ I}, 1 ≤
i ≤ n, and Ĩ =

⋃n
i=1 Ii. Clearly, Ii ∈ Int(θi) and Ĩ ∈

Int(θ).
Left-to-Right: The setRi of all bridge rules inR that are into
a module Mi is given by Ri = {ai ← aj : a ∈ σ, j 6= i}.
Therefore,

{hd(r) : r ∈ Ri, r is applicable in Ĩ} = {ai : a ∈ I}.

Let I ∈ Int(σ) be a model of M. Since Ĩ|θi = Ii, to
prove that Ĩ is an equilibrium model of mcs(M), we need
to show that for every i, 1 ≤ i ≤ n,

Ii ∈ ŝemi(Mi ∪ {ai : a ∈ I}}).
This amounts to showing that

{a ∈ σ : ai ∈ Ii} ∈ semi(Mi) (5)

1536

(the condition (2) of the definition of ŝemi is evident). How-
ever, since I is a model of M, I is a model of Mi in the
logic Li. Consequently, condition (5) holds.

Right-to-left: Let J ∈ Int(θ) be an equilibrium model of
mcs(M). By the definition, for every i, 1 ≤ i ≤ n,

J|θi = ŝemi(Mi ∪ {hd(r) : r ∈ Ri, r is applicable in J}).

By the condition (1) of the definition of ŝemi, we have {a ∈
σ : ai ∈ J|θi} ∈ semi(Mi) Moreover, let j 6= i and let aj ∈
J . The bridge rule ai ← aj is applicable in J and so, we
also have that ai ∈ {hd(r) : r ∈ Ri, r is applicable in J}.
By the condition (2) of the definition of ŝemi, we have
ai ∈ Jθi . Hence, for every i, j such that i 6= j, if aj ∈ J
then ai ∈ J and, by symmetry, if ai ∈ J then aj ∈ J . This
observation implies that J is of the form Ĩ for some interpre-
tation I of σ (this I can be explicitly defined as, for instance,
I = {a ∈ σ : a1 ∈ J}). Consequently, J|θi = Ii and so,
Ii ∈ ŝemi(Mi). By the definition of ŝemi, I ∈ semi(Mi).
Thus, I is a model of the modular systemM.

Mx-systems
Tasharrofi and Ternovska (2011; 2013) introduced modular
systems for model expansion task, or mx-systems for short,
as a unifying framework for combining logics (languages)
and systems together. Their work was inspired by module-
based framework due to Järvisalo et al. (2009). Tasharrofi
and Ternovska defined mx-systems as certain compositions
of mx-modules, studied properties of composition operators
for mx-modules, and established the expressive power of
mx-systems. In this section, we relate mx-systems to the ab-
stract model-based modular systems.

To do so, we cast mx-systems in terms of our definition of
logic. This, essentially means that we consider only a propo-
sitional fragment of the formalism of mx-systems, originally
set in terms of interpretations of first-order signatures. Since
generalizations of modular systems to the case when the se-
mantics of modules is given in terms of first-order interpre-
tations are straightforward, our discussion can be extended
to the full formalism of mx-systems.

Definition 7. Let L = (LL, σL, semL) be a logic, let B be
an L-module, and ψ be a vocabulary such that ψ ⊆ σL. A
pair (B, ψ) is an mx-module over logic L. An interpretation
I ∈ Int(σL) is a model of an mx-module (B, ψ) if I is a
model of B. Vocabularies ψ and σL \ ψ are called an input
and output vocabularies respectively.

Clearly, mx-modules and model-based modules are al-
most identical. The only difference is in the ability to ex-
plicitly specify input vocabulary in the case of mx-modules.

Modular systems proposed by Tasharrofi and Ter-
novska (2011) are restricted to those that can be built from
composable and independent mx-modules. Mx-modules
M1 andM2 are composable if output vocabularies ofM1

and M2 are disjoint. An mx-module M2 is independent
from an mx-module M1 if the input vocabulary of M2

is disjoint from the output vocabulary of M1. Tasharrofi

and Ternovska proposed several operators constructing mx-
systems from smaller ones, with mx-modules being elemen-
tary building blocks. They include sequential composition,
projection, union, and feedback. Here we focus only on mx-
systems resulting from applying the operator . of sequential
composition.
Definition 8. LetM1 andM2 be mx-modules in logics over
vocabularies σ1 and σ2, and letM1 andM2 be composable
andM2 be independent fromM1. The expressionM1.M2

is an mx-system (constructed by sequential composition). An
interpretation I over σM1 ∪σM2 is a model ofM1 .M2 if
I|σ1 is a model ofM1 and I|σ2 is a model ofM2.

The relation between mx-modular systems (obtained by
sequential composition) and model-based modular systems
is evident.
Proposition 7. Let M1 = (B1, ψ1) and M2 = (B2, ψ2)
be mx-modules over logics L1 and L2, respectively, and let
M1.M2 be defined. An interpretation I over σ1∪σ2, where
σi is the vocabulary of the logic Li, i = 1, 2, is a model of
M1.M2 if and only if I is a model of model-based modular
system (B1,B2) over L1 and L2.

The proof is a direct consequence of the definitions of the
semantics of the respective types of modular systems.

Restricting our discussion to systems built of two mod-
ules is inessential. Our discussion easily extends to allow
multiple modules. But, it is important to note that the def-
inition of sequential compositionality requires that mod-
ules be composable and independent. Model-based modular
systems make no such restrictions and so, generalize mx-
modular systems based on sequential composition method.

Conclusions
Modularity is an important aspect of knowledge represen-
tation formalisms and applications. Accordingly, there has
been significant interest in abstract principles behind mod-
ularity in knowledge representation, with multi-context sys-
tems and mx-systems being prime examples of frameworks
proposed as a setting for such studies. In this paper, we intro-
duced model-based modular systems as yet another abstract
framework. Its key distinguishing aspect is the simplicity of
the information-sharing model it employs: modules share in-
formation through common elements of their vocabularies.

We demonstrated that proposed modular systems can be
seen as abstract representations of modular logic programs,
SM(ASP) theories, and CAS programs. On a more general
note, we showed that modular systems, despite their simplic-
ity, are as expressive as multi-context systems. We also iden-
tified a class of mx-systems that can be viewed directly as
modular systems, again simplifying the former by eliminat-
ing assumptions of composability and independence.2 The
results of this paper provide strong evidence that the simple
abstract framework we proposed has a significant unifying,
simplifying, and explanatory potential in the studies of mod-
ularity in knowledge representation.

2It is of interest to investigate whether mx-systems based on
other composition operators can be related in a natural way to mod-
ular systems.

1537

References
Balduccini, M. 2009. Representing constraint satis-
faction problems in answer set programming. in: Pro-
ceedings of ICLP Workshop on Answer Set Programming
and Other Computing Paradigms (ASPOCP), https:// www.
mat.unical.it/ ASPOCP09/ .
Brewka, G., and Eiter, T. 2007. Equilibria in heteroge-
neous nonmonotonic multi-context systems. In Proceed-
ings of National Conference on Artificial Intelligence, AAAI
2007, 385–390.
de Cat, B.; Bogaerts, B.; Bruynooghe, M.; and Denecker,
M. 2014. Predicate logic as a modelling language: The IDP
system. CoRR abs/1401.6312.
Denecker, M., and Ternovska, E. 2008. A logic for non-
monotone inductive definitions. ACM Transactions on Com-
putational Logic 9(2).
Eiter, T.; Ianni, G.; Schindlauer, R.; and Tompits, H. 2005.
A uniform integration of higher-order reasoning and exter-
nal evaluations in answer set programming. In Proceedings
of International Joint Conference on Artificial Intelligence,
IJCAI 2005, 90–96.
El-Din Bairakdar, S.; Dao-Tran, M.; Eiter, T.; Fink, M.; and
Krennwallner, T. 2010. The DMCS solver for distributed
nonmonotonic multi-context systems. In Proceedings of the
12th European Conference on Logics in Artificial Intelli-
gence, JELIA 2010, LNCS 6341, 352–355. Springer.
Gebser, M.; Ostrowski, M.; and Schaub, T. 2009. Con-
straint answer set solving. In Proceedings of 25th Inter-
national Conference on Logic Programming, ICLP 2009,
LNCS 5649, 235–249. Springer.
Giunchiglia, F. 1993. Contextual reasoning. Epistemologia
XVI:345–364.
Järvisalo, M.; Oikarinen, E.; Janhunen, T.; and Niemelä, I.
2009. A module-based framework for multi-language con-
straint modeling. In Proceedings of the 10th International
Conference on Logic Programming and Nonmonotonic Rea-
soning, LPNMR 2009, LNCS 5753, 155–168. Springer.
Lierler, Y., and Truszczynski, M. 2011. Transition systems
for model generators — a unifying approach. Theory and
Practice of Logic Programming 11(4-5):629–646. (Special
Issue, Proceedings of the 27th International Conference on
Logic Programming, ICLP 2011).
Lierler, Y., and Truszczynski, M. 2013. Modular answer set
solving. In Late-Breaking Developments in the Field of Ar-
tificial Intelligence, volume WS-13-17 of AAAI Workshops.
AAAI.
Lierler, Y., and Truszczynski, M. 2014. Abstract modular
inference systems and solvers. In Proceedings of the 16th
International Symposium on Practical Aspects of Declara-
tive Languages, PADL 2014, LNCS 8324, 49–64. Springer.
Lierler, Y. 2014. Relating constraint answer set pro-
gramming languages and algorithms. Artificial Intelligence
207C:1–22.
Lifschitz, V.; Tang, L. R.; and Turner, H. 1999. Nested
expressions in logic programs. Annals of Mathematics and
Artificial Intelligence 25:369–389.

Mariën, M.; Wittocx, J.; Denecker, M.; and Bruynooghe,
M. 2008. SAT(ID): Satisfiability of propositional logic
extended with inductive definitions. In Proceedings of the
11th International Conference on Theory and Applications
of Satisfiability Testing, SAT 2008, volume 4996 of LNCS,
211–224. Springer.
McCarthy, J. 1987. Generality in Artificial Intelligence.
Communications of the ACM 30(12):1030–1035.
Oikarinen, E., and Janhunen, T. 2006. Modular equiva-
lence for normal logic programs. In Proceedings of the 17th
European Conference on Artificial Intelligence, ECAI 2006,
volume 141 of Frontiers in Artificial Intelligence and Appli-
cations, 412–416. IOS Press.
Tasharrofi, S., and Ternovska, E. 2011. A semantic account
for modularity in multi-language modelling of search prob-
lems. In Proceedings of the 8th international Symposium on
Frontiers of Combining Systems, FroCoS 2011, LNCS 6989,
259–274. Springer.
Tasharrofi, S. 2013. Arithmetic and Modularity in Declar-
ative Languages for Knowledge Representation. Ph.D. Dis-
sertation, Simon Fraser University.

1538

