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Abstract
ABox abduction plays an important role in reasoning over
description logic (DL) ontologies. However, it does not work
with inconsistent DL ontologies. To tackle this problem while
achieving tractability, we generalize ABox abduction from
the classical semantics to an inconsistency-tolerant seman-
tics, namely the Intersection ABox Repair (IAR) semantics,
and propose the notion of IAR-explanations in inconsistent
DL ontologies. We show that computing all minimal IAR-
explanations is tractable in data complexity for first-order
rewritable ontologies. However, the computational method
may still not be practical due to a possibly large number of
minimal IAR-explanations. Hence we propose to use pref-
erence information to reduce the number of explanations to
be computed. In particular, based on the specificity of ex-
planations, we introduce the notion of ⊆cps-cminimal IAR-
explanations, which can be computed in a highly efficient
way. Accordingly, we propose a tractable level-wise method
for computing all ⊆cps-cminimal IAR-explanations in a first-
order rewritable ontology. Experimental results on bench-
marks of inconsistent ontologies show that the proposed
method scales to tens of millions of assertions and can be
of practical use.

1 Introduction
ABox abduction (Klarman, Endriss, and Schlobach 2011;
Du et al. 2011a; Du, Wang, and Shen 2014), an adaptation
of abductive reasoning (Eiter and Gottlob 1995) to descrip-
tion logics (DLs), has gained much attention recently since
many ontology-based applications raise a requirement for
explaining why an observation cannot be entailed by a DL
ontology. Given a consistent DL ontology and an observa-
tion, such as a Boolean conjunctive query (BCQ), ABox ab-
duction computes sets of assertions (namely explanations)
whose appending to the ontology enforces the entailment of
the observation while keeping the ontology consistent. The
usefulness of ABox abduction has been identified in medical
diagnosis (Elsenbroich, Kutz, and Sattler 2006), ontology
quality control (Bada, Mungall, and Hunter 2008), conjunc-
tive query answering (Borgida, Calvanese, and Rodriguez-
Muro 2008), semantic matchmaking (Du et al. 2011b), etc.
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ABox abduction does not work under inconsistency since
anything can be entailed from an inconsistent DL ontology.
As pointed out in the literature e.g. (Du, Qi, and Shen 2013),
inconsistency may often occur in some important ontology-
based applications such as data integration and ontology
population. In these applications it is also needed to explain
why an observation cannot be a meaningful entailment of an
inconsistent DL ontology under some inconsistency-tolerant
semantics. Thus it is useful to extend ABox abduction to
handle inconsistency. However, to the best of our knowledge
this extension has not been explored in the literature.

To make ABox abduction works with inconsistency, we
consider how to define explanations for observations in an
inconsistent DL ontology. We focus on a general problem
for ABox abduction, the query abduction problem (QAP)
(Calvanese et al. 2013), where observations are BCQs and
explanations may contain fresh individuals neither in the on-
tology nor in the observation. Since QAP often requires to
compute all minimal explanations, we consider two require-
ments for the notion of minimal explanations under incon-
sistency. First, minimal explanations in an inconsistent DL
ontology degenerate into traditional minimal explanations
when the given ontology is consistent. Second, computing
all minimal explanations is tractable at least in terms of data
complexity which is measured by the size of the ABox only.

It has been shown (Du, Wang, and Shen 2014) that com-
puting all traditional minimal explanations in a consistent
first-order rewritable ontology is tractable in data complex-
ity. We expect that this tractable result still holds when the
ontology is inconsistent. Thus, we adapt an inconsistency-
tolerant semantics, namely the Intersection ABox Repair
(IAR) semantics, to defining meaningful explanations in in-
consistent DL ontologies. The IAR semantics, first proposed
in (Lembo et al. 2010), has been shown to be computable in
polynomial time in data complexity for first-order rewritable
ontologies (Lukasiewicz, Martinez, and Simari 2013).

Based on the IAR semantics, we require that an explana-
tion E for a BCQ in a possibly inconsistent ontology is a
set of assertions such that appending it to the given ontol-
ogy O (with TBox T and ABox A) makes the union of T
and the intersection of all ABox repairs of O ∪ E entail the
BCQ, where an ABox repair of O ∪ E is a maximal subset
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of the ABox ofO∪E (namelyA∪E) that is consistent with
T . However, this condition alone does not ensure a minimal
explanation to degenerate into a traditional one when O is
consistent. Hence we further require that no assertion in the
explanation E is also in the ABox A while appending E to
an arbitrary ABox repair R of O does not introduce incon-
sistency, i.e., R ∪ E is consistent with the TBox T .

We call an explanation satisfying all the above conditions
an IAR-explanation. We show that computing all minimal
IAR-explanations for a BCQ in a first-order rewritable ontol-
ogy is tractable in data complexity. However, the computa-
tional method may still not be practical because there can be
a large number of minimal IAR-explanations for a BCQ, as
shown in (Du, Wang, and Shen 2014) for traditional minimal
explanations. Hence we propose to use preference informa-
tion to reduce the number of explanations to be computed.
Given a precedence relation � between IAR-explanations,
we call a minimal IAR-explanation E �-minimal if for all
minimal IAR-explanations E ′, E ′ � E implies E � E ′.
The representative explanations proposed in (Du, Wang, and
Shen 2014) amount to⊆s-minimal IAR-explanations in con-
sistent DL ontologies, where for two explanations E ′ and E ,
we say E ′ ⊆s E if there is a substitution θ for E ′, which
replaces fresh individuals in E ′ with fresh or existing indi-
viduals, such that E ′θ is a subset of E .

As empirically found by Du, Wang, and Shen (2014),
sometimes there can still be too many representative ex-
planations to be computed. Hence we consider computing
some but not all�-minimal IAR-explanations. According to
Occam’s razor, we propose �-cminimal IAR-explanations,
which are �-minimal IAR-explanations with the minimum
cardinality. One may consider to compute all ⊆s-cminimal
IAR-explanations. However, the minimality checking for
these explanations is rather inefficient since it cannot be
done without computing IAR-explanations that have larger
cardinalities. For example, consider an ontology O = ∅
and a BCQ Q = {r(a, x), r(x, y)} where a is an indi-
vidual, and x and y are variables. There are four mini-
mal IAR-explanations for Q in O, namely E1 = {r(a, a)},
E2 = {r(a, u1), r(u1, a)}, E3 = {r(a, u1), r(u1, u1)} and
E4 = {r(a, u1), r(u1, u2)}, where u1 and u2 are fresh in-
dividuals. When checking if E1 is ⊆s-cminimal, we need to
consider E2, E3 or E4, which have larger cardinalities. In fact,
since E4 ⊆s E1 but E1 6⊆s E4, E1 cannot be ⊆s-cminimal.

To achieve a more efficient (thus more practical) compu-
tational method, we introduce another concrete precedence
relation ⊆cps, where for two explanations E ′ and E , we say
E ′ ⊆cps E if there is a substitution θ for E ′ such that E ′θ has
the same cardinality as E ′ while E ′θ is a subset of E . For the
aforementioned example, both E1 and E4 are ⊆cps-minimal,
but only E1 is ⊆cps-cminimal. We show that ⊆cps-cminimal
IAR-explanations are computable without computing IAR-
explanations that have larger cardinalities. Moreover, we
propose a tractable (in data complexity) method for com-
puting all ⊆cps-cminimal IAR-explanations in a first-order
rewritable ontology. It works in an efficient level-wise man-
ner. We also propose an important optimization to make
⊆cps-cminimal IAR-explanations computed as early as pos-
sible. Experimental results on benchmarks of inconsistent

ontologies show that the proposed method is rather efficient
and scales to tens of millions of assertions.

Due to the space limitation, proofs in this paper are only
provided in our technical report (Du, Wang, and Shen 2015).

2 Preliminaries
We assume that the reader is familiar with DLs (Baader et
al. 2003). A DL ontology consists of a TBox and an ABox,
where the TBox consists of a finite set of axioms declar-
ing the relations between concepts and roles, and the ABox
consists of a finite set of assertions mainly declaring which
individuals (resp. individual pairs) are instances of a concept
(resp. a role). We assume that the Unique Name Assumption
(Baader et al. 2003) is adopted and that an ABox contains
only basic assertions which are concept assertions of the
form A(a) or role assertions of the form r(a, b), where A
is a concept name, r is a role name, and a and b are indi-
viduals. Other concept assertions and role assertions can be
normalized to basic ones in a standard way. Let Σ be a set of
concept names and role names. An ABox that contains only
concept names and role names from Σ is called a Σ-ABox.

We use the traditional semantics for DLs e.g. given in
(Baader et al. 2003), which coincides with the classical first-
order semantics. A DL ontology O is said to be consistent,
denoted by O 6|= ⊥, if it has at least one model; otherwise,
it is inconsistent, denoted by O |= ⊥. An ABox A is said to
be consistent with a TBox T if T ∪ A is consistent.

A Boolean conjunctive query (BCQ) ∃~xΦ(~x,~c) is made
up of a conjunction of atoms Φ(~x,~c) over concept names
and role names, where ~x are variables and ~c are individuals.
In this paper a BCQ is usually written and treated as a set of
atoms. For example, the BCQ ∃xA(x) ∧B(x) is written as
{A(x), B(x)}. The cardinality of a set S is denoted by |S|.
A substitution θ for a BCQ Q is a mapping from variables
in Q to individuals or variables. θ is ground if it maps vari-
ables to individuals only; in this case Qθ is called a ground
instance of Q. A BCQ Q is entailed by a DL ontology O if
Q is satisfied by all models of O, written O |= Q.

The query abduction problem (simply QAP) (Calvanese
et al. 2013) is a general problem for ABox abduction, where
observations are BCQs and explanations may contain fresh
individuals neither in the ontology nor in the observation.

Definition 1. Given a DL ontology with TBox T and ABox
A, a BCQ Q and a set Σ of concept names and role names
(called abducible predicates). We call P = (T ,A, Q,Σ) an
instance of QAP. An explanation for P is a Σ-ABox E such
that T ∪ A ∪ E |= Q and T ∪ A ∪ E 6|= ⊥.

QAP often requires to compute all minimal explanations
for an instance P = (T ,A, Q,Σ). To compare with expla-
nations containing different fresh individuals, fresh individ-
uals are treated as variables. A substitution for an explana-
tion E is a mapping from fresh individuals in E to existing
or fresh individuals. A renaming for E is a substitution for
E that maps different fresh individuals to different fresh in-
dividuals. We say E ′ ⊂r E for two explanations E ′ and E ,
if there exists a renaming ρ for E ′ such that E ′ρ ⊂ E . Then
minimal explanations for P can be defined below.
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Definition 2 (Du, Wang, and Shen 2014). A minimal ex-
planation E for P = (T ,A, Q, Σ) is an explanation for P
such that there is no explanation E ′ for P fulfilling E ′ ⊂r E .

As shown in (Du, Wang, and Shen 2014), computing all
minimal explanations for P is tractable in data complexity
for first-order rewritable ontologies that are given by Defini-
tion 3. A first-order rewritable ontology has a TBox that can
be translated to a Datalog± (Calı̀, Gottlob, and Lukasiewicz
2012) ontology. Such an ontology consists of finitely many
tuple generating dependencies (TGDs) ∀~x∀~yΦ(~x, ~y) →
∃~z ϕ(~x, ~z), constraints ∀~xΦ′(~x) → ⊥, as well as equal-
ity generating dependencies (EGDs) ∀~xΦ′(~x) → x1 = x2,
where Φ(~x, ~y), ϕ(~x, ~z) and Φ′(~x) are conjunctions of atoms,
x1 and x2 occur in ~x, and⊥ denotes the truth constant false.
By TD, TC and TE we denote the portions of a TBox T that
are translated to TGDs, constraints and EGDs, respectively.
Definition 3. A DL ontology is said to be first-order
rewritable if its TBox T can be translated to a Datalog±
ontology and satisfies the following three conditions for an
arbitrary BCQ Q and an arbitrary ΣT -ABox A, where ΣT
is the set of concept names and role names in T :
(1) T ∪A |= Q if and only if TD ∪A |= Q or T ∪A |= ⊥;
(2) TC ∪ TE can be rewritten to a finite set of BCQs ac-

cording to TD, denoted by γ(TC ∪ TE , TD), such that
T ∪ A |= ⊥ if and only if A |= Q′ for some Q′ ∈
γ(TC ∪ TE , TD);

(3) Q can be rewritten to a finite set of BCQs according to
TD, denoted by τ(Q, TD), such that TD∪A |= Q if and
only if A |= Q′ for some Q′ ∈ τ(Q, TD).

An ontology expressed in most DLs in the DL-Lite fam-
ily (Calvanese et al. 2007) is first-order rewritable (Calı̀,
Gottlob, and Lukasiewicz 2012; Calı̀, Gottlob, and Pieris
2012). Since the DL-Lite family has become popular in
many ontology-based applications and first-order rewritable
ontologies are sufficient for these applications, we only con-
sider first-order rewritable ontologies in this work.

3 Defining Explanations under Inconsistency
An inconsistent DL ontology has no model and entails
anything. To define meaningful entailments, inconsistency-
tolerant semantics have been proposed e.g. in (Lembo et al.
2010; Lukasiewicz, Martinez, and Simari 2013). Regarding
QAP, it is helpful to see why a BCQ cannot be a meaning-
ful entailment of an inconsistent DL ontology. Hence it is
reasonable to adapt some inconsistent-tolerant semantics to
defining explanations for QAP under inconsistency. We con-
sider two requirements for the notion of minimal explana-
tions under inconsistency. Firstly, to ensure that any com-
putational method designed for these minimal explanations
is still correct for traditional minimal explanations given by
Definition 2, minimal explanations should degenerate into
traditional ones when the given ontology is consistent. Sec-
ondly, to guarantee efficiency, computing all these minimal
explanations should be tractable for a large class of ontolo-
gies e.g. the first-order rewritable ontologies.

To seek an adaptation that meets the above two require-
ments, we consider inconsistency-tolerant semantics pro-
posed in (Lembo et al. 2010; Lukasiewicz, Martinez, and

Simari 2013). These semantics are rather popular because
they are based on the classical first-order semantics and
do not depend on extra information (such as priorities and
weights) about assertions. The most popular semantics is
the ABox Repair (AR) semantics (Lembo et al. 2010). Let
O be a possibly inconsistent DL ontology that has a con-
sistent TBox T and an ABox A. The AR semantics de-
fines that a BCQ Q is a meaningful entailment of O , writ-
ten O |=AR Q, if T ∪ R |= Q for all ABox repairs R
of O, where an ABox repair of O is a maximal subset of
A that is consistent with T . However, it has been shown
(Lembo et al. 2010) that deciding if O |=AR Q is coNP-
complete in data complexity even when O is expressed in
DL-Litecore, the least expressive DL in the DL-Lite family.
This implies that adapting the AR semantics to QAP can-
not meet the second requirement. Hence we turn to another
popular semantics, the Intersection ABox Repair (IAR) se-
mantics (Lembo et al. 2010). Let AR(T ,A) denote the set of
ABox repairs of O. The IAR semantics defines that a BCQ
Q is a meaningful entailment of O, written O |=IAR Q, if
T ∪

⋂
R∈AR(T ,A)R |= Q. It has been shown (Lukasiewicz,

Martinez, and Simari 2013) that deciding if O |=IAR Q is
tractable in data complexity for first-order rewritable ontolo-
gies. Hence we choose the IAR semantics for adaptation.

Based on the IAR semantics, an explanation E for P =
(T ,A, Q,Σ) where T is consistent should be an Σ-ABox
such that T ∪A∪E |=IAR Q, i.e., T ∪

⋂
R∈AR(T ,A∪E)R |=

Q. However, this condition alone does not ensure a minimal
explanation to degenerate into a traditional one when T ∪A
is consistent. To meet the first requirement, we compensate
another condition that E ∩A = ∅ and T ∪E ∪R 6|= ⊥ for all
R ∈ AR(T ,A). This condition is justifiable in the sense that
E is more doubtful than the ABox, while an arbitrary ABox
repair is a subset of the ABox whose consistency should not
be violated by more doubtful assertions. From the point of
view of minimal conflicts, this condition is also justifiable.
A conflict in a DL ontology O with TBox T and ABox A is
a subset of A that is inconsistent with T ; it is minimal if all
its proper subsets are consistent with T . By MC(T ,A) we
denote the set of minimal conflicts in O. By the following
lemma, we can interpret the condition as that appending E
to O does not introduce new minimal conflicts.

Lemma 1. Let O be a DL ontology with a consistent TBox
T and an ABox A. For any set E of assertions such that
E ∩A = ∅, we have T ∪ E ∪R 6|= ⊥ for all R ∈ AR(T ,A)
if and only if MC(T ,A ∪ E) = MC(T ,A).

The following lemma further shows that checking the
aforementioned condition in a first-order rewritable ontol-
ogy is tractable in data complexity, since γ(TC ∪ TE , TD) is
independent of A and computing MC(T ,A) is tractable in
data complexity.

Lemma 2. For a first-order rewritable ontology O with
TBox T and ABox A, let Λ(O) = {Qθ | Q ∈ γ(TC ∪ TE ,
TD), θ is a ground substitution for Q such that Qθ ⊆ A}.
Then MC(T ,A) = {S ∈ Λ(O) | @S′ ∈ Λ(O) : S′ ⊂ S}.

Lemma 2 also shows that checking if T ∪A∪E |=IAR Q
is also tractable in data complexity for first-order rewritable
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ontologies, because when T is consistent, we have⋂
R∈AR(T ,A∪E)R=(A ∪ E) \

⋃
R∈AR(T ,A∪E)((A ∪ E) \R)

=(A ∪ E) \
⋃

S∈MC(T ,A∪E) S .
By combining the above conditions, we propose the fol-

lowing notion of IAR-explanations.
Definition 4. Given an instance P = (T ,A, Q,Σ) of QAP
where T is consistent, an IAR-explanation E for P is a Σ-
ABox such that T ∪ A ∪ E |=IAR Q, E ∩ A = ∅ and T ∪
E ∪R 6|= ⊥ for all R ∈ AR(T ,A).

We call an IAR-explanation E for P minimal if there is
no IAR-explanation E ′ for P such that E ′ ⊂r E . Below we
show that minimal IAR-explanations degenerate into tradi-
tional ones when the given ontology is consistent.
Proposition 1. Let P = (T ,A, Q,Σ) where T ∪ A is con-
sistent. Then the set of minimal IAR-explanations for P is
the same as the set of minimal explanations for P given by
Definition 2.

For a BCQQ, let pred(Q) denote the set of concept names
and role names appearing inQ, and bipart(Q) denote the set
of different bipartitions of Q, where a bipartition of Q is a
tuple of two BCQs (Q1, Q2) such that Q1 ∩ Q2 = ∅ and
Q1∪Q2 = Q. Given an arbitrary set S of IAR-explanations,
let reducer(S) denote the set of IAR-explanations obtained
from {E ∈ S | @E ′ ∈ S : E ′ ⊂r E} by deleting all dupli-
cate IAR-explanations up to renaming of fresh individuals.
By using bipartitions we develop a method for computing
all minimal IAR-explanations in a first-order rewritable on-
tology. The following theorem shows this method together
with its correctness and tractability in data complexity.
Theorem 1. Given P = (T ,A, Q,Σ) where T ∪ A
is a first-order rewritable ontology and T is consistent,
let Ξ(P) = {Q1σθ | Q′ ∈ τ(Q, TD), (Q1, Q2) ∈
bipart(Q′), pred(Q1) ⊆ Σ, σ is a ground substitution for
Q2 such that Q2σ ⊆ A \

⋃
S∈MC(T ,A) S, and θ is a

ground substitution for Q1σ such that Q1σθ ∩ A = ∅ and
MC(T ,A ∪Q1σθ) = MC(T ,A)}. Then the set of minimal
IAR-explanations for P is reducer(Ξ(P)) up to renaming of
fresh individuals, and can be computed in polynomial time
in data complexity.

4 Exploiting Preference Information
There may be a large number of minimal IAR-explanations
for a BCQ, as shown in (Du, Wang, and Shen 2014) for tradi-
tional minimal explanations. For practicality, it is needed to
reduce the number of explanations to be computed. Thus, we
propose to use preference information on minimal (IAR-)
explanations. Given a precedence relation � between ex-
planations, we consider computing�-minimal ones, defined
below, among minimal explanations.
Definition 5. Let � be a precedence relation between
(IAR-) explanations for P . A minimal (IAR-) explanation
E for P is said to be �-minimal if for all minimal (IAR-)
explanations E ′ for P , E ′ � E implies E � E ′.

One concrete precedence relation, written⊆s here, is pro-
posed in (Du, Wang, and Shen 2014), where we say E ′ ⊆s E
for two explanations E ′ and E if there is a substitution θ

for E ′ such that E ′θ ⊆ E . The ⊆s-minimal explanations in
a consistent DL ontology are called representative explana-
tions in (Du, Wang, and Shen 2014). It has been shown that
the number of representative explanations can often be much
smaller than that of minimal explanations. However, some-
times the number of representative explanations can still be
so large that computing all representative explanations can-
not be done in hours (Du, Wang, and Shen 2014). Hence we
further consider special�-minimal explanations. According
to Occam’s razor, it is natural to consider�-cminimal expla-
nations defined below.

Definition 6. A �-minimal (IAR-) explanation E for P is
said to be �-cminimal if for all �-minimal (IAR-) explana-
tions E ′ for P , |E| ≤ |E ′|.

By Proposition 1, �-minimal IAR-explanations and �-
cminimal IAR-explanations also degenerate into�-minimal
explanations and �-cminimal explanations, respectively,
when the given ontology is consistent.

The simple example given in Section 1 shows that it is
hard to compute all ⊆s-cminimal IAR-explanations with-
out computing all ⊆s-minimal ones beforehand. To achieve
more efficient computational methods, we consider other�.
We observe that if E2 6� E1 whenever |E1| < |E2|, then
checking if an IAR-explanations is �-cminimal need not
consider IAR-explanations with larger cardinalities. Con-
sider why E4 ⊆s E1 for E4 = {r(a, u1), r(u1, u2)} and
E1 = {r(a, a)} given by the example in Section 1. The proof
of E4 ⊆s E1 relies on a substitution θ = {u1 7→ a, u2 7→ a}
such that |E4θ| < |E4|, which is not as intuitive as substi-
tutions σ such that |E4σ| = |E4|. Hence we introduce the
notion of cardinality-preserving substitutions. A cardinality-
preserving substitution θ for an explanation E is a substitu-
tion for E such that |Eθ| = |E|. We propose another con-
crete precedence relation ⊆cps, where we say E ′ ⊆cps E if
there is a cardinality-preserving substitution θ for E ′ such
that E ′θ ⊆ E . It can be seen that E ′ 6⊆cps E if |E| < |E ′|. The
following lemma shows that checking if an IAR-explanation
is ⊆cps-minimal needs to consider only ⊆cps-minimal IAR-
explanations with equal or smaller cardinalities.

Lemma 3. By E ′ ⊂cps E we simply denote E ⊆cps E ′ and
E ′ 6⊆cps E . An IAR-explanation E for P is ⊆cps-minimal if
and only if there is no ⊆cps-minimal IAR-explanation E ′ for
P such that |E ′| ≤ |E| and E ′ ⊂cps E .

Checking if an IAR-explanation is ⊆cps-cminimal also
needs to consider only⊆cps-minimal IAR-explanations with
equal or smaller cardinalities, because a ⊆cps-minimal IAR-
explanation E is ⊆cps-cminimal if and only if there is no
⊆cps-minimal IAR-explanation E ′ such that |E ′| < |E|.

5 Computing all ⊆cps-cminimal Explanations
Given an instanceP = (T ,A, Q,Σ) of QAP, where T ∪A is
a first-order rewritable ontology and T is consistent, we de-
velop a level-wise method for computing all ⊆cps-cminimal
IAR-explanations for P . At level k, this method computes a
set of IAR-explanations for P containing all ⊆cps-minimal
IAR-explanations for P that have the same cardinality k.
We exploit restrictive substitutions to avoid generating IAR-
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explanations that are not ⊆cps-minimal. A ground substitu-
tion σ for a BCQ Q is called a restrictive substitution for
Q in P if it maps variables to fresh individuals not in P or
existing individuals in Q only. Let reducecps(S) denote the
set of IAR-explanations obtained from {E ∈ S | @E ′ ∈ S :
E ′ ⊂cps E} by deleting all duplicate IAR-explanations up to
renaming of fresh individuals. The following lemma shows
the process performed at level k and its correctness.

Lemma 4. Let Φ(P, k) = {Q1σθ | Q′ ∈
τ(Q, TD), (Q1, Q2) ∈ bipart(Q′), pred(Q1) ⊆ Σ, σ is
a ground substitution for Q2 such that Q2σ ⊆ A \⋃

S∈MC(T ,A) S, and θ is a restrictive substitution for Q1σ

in P such that |Q1σθ| = k, Q1σθ ∩A = ∅ and MC(T ,A∪
Q1σθ) = MC(T ,A)}. Then reducecps(Φ(P, k)) is a set
of IAR-explanations for P containing all different ⊆cps-
minimal IAR-explanations E for P such that |E| = k up
to renaming of fresh individuals.

Let maxc(P) denote the maximum cardinality of BCQs in
τ(Q, TD). To compute all ⊆cps-cminimal IAR-explanations
for P , we can compute reducecps(Φ(P, k)) for k increas-
ing from 0 to maxc(P). Once we find some k such that
reducecps(Φ(P, k)) 6= ∅, we can output reducecps(Φ(P, k))
as the set of ⊆cps-cminimal IAR-explanations for P . The
correctness and tractability (in data complexity) of this level-
wise method are shown in the following theorem.

Theorem 2. Let km = min{k | 1 ≤ k ≤ maxc(P),
reducecps(Φ(P, k)) 6= ∅}. Then the set of ⊆cps-cminimal
IAR-explanations for P is reducecps(Φ(P, km)) up to re-
naming of fresh individuals, and can be computed in poly-
nomial time in data complexity.

In the level-wise method, any element of Φ(P, km) can-
not be output before the final reducecps filter. To make ex-
planations output as early as possible, we introduce an im-
portant optimization called the prompt-output optimization.
At level k, we compute Φ(P, k) in a BCQ-wise manner. For
a rewritten BCQ Q′ in τ(Q, TD), we first compute the set
S of IAR-explanations in Φ(P, k) that are derived from Q′,
then compute reducecps(S) and for every E ∈ reducecps(S),
check if E is a ground instance of some subset of some BCQ
Q′′ in τ(Q, TD) other than Q′; if so, we store E , otherwise
we promptly output E as a ⊆cps-cminimal IAR-explanation.
At last, a final reducecps filter is performed on all stored IAR-
explanations. This optimization together with its correctness
are formalized in the following theorem.

Theorem 3. Suppose there is no ⊆cps-minimal IAR-
explanation E for P such that |E| < k. Let Q′ be a BCQ
in τ(Q, TD) and Ψ(T ,A, Q′,Σ, k) = {Q1σθ | (Q1, Q2) ∈
bipart(Q′), pred(Q1) ⊆ Σ, σ is a ground substitution for
Q2 such that Q2σ ⊆ A \

⋃
S∈MC(T ,A) S, and θ is a re-

strictive substitution for Q1σ in P such that |Q1σθ| = k,
Q1σθ ∩ A = ∅ and MC(T ,A ∪ Q1σθ) = MC(T ,A)}.
Then, E ∈ reducecps(Ψ(T ,A, Q′,Σ, k)) is a ⊆cps-cminimal
IAR-explanation for P if there is no Q′′ ∈ τ(Q, TD) \ {Q′}
and ground substitution θ for Q′′ such that E ⊆ Q′′θ.

Table 1: The statistics about test ontologies

Ontology #C #R #TA #AA #I
Semintec+0∼
Semintec+400 60 16 203 65,240∼

65,795
17,941∼
18,096

LUBM10+0∼
LUBM10+400 43 32 158 1,311,409∼

1,311,982
207,426∼
207,599

LUBM1+400∼
LUBM100+400 43 32 158 102,707∼

13,825,027
17,174∼
2,179,956

Note: #C/#R/#TA/#AA/#I is the number of concept names/role
names/axioms in the TBox/assertions in the ABox/individuals.

6 Experimental Evaluation
We implemented the proposed method with the prompt-
output optimization in Java, using the Requiem (Pérez-
Urbina, Motik, and Horrocks 2010) API for query rewrit-
ing and the MySQL system to store and access ABoxes. Six
benchmark ontologies that are almost first-order rewritable
were used. One is Semintec and the others are LUBMn
(n = 1, 5, 10, 50, 100) from the Lehigh University Bench-
mark (Guo, Pan, and Heflin 2005), where n is the number of
universities. We removed a few axioms that Requiem cannot
handle, making all ontologies first-order rewritable. Since
LUBMn has no constraints in the TBox and cannot be made
inconsistent by adding assertions, we added to LUBMn dis-
jointness axioms for every two sibling concept names in the
concept hierarchy of the LUBM TBox whenever these two
concept names have no common instances in any LUBMn.
All modified ontologies are still consistent, hence we used
the Injector tool provided by (Du, Qi, and Shen 2013) to
insert conflicts. By O+m we denote the ontology obtained
fromO by insertingm conflicts. We generated Semintec+m
and LUBM10+m (m = 0, 100, 200, 300, 400) to test the
method against different number of conflicts, and generated
LUBMn + 400 (n = 1, 5, 10, 50, 100) to test the method
against different number of universities. The statistics of test
ontologies are given in Table 1. All experiments were con-
ducted on a laptop having Dual-Core 2.20GHz CPU and
4GB RAM, with the maximum Java heap size set to 1GB.

For each Semintec+m ontology, we used the same 50
BCQs as observations, where ten BCQs were randomly gen-
erated from each of the five benchmark conjunctive queries
(CQs) of Semintec given in (Du, Qi, and Shen 2013). None
of the generated BCQs is entailed by Semintec+0. More-
over, appending any of them to Semintec+0 does not ren-
der Semintec+0 inconsistent. For each LUBMn+m ontol-
ogy, we used the same 140 BCQs as observations, where ten
BCQs were randomly generated from each of the 14 bench-
mark CQs of LUBM given in (Guo, Pan, and Heflin 2005).
None of the generated BCQs is entailed by LUBM1+0.
Moreover, appending any of them to LUBM1+0 does not
render LUBM1+0 inconsistent. Let Gk denote the set of
BCQs generated from the kth benchmark CQ. We set all
concept names and role names as abducible predicates.

Our implementation handles one ontology by two phases.
In the first phase, it computes all minimal conflicts. In the
second phase, it handles all generated BCQs in turn by
reusing minimal conflicts. We set a time limit of 1000 sec-
onds for handling one BCQ. The main results are provided
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in Figure 1, where the curves named MC show the execution
time for computing all minimal conflicts in the first phase,
and the other curves show the statistics in the second phase.

A curve named Gk in Part (a) shows the average execution
time for computing all ⊆cps-cminimal IAR-explanations for
a BCQ in Gk on Semintec+m against increasing number
m of conflicts. While the execution time for computing all
minimal conflicts increases with the number of conflicts, the
execution time for handling a BCQ does not; especially, for
each of G3, G4 and G5 the average execution time is rather
stable when the number of conflicts increases. Each curve
Gk in Part (b) shows the average execution time for com-
puting all ⊆cps-cminimal IAR-explanations for a BCQ in
Gk on LUBM10+m against increasing number m of con-
flicts, where the execution time for a BCQ in G9 does not
include that for rewriting the BCQ. The time for rewrit-
ing a BCQ in G9 is quite long (about 2100 seconds) pos-
sibly due to some issues in Requiem. In general handling
a BCQ either takes a rather stable time or has a similar
scalability as computing all minimal conflicts. The failure
cases for G6 and G8 are caused by a large number of ⊆cps-
cminimal IAR-explanations. This can be verified by Part (c),
which shows the average number of ⊆cps-cminimal IAR-
explanations output within 1000 seconds in failure cases.
These results show that the proposed method is efficient in
computing ⊆cps-cminimal IAR-explanations, while this ef-
ficiency is only slightly affected by the number of conflicts.

Each curve Gk in Part (d) shows the average execution
time for computing all ⊆cps-cminimal IAR-explanations for
a BCQ in Gk on LUBMn+400 against increasing number
n of universities, where the execution time for a BCQ in G9
does not include that for rewriting the BCQ. In G6, G8 and
G9, there exist BCQs that cannot be handled in 1000 seconds
on some test ontologies. Part (e) shows the average number
of⊆cps-cminimal IAR-explanations output within 1000 sec-
onds in failure cases. It can be seen that all failure cases
are caused by too many ⊆cps-cminimal IAR-explanations to
be computed. But in all failure cases, our method still out-
puts tens of thousands of ⊆cps-cminimal IAR-explanations
in 1000 seconds. In general, handling a BCQ has a simi-
lar scalability as computing all minimal conflicts and scales
well to large ontologies. In particular, most BCQs are han-
dled in 100 seconds even on LUBM100+400. These results
show that the proposed method is rather efficient and scales
to tens of millions of assertions.

7 Related Work
By now there are only a few studies on ABox abduction. The
complexity for QAP is systematically studied in (Calvanese
et al. 2013), but no method for computing all minimal ex-
planations is provided there. The problem of computing all
minimal explanations is initially addressed in (Klarman, En-
driss, and Schlobach 2011), but the method proposed there
may not terminate since the size of a minimal explanation
in their sense can be infinite. This termination issue is ad-
dressed in (Du et al. 2011a) by introducing abducible pred-
icates that are concept or role names to guarantee finiteness
of minimal explanations. Accordingly, a sound and possibly

Figure 1: Experimental results for the proposed method

incomplete method is proposed there to compute all min-
imal explanations. The method is then extended to handle
more kinds of abducible predicates that can be arbitrary con-
cepts (Du et al. 2012). A first tractable (in data complexity)
method is proposed in (Du, Wang, and Shen 2014) to com-
pute exactly all minimal explanations for QAP. The method
brings some basic ideas to this work, such as restricting the
given ontology to be first-order rewritable, but it is unable to
handle inconsistency. Differing from existing approaches to
ABox abduction, our proposal is able to coherently handle
both consistent and inconsistent ontologies while still allow-
ing efficient computation of all minimal explanations.

8 Conclusion and Future Work
In this work we have proposed an approach to ABox ab-
duction over inconsistent DL ontologies. There are three
main contributions. First of all, we proposed the notion
of IAR-explanations for BCQs in a possibly inconsistent
DL ontology whose TBox is consistent. Minimal IAR-
explanations degenerate into traditional ones when the given
ontology is consistent, while computing all of them is
tractable in data complexity for first-order rewritable on-
tologies. Secondly, for practicality we proposed to use pref-
erence information on IAR-explanations and introduced a
new type of preferred explanations, called ⊆cps-cminimal
IAR-explanations. These explanations can be computed in
a more efficient way than ⊆s-cminimal IAR-explanations,
which correspond to representative explanations (Du, Wang,
and Shen 2014) that have the minimum cardinality. Finally,

1494



we proposed a level-wise method for computing all ⊆cps-
cminimal IAR-explanations in a first-order rewritable ontol-
ogy. The method is tractable in data complexity. It is also
shown to be rather efficient and scalable to tens of millions
of assertions in our experiments. For future work, in order
to make ABox abduction practical for more applications,
we plan to identify some classes of DL ontologies that are
not first-order rewritable but still guarantee the tractability
in computing all minimal IAR-explanations.
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