
Interactive Query-Based Debugging of ASP Programs

Kostyantyn Shchekotykhin
Alpen-Adria University, Klagenfurt, Austria

kostyantyn.shchekotykhin@aau.at

Abstract

Broad application of answer set programming (ASP)
for declarative problem solving requires the develop-
ment of tools supporting the coding process. Program
debugging is one of the crucial activities within this
process. Modern ASP debugging approaches allow ef-
ficient computation of possible explanations of a fault.
However, even for a small program a debugger might
return a large number of possible explanations and se-
lection of the correct one must be done manually. In
this paper we present an interactive query-based ASP
debugging method which extends previous approaches
and finds the preferred explanation by means of ob-
servations. The system automatically generates a se-
quence of queries to a programmer asking whether a
set of ground atoms must be true in all (cautiously) or
some (bravely) answer sets of the program. Since some
queries can be more informative than the others, we
discuss query selection strategies which – given user’s
preferences for an explanation – can find the most infor-
mative query reducing the overall number of queries re-
quired for the identification of a preferred explanation.

Introduction
Answer set programming is a logic programming
paradigm (Baral 2003; Brewka, Eiter, and Truszczyn-
ski 2011; Gebser et al. 2012) for declarative problem
solving that has become popular during the last decades.
The success of ASP is based on its fully declarative se-
mantics (Gelfond and Lifschitz 1991) and availability of
efficient solvers, e.g. (Simons, Niemelä, and Soininen 2002;
Leone et al. 2006; Gebser et al. 2011). Despite a vast
body of the theoretical research on foundations of ASP
only recently the attention was drawn to the development
of methods and tools supporting ASP programmers. The
research in this direction focuses on a number of topics
including integrated development environments (Febbraro,
Reale, and Ricca 2011; Oetsch, Pührer, and Tompits 2011b;
Sureshkumar et al. 2007), visualization (Mikitiuk, Moseley,
and Truszczynski 2007; Cliffe et al. 2008), modeling tech-
niques (Oetsch et al. 2011) and, last but not least, debugging
of ASP programs (Syrjänen 2006; Brain et al. 2007;

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Gebser et al. 2008; Pontelli, Son, and El-Khatib 2009;
Oetsch, Pührer, and Tompits 2010; Janhunen et al. 2010;
Oetsch, Pührer, and Tompits 2011a; Polleres et al. 2013).

Modern ASP debugging approaches apply ASP itself to
debug ASP programs. The idea is to transform a faulty pro-
gram into the special debugging program whose answer sets
explain possible causes of a fault. These explanations are
given as a set of meta-atoms D, called diagnosis, explaining
a discrepancy between the set of actual and expected answer
sets. In practice considering all possible diagnoses might
be inefficient. Therefore, irrelevant diagnoses can be filtered
out by specific integrity constraints – debugging queries.

However, in real-world scenarios it might be problematic
for a programmer to provide a complete debugging query.
Namely, in many cases a programmer can easily specify
some small number of atoms that must be true in a desired
answer set, but not a complete answer set. In this case the
debugging system might return many alternative diagnoses.
Another diagnosis selection issue is due to inability of a pro-
grammer to foresee all consequences of a diagnosis. I.e., in
some cases multiple interpretations might have the same ex-
planation for not being answer sets. In this case the modifica-
tion of a program accordingly to a selected diagnosis might
have side-effects in terms of unwanted answer sets. These
two problem are addressed by our approach which helps a
user to identify the target diagnosisDt. The latter is the pre-
ferred explanation for a given set of atoms not being true in
an answer set, on the one hand, and is not an explanation for
unwanted interpretations, on the other.

In this paper we present an interactive query-based de-
bugging method for ASP programs which differentiates be-
tween the diagnoses by means of additional observations (de
Kleer and Williams 1987; Shchekotykhin et al. 2012). The
latter are acquired by automatically generating a sequence
of queries to an oracle such as a user, a database, etc. Each
answer is used to reduce the set of diagnoses until the target
diagnosis is found. In order to construct queries our method
uses the fact that in most of the cases different diagnoses
explain why different sets of interpretations are not answer
sets. Consequently, we can differentiate between diagnoses
by asking an oracle whether a set of atoms must be true or
not in all/some interpretations relevant to the target diagno-
sis. Each set of atoms which can be used as a query is gener-
ated by the debugger automatically using discrepancies in

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

1597

the sets of interpretations associated with each diagnosis.
Note that in the earlier approaches the user has to find all rel-
evant discrepancies and extend a debugging query manually
by calling a debugger multiple times and analyzing (parts
of) its output.

Given a set of queries our method selects the best one and
provides it to an oracle. In this paper we present two query
selection strategies which are often used in active learning,
namely, myopic and one step look-ahead (Settles 2012). The
first strategy implements a greedy “split-in-half” approach
that prefers queries allowing to reduce a set of diagnoses by
half. The second one uses beliefs/preferences of a user for a
cause/explanation of an error expressed in terms of probabil-
ity to select those queries whose answers provide the most
information gain. Given an answer the strategy updates the
underlying probabilities, thus, adapting its behavior.

The method presented in this paper suggests an exten-
sion of the current debugging techniques by an effective
user involvement in the debugging process. To the best of
our knowledge there are no approaches to interactive query-
based ASP debugging allowing automatic generation and se-
lection of queries.

Preliminaries
Answer set programming A disjunctive logic program
(DLP) Π is a finite set of rules of the form

h1 ∨ · · · ∨ hl ← b1, . . . , bm, not bm+1, . . . , not bn

where all hi and bj are atoms and 0 ≤ l,m, n. A literal
is an atom b or its negation not b. Each atom is an expres-
sion of the form p(t1, . . . , tk), where p is a predicate sym-
bol and t1, . . . , tk are terms. A term is either a variable or
a constant. A literal, a rule or a program is called ground,
if they are variable-free. We denote the ground instantia-
tion of a program Π by Gr(Π) and by At(Π) the set of all
ground atoms appearing inGr(Π). The set of atomsH(r) =
{h1, . . . , hl} is called the head of the rule r, whereas the set
B(r) = {b1, . . . , bm, not bm+1, . . . , not bn} is the body of
r. In addition, it is useful to differentiate between the sets
B+(r) = {b1, . . . , bm} andB−(r) = {bm+1, . . . , bn} com-
prising positive and negative body atoms. A rule c ∈ Π with
H(c) = ∅ is an integrity constraint and a rule f ∈ Π with
B(f) = ∅ is a fact.

An interpretation I for Π is a set of ground atoms
I ⊆ At(Π). A rule r ∈ Gr(Π) is applicable under I , if
B+(r) ⊆ I and B−(r) ∩ I = ∅, otherwise the rule is
blocked. We say that r is unsatisfied by I , if it is appli-
cable under I and H(r) ∩ I = ∅; otherwise r is satis-
fied. An interpretation I is a model of Π, if it satisfies ev-
ery rule r ∈ Gr(Π). For a ground program Gr(Π) and an
interpretation I the Gelfond-Lifschitz reduct is defined as
ΠI = {H(r)← B+(r)|r ∈ Gr(Π), I ∩B−(r) = ∅}. I is
an answer set of Π, if I is a minimal model of ΠI (Gelfond
and Lifschitz 1991). The program Π is inconsistent, if the
set of all answer sets AS(Π) = ∅.
ASP debugging Our approach uses a meta-programming
technique applied in (Gebser et al. 2008; Oetsch, Pührer, and
Tompits 2010) as a “black-box”. In this paper we selected

the first approach as application scenario, but the same ideas
can also be applied to the latter one.

Given an input program Π a debugger generates a meta-
program ∆[Π] s.t. every answer set of ∆[Π] comprises a set
of meta-atoms explaining why an interpretation I is not an
answer of Π. The debugger provides explanations of four
error types: (1) unsatisfied(idr) – a rule r is unsatisfied by
I; (2) violated(idr) – an integrity constraint r is applicable
under I; (3) unsupported(ida) – an atom a ∈ At(Π) is each
unsupported; and (4) ufLoop(ida) – an atom a ∈ At(Π)
belongs to an unfounded loop L. The terms idr and ida are
unique identifiers of a rule r ∈ Π and an atom a ∈ At(Π),
resp. The set Er(∆[Π]) ⊆ At(∆[Π]) comprises all ground
atoms over error-indicating predicates of ∆[Π].

There are seven static modules in the meta-program ∆[Π],
see (Gebser et al. 2008). The input module πin comprises
two sets of facts about atoms {atom(ida)← |a ∈ At(Π)}
and rules {rule(idr)← |r ∈ Π} of the program Π. Module
πint generates an arbitrary interpretation I of a program Π:

int(A)← atom(A), not int(A)

int(A)← atom(A), not int(A)

where atom int(A) is complimentary to the atom int(A),
i.e., no answer set can comprise both atoms. Other modules
are responsible for generation of at least one of the four ex-
planations why I is not an answer set of Π listed above.

Fault localization in ASP programs
In this section we show how additional information specified
in a background theory B as well as positive P and negative
N test cases can be used to keep the debugger focused only
on relevant interpretations and diagnoses.

Our idea of background knowledge is similar to (Brain
et al. 2007) and suggests that some set of rules B ⊆ Π
must be considered as correct by the debugger. In the meta-
programming method the background theory can be ac-
counted by addition of integrity constraints which prune all
answer sets of ∆[Π] suggesting that r ∈ B is faulty.
Definition 1 Let ∆[Π] be a meta-program and B ⊆ Π a set
of rules considered as correct. Then, a debugging program
∆[Π,B] is defined as an extension of ∆[Π] with the rules:

{ ← rule(idr), violated(idr),

← rule(idr), unsatisfied(idr) | r ∈ B}
In addition to background knowledge, further restrictions

on the set of possible explanations of a fault can be made by
means of test cases.
Definition 2 Let ∆[Π,B] be a debugging program. A test
case for ∆[Π,B] is a set A ⊆ At(∆[Π,B]) of ground atoms
over int/1 and int/1 predicates.
The test cases are either specified by a user before a debug-
ging session or acquired by a system automatically as we
show in subsequent sections.
Definition 3 Let ∆[Π,B] be a debugging program andD ⊆
Er(∆[Π,B]) a set of atoms over error-indicating predi-
cates. Then a diagnosis program for D is defined as follows:
∆[Π,B,D] := ∆[Π,B] ∪ {← di | di ∈ Er(∆[Π,B]) \ D}

1598

Our approach allows four types of test cases correspond-
ing to two ASP reasoning tasks (Leone et al. 2006):
• Cautious reasoning: all atoms a ∈ A are true in all answer

sets of the diagnosis program. Cautiously true test cases
are stored in the set CT+ whereas cautiously false in the
set CT−.

• Brave reasoning: all atoms a ∈ A are true in some answer
set of the diagnosis program. The set BT+ comprises all
bravely true test cases and the set BT− all bravely false
test cases.
In the meta-programming approach we handle the test

cases as follows: Let I be a set of ground atoms resulting
from the projection of an answer set as ∈ AS(∆[Π,B,D])
to the predicates int/1 and int/1. Thus, each set I is a
meta representation of an interpretation I of the program
Π which is not an answer set of Π as explained by D. By
Int(∆[Π,B,D]) we denote the set comprising all sets Ii
for all asi ∈ AS(∆[Π,B,D]). Given a set of ground atoms
A, we say that I satisfies A (denoted I |= A), if A ⊆ I.
Int(∆[Π,B,D]) satisfies A (denoted Int(∆[Π,B,D]) |=
A), if I |= A for every I ∈ Int(∆[Π,B,D]). Analogously,
we say that a set Int(∆[Π,B,D]) is consistent with A, if
there exists I ∈ Int(∆[Π,B,D]) which satisfies A.

Let A be a test case, then A denotes a comple-
mentary test case, i.e., A =

{
int(a) | int(a) ∈ A

}
∪{

int(a) | int(a) ∈ A
}

. For the verification whether a diag-
nosis program ∆[Π,B,D] fulfills all test cases it is sufficient
to check if the following conditions hold:
• Int(∆[Π,B,D]) |= ct+ ∀ct+ ∈ CT+

• Int(∆[Π,B,D]) |= bt− ∀bt− ∈ BT−

• Int(∆[Π,B,D]) ∪ ct− is consistent ∀ct− ∈ CT−

• Int(∆[Π,B,D]) ∪ bt+ is consistent ∀bt+ ∈ BT+

As we can see, a diagnosis program has the same verifica-
tion procedure w.r.t. both cautiously true CT+ and bravely
false BT− test cases. The same holds for the cautiously false
CT− and bravely true BT+ test cases. Therefore, in the fol-
lowing we can consider only the set P of positive and the set
N of negative test cases that are defined as:

P := CT+ ∪
{

bt− | bt− ∈ BT−
}

N := BT+ ∪
{

ct− | ct− ∈ CT−
}

Definition 4 Let ∆[Π,B] be a debugging program, P be a
set of positive test cases,N be a set of negative test cases and
Er(∆[Π,B]) denote a set of all ground atoms over error-
indicating predicates of ∆[Π,B]. A diagnosis problem is to
find such set of atoms D ⊆ Er(∆[Π,B]), called diagnosis,
s.t. the following requirements hold:

• the diagnosis program ∆[Π,B,D] is consistent
• Int(∆[Π,B,D]) |= p, ∀p ∈ P
• Int(∆[Π,B,D]) is consistent with n, ∀n ∈ N .

A tuple 〈∆[Π,B], P,N〉 is a diagnosis problem instance
(DPI).

In the following we assume that the background theory B
together with the sets of test cases P and N always allow
computation of the target diagnosis Dt. I.e., a user does not
insert faulty rules into the background knowledge or defines
positive/negative test cases that interfere with each other.

Proposition 1 A diagnosis D for a DPI 〈∆[Π,B], P,N〉
does not exists if either (i) ∆′ := ∆[Π,B] ∪
{ai ← | ai ∈ p,∀p ∈ P} is inconsistent or (ii) ∃n ∈ N s.t.
the program ∆′ ∪ {ai ← | ai ∈ n} is inconsistent.

Verification whether a set of atoms over error-indicating
predicates is a diagnosis w.r.t. Definition 4 can be done ac-
cording to the following proposition.

Proposition 2 Let 〈∆[Π,B], P,N〉 be a DPI. Then, a set of
atoms D ⊆ Er(∆[Π,B]) is a diagnosis for 〈∆[Π,B], P,N〉
iff ∆′ := ∆[Π,B,D] ∪

⋃
p∈P {ai ← | ai ∈ p} is consistent

and ∀n ∈ N : ∆′ ∪ {ai ← | ai ∈ n} is consistent.

Definition 5 A diagnosis D for a DPI 〈∆[Π,B], P,N〉 is
minimal iff there is no diagnosis D′ s.t. |D′| < |D|.
In our approach we consider only minimal diagnoses of a
DPI since they might require less changes to the program
than non-minimal ones and, thus, are usually preferred by
users. However, this does not mean that our debugging ap-
proach is limited to minimal diagnoses of an initial DPI.
As we will show in the subsequent sections the interactive
debugger acquires test cases and updates the DPI automat-
ically s.t. all possible diagnoses of the initial DPI are in-
vestigated. Computation of minimal diagnoses can be done
by extension of the debugging program with such optimiza-
tion criteria that only answer sets including minimal number
of atoms over error-indicating predicates are returned by a
solver. Also, in practice a set of all minimal diagnoses is of-
ten approximated by a set of n diagnoses in order to improve
the response time of a debugging system.

Computation of n diagnoses for the debugging program
∆[Π,B] of a DPI 〈∆[Π,B], P,N〉 is done as shown in Al-
gorithm 1. The algorithm calls an ASP solver to compute
one answer set as of the debugging program (line 3). In
case ∆[Π,B] has an answer set the algorithm obtains a setD
(line 5) and generates a diagnosis program ∆[Π,B,D] (line
6). The latter, together with the sets of positive and nega-
tive test cases is used to verify whether D is a diagnosis or

Algorithm 1: COMPUTEDIAGNOSES(〈∆[Π,B], P,N〉 , n)

Input: DPI 〈∆[Π,B], P,N〉, maximum number of minimal
diagnoses n

Output: a set of diagnoses D
1 D← ∅;
2 while |D| < n do
3 as← GETANSWERSET(∆[Π,B]);
4 if as = ∅ then exit loop;
5 D ← as ∩ Er(∆[Π,B]));
6 ∆[Π,B,D]← DIAGNOSISPROGRAM(∆[Π,B],D);
7 if VERIFY(∆[Π,B,D], P,N) then D← D ∪ {D};
8 ∆[Π,B]← EXCLUDE(∆[Π,B],D);

9 return D;

1599

not (line 7). All diagnoses are stored in the set D. In order
to exclude the answer set as from AS(∆[Π,B]) the algo-
rithm calls the EXCLUDE function (line 8) which extends
the debugging program with the following integrity con-
straint, where atoms d1, . . . , dn ∈ D and dn+1, . . . , dm ∈
Er(∆[Π,B]) \ D:

← d1, . . . , dn, not dn+1, . . . , not dm

Note, similarly to the model-based diagnosis (Reiter 1987;
de Kleer and Williams 1987) we assume that each error-
indicating atom er ∈ D is relevant to an explanation of a
fault, whereas all other atoms Er(∆[Π]) \ D are not.

Example Let us exemplify our debugging approach on the
following program Πe:

r1 : a← not d r2 : b← a r3 : c← b

r4 : d← c r5 :← d

Assume also that the background theory B = {← d} and,
therefore, the debugging program ∆[Πe,B] comprises two
integrity constraints:

← rule(idr5), violated(idr5)

← rule(idr5), unsatisfied(idr5)

Since the program Πe is inconsistent, a user runs the de-
bugger to clarify the reason. In fact, the inconsistency is
caused by an odd loop. I.e., if d is set to false, then the
body of the rule r1 is satisfied and a is derived. However,
given a and the remaining rules d must be set to true. In
case when d is true, a is not derived and, consequently, there
is no justification for d. The debugging program ∆[Πe,B]
of a DPI 1 := 〈∆[Πe,B], ∅, ∅〉 has 16 answer sets. The ad-
dition of optimization criteria allows to reduce the number
of answer sets to 4 comprising only the minimal number of
atoms over the error-indicating predicates. Since both sets of
test cases are empty, a projection of these answer sets to the
error-indicating predicates results in the diagnoses:
D1 : {unsatisfied(idr1)} D2 : {unsatisfied(idr2)}
D3 : {unsatisfied(idr3)} D4 : {unsatisfied(idr4)}
Definition 4 allows to identify the target (preferred)

diagnosis Dt for the program Πe by providing suffi-
cient information in the sets B, P and N . Assume
that DPI 1 is updated with two test cases: one positive
{int(a)} and one negative

{
int(b)

}
. The debugger gener-

ates DPI 2 :=
〈
∆[Πe,B], {{int(a)}} ,

{{
int(b)

}}〉
. These

test cases require Int(∆[Πe,B,Dt]) |= {int(a)} and
Int(∆[Πe,B,Dt]) to be consistent with

{
int(b)

}
corre-

spondingly. Given this information the debugger will re-
turn only one diagnosis in our example, namely D2, since
Int(∆[Πe,B,D2]) |= {int(a)} and Int(∆[Πe,B,D2]) is
consistent with

{
int(b)

}
. Indeed, a simple correction of Πe

by a user removing the rule r2 results in a consistent pro-
gram Π2 s.t. all new answer sets of Π2 fulfill all given
test cases. The other sets of atoms D1,D3,D4 are not diag-
noses of DPI 2 because they violate the requirements. Thus,
Int(∆[Πe,B,D1]) 6|= {int(a)} and Int(∆[Πe,B,Di]) is
not consistent with

{
int(b)

}
for Di ∈ {D3,D4}. Conse-

quently, D2 is the only possible diagnosis and it is accepted
by a user as the target diagnosis Dt.

Diagnosis Interpretations

D1 : unsatisfied(idr1)
{{
int(a), int(b), int(c), int(d)

}}
D2 : unsatisfied(idr2)

{{
int(a), int(b), int(c), int(d)

}}
D3 : unsatisfied(idr3)

{{
int(a), int(b), int(c), int(d)

}}
D4 : unsatisfied(idr4)

{{
int(a), int(b), int(c), int(d)

}}
Table 1: Interpretations Int(∆[Πe,B,Di]) for each of the
diagnoses D = {D1, . . . ,D4}.

Query-based diagnosis discrimination
The debugging system might generate a set of diagnoses for
a given DPI. In our example, the debugger returns four min-
imal diagnoses {D1, . . . ,D4} for DPI 1. As it is shown in
the previous section, additional information, provided in the
background theory and test cases of a DPI 〈∆[Π,B], P,N〉
can be used by the debugging system to reduce the set of
diagnoses. However, in a general case the user does not
know which sets of test cases should be provided to the
debugger s.t. the target diagnosis can be identified. I.e., in
many cases it might be difficult to provide a complete spec-
ification of a debugging query localizing a fault1. There-
fore, the debugging method should be able to: (a) find an
appropriate set of atoms A ⊆ At(Π); and (b) query the
user or some other oracle, whether the atoms A are cau-
tiously/bravely true/false in the interpretations associated
with the target diagnosis. To generate a query for a set of
diagnoses D = {D1, . . . ,Dn} the debugging system can
use the diagnosis programs ∆[Π,B,Di], where Di ∈ D.

Since often different diagnoses explain why different sets
of interpretations of a program Π are not answer sets of Π,
we can use discrepancies between the sets of interpretations
to discriminate between corresponding diagnoses. In our ex-
ample, for each diagnosis program ∆[Πe,B,Di] an ASP
solver returns a set of answer sets encoding an interpreta-
tion which is not an answer set of Πe and a diagnosis, see
Table 1. Without any additional information the debugger
cannot decide which of these atoms must be true in the miss-
ing answer sets of Πe. To get this information the debugging
algorithm should be able to access some oracle which can
answer a number of queries.

Definition 6 Let 〈∆[Π,B], P,N〉 be a DPI, then a query is
set of ground atoms Q ⊆ At(Π).

Each answer of an oracle provides additional informa-
tion. Therefore, we update the actual DPI 〈∆[Π,B], P,N〉
to 〈∆[Π,B], P ′, N ′〉 as follows: if an oracle answers
• cautiously true, then P ′ ← P ∪ {int(a) | a ∈ Q};
• cautiously false, then N ′ ← N ∪

{
int(a) | a ∈ Q

}
;

• bravely true, then N ′ ← N ∪ {int(a) | a ∈ Q};
• bravely false, then P ′ ← P ∪

{
int(a) | a ∈ Q

}
.

The goal of asking a query is to obtain new information
characterizing the target diagnosis. For instance, the de-
bugger asks a user about classification of the set of atoms

1A recent user study https://code.google.com/p/rmbd/wiki/
UserStudy confirms this observation for the ontology debugging.

1600

{c}. If the answer is cautiously true, the new DPI 3 =
〈∆[Πe,B], {{int(c)}} , ∅〉 has only one diagnosis D4 which
is the target diagnosis w.r.t. a user answer. All other minimal
sets of atoms over error-indicating predicates are not diag-
noses because they do not fulfill the necessary requirements
of Definition 4. If the answer is bravely false, then the set{
int(c)

}
is added to P and D4 is rejected. Consequently,

we have to ask an oracle another question in order to dis-
criminate between the remaining diagnoses. Since there are
many subsets of At(Π) which can be queried, the debugger
has to generate and ask only those queries which allow to
discriminate between the diagnoses of the current DPI.

Definition 7 Each diagnosis Di ∈ D for a DPI
〈∆[Π,B], P,N〉 can be assigned to one of the three sets DP,
DN or D∅ depending on the query Q where:

• Di ∈ DP if Int(∆[Π,B,Di]) |= {int(a) | a ∈ Q}
• Di ∈ DN if Int(∆[Π,B,Di]) |=

{
int(a) | a ∈ Q

}
• Di ∈ D∅ if Di 6∈

(
DP ∪DN

)
A partition of the set of diagnoses D w.r.t. a query Q is de-
noted by a tuple

〈
Q,DP

i ,D
N
i ,D

∅
i

〉
.

Given a DPI we say that the diagnoses in DP predict a
positive answer (yes) as a result of the queryQ, diagnoses in
DN predict a negative answer (no), and diagnoses in D∅ do
not make any predictions. Note, the answer yes corresponds
to classification of the query into the set of positive test cases
P , whereas the answer no is a result of a classification of
the query into the set of negative test cases N . Therefore,
without limiting the generality, in the following we consider
only these two answers.

The notion of a partition has an important property.
Namely, each partition

〈
Q,DP

i ,D
N
i ,D

∅
i

〉
indicates the

changes in the set of diagnoses after the sets of test cases
of an actual DPI are updated w.r.t. the answer of an oracle.

Property 1 Let D be a set of diagnoses for a DPI
〈∆[Π,B], P,N〉,Q be a query,

〈
Q,DP

i ,D
N
i ,D

∅
i

〉
be a par-

tition of D w.r.t. Q and v ∈ {yes,no} be an answer of an
oracle to a query Q.

• if v = yes , then the set of diagnoses D′ for the updated
DPI 〈∆[Π,B], P ′, N〉 does not comprise any elements of
DN, i.e., D′ ∩DN = ∅ and (DP ∪D∅) ⊆ D′.
• if v = no, then for the set of diagnoses D′ of the updated

DPI 〈∆[Π,B], P,N ′〉 it holds that D′ ∩ DP = ∅ and
(DN ∪D∅) ⊆ D′.

Consequently, depending on the answer of an oracle to a
query Q, the set of diagnoses of an updated DPI comprises
either DP ∪D∅ or DN ∪D∅.

In order to generate queries, we have to investigate for
which sets DP,DN ⊆ D a query exists that can be used to
differentiate between them. A straight forward approach to
query generation is to generate and verify all possible sub-
sets of D. This is feasible if we limit the number n of mini-
mal diagnoses to be considered during the query generation.
E.g., given n = 9 the algorithm has to verify 512 partitions
in the worst case. In general, the number of diagnoses nmust

Algorithm 2: FINDPARTITIONS(〈∆[Π,B], P,N〉 ,D)

Input: DPI 〈∆[Π,B], P,N〉, a set of diagnoses D
Output: a set of partitions PR

1 PR← ∅;
2 foreach DP

i ∈ P (D) do
3 Ei ← COMMONATOMS(DP

i);
4 Qi ← {a | int(a) ∈ Ei};
5 if Qi 6= ∅ then
6

〈
Qi,D

P
i ,D

N
i ,D

∅
i

〉
← GENPART(Qi,D,D

P
i);

7 if DN
i 6= ∅ then

PR← PR ∪ {
〈
Qi,D

P
i ,D

N
i ,D

∅
i

〉
};

8 return PR;

be selected by a user. The larger is the value of n the more
time it takes to find a query, but an answer to this query will
provide more information to a debugger.

Given a set of diagnoses D for a DPI 〈∆[Π,B], P,N〉
Algorithm 2 computes a set of partitions PR comprising all
queries discriminating between the diagnoses in D. For each
element DP

i of the power set P (D), the algorithm checks
whether there is a set of atoms common to all interpretations
of all diagnoses in DP

i . The function COMMONATOMS (line
3) returns an intersection of all sets I ∈ Int(∆[Π,B,Dj])
for all Dj ∈ DP

i . Given a non-empty query, the function
GENPART (line 6) uses Definition 7 to obtain a partition by
classifying each diagnosisDk ∈ D\DP

i into one of the sets
DP

i , DN
i or D∅i . Finally, all partitions allowing to discrimi-

nate between the diagnoses, i.e., comprising non-empty sets
DP

i and DN
i , are added to the set PR.

Example (cont.) Reconsider the set of diagnoses D =
{D1,D2,D3,D4} for the DPI 〈∆[Πe, {← d}], ∅, ∅〉. The
power set P (D) = {{D1}, {D2} , . . . , {D1,D2,D3,D4}}
comprises 15 elements. We exclude the element correspond-
ing to ∅ since it does not allow to compute a query. In each
iteration an element of P (D) is assigned to the set DP

i .
E.g., if the algorithm assigned DP

0 = {D1,D2}, then the
set Q0 is empty since the set E0 =

{
int(b), int(c), int(d)

}
(see Table 1). Therefore, the set {D1,D2} is rejected and
removed from P (D). Assume that in the next iteration the
algorithm selected DP

1 = {D2,D3}, for which the set of
common atoms E1 =

{
int(a), int(c), int(d)

}
and, thus,

Q1 = {a}. The remaining diagnoses D1 and D4 are classi-
fied according to Definition 7. I.e., the algorithm selects the
first diagnosis D1 and verifies whether Int(∆[Π,B,D1]) |=
{int(a)}. Given the negative answer, the algorithm checks
if Int(∆[Π,B,D1]) |=

{
int(a)

}
. Since the condition is sat-

isfied the diagnosis D1 is added to the set DN
1 . The second

diagnosisD4 is added to the set DP
1 as it satisfies the first re-

quirement Int(∆[Π,B,D4]) |= {int(a)}. The resulting par-
tition 〈{a}, {D2,D3,D4}, {D1}, ∅〉 is added to the set PR.

In general, Algorithm 2 returns a large number of possible
partitions and the debugger has to select the best one. In this
paper, we discuss two query selection strategies.

Myopic query strategies determine the best query using

1601

only the set of partitions PR. A popular “Split-in-half”
strategy prefers those queries which allow to remove a half
of the diagnoses from the set D, regardless of the answer of
an oracle. That is, “Split-in-half” selects a query

Qs = arg min
Qi

∣∣|DP
i | − |DN

i |
∣∣+ |D∅i |

In our example, 〈{b} , {D3,D4} , {D1,D2} , ∅〉 is the pre-
ferred partition, since the set of all diagnoses of an updated
DPI will comprise only two elements regardless of the an-
swer of an oracle.

One step look-ahead strategies, such as prior entropy or
information gain (Settles 2012), allow to find the target di-
agnosis using less queries by incorporating heuristics (user
preferences). These heuristics assess the prior probability
p(Di) of each diagnosis Di ∈ D to be the target one (de
Kleer and Williams 1987; Shchekotykhin et al. 2012). E.g.,
such heuristic can assign higher probabilities to diagnoses
comprising atoms over unsatisfiable/1 predicate if a user
expects this type of error. The widely used one step look-
ahead strategy selects a query which, given the answer of
an oracle, minimizes the expected entropy of the set of di-
agnoses. Let p(Qi = v) denote the probability that an or-
acle gives an answer v ∈ {yes, no} to a query Qi and
p(Dj |Qi = v) be the probability of diagnosis Dj given an
oracle’s answer. The expected entropy after querying Qi is
computed as (see (Shchekotykhin et al. 2012) for details):

He(Qi) =
∑

v∈{yes,no}

p(Qi = v)×

−
∑
Dj∈D

p(Dj |Qi = v) log2 p(Dj |Qi = v)

After a query Qs is selected by a strategy

Qs = arg min
Qi

He(Qi)

the system asks an oracle to provide its classification. Given
the answer v of an oracle, i.e.Qs = v, we have to update the
probabilities of the diagnoses to take the new information
into account. The update is performed by the Bayes rule

p(Dj |Qi = v) =
p(Qi = v|Dj)p(Dj)

p(Qi = v)

In order to reduce the number of queries a user can specify
a threshold, e.g., σ = 0.95. If the difference in probabilities
between two most probable diagnoses is greater than σ, the
algorithm returns the most probable diagnosis.

The interactive debugging system (Algorithm 3) takes a
ground program or a ground instantiation of a non-ground
program as well as a query selection strategy as an input.
Optionally, a user can provide background knowledge, rele-
vant test cases as well as a set of heuristics assessing proba-
bilities of diagnoses. If the first three sets are not specified,
then the corresponding arguments are initialized with ∅. In
case a user specified no heuristics, we add a simple function
that assigns a small probability value to every diagnosis. The

Algorithm 3: INTERACTIVEDEBUG(Π, S,B, P,N,H, n, σ)

Input: ground disjunctive program Π, query selection strategy
S, background knowledge B, sets of positive P and
negative N test cases, set of heuristics H , maximum
number minimal diagnoses n, acceptance threshold σ

Output: a diagnosis D
1 〈∆[Π,B], P,N〉 ← GENERATEDPI(Π,B); D← ∅;
2 repeat
3 D← D ∪ COMPUTEDIAGS(〈∆[Π,B], P,N〉 , n− |D|);
4 PR← FINDPARTITIONS(〈∆[Π,B], P,N〉 ,D);
5 Q← SELECTQUERY(PR, H, S);
6 if Q = ∅ then exit loop;
7 A← GETANSWER(Q);
8 〈∆[Π,B], P,N〉 ← UPDATEDPI(A, 〈∆[Π,B], P,N〉);
9 D← UPDATEDIAGNOSES(A,Q,PR, H);

10 until ABOVETHRESHOLD(D, H, σ) ∨ |D| ≤ 1;
11 return MOSTPROBABLEDIAGNOSIS(D, S,H);

algorithm starts with the initialization of a DPI. The debug-
ging program ∆[Π,B] is generated by spock2, which im-
plements the meta-programming approach of (Gebser et al.
2008). First, the main loop of Algorithm 3 computes the re-
quired number of diagnoses s.t. |D| = n. Next, we find a
set of partitions for the given diagnoses and select a query
according to a query strategy S chosen by a user. If the my-
opic strategy is used, then SELECTQUERY ignores probabil-
ities of diagnoses. The oracle is asked to classify the query
and its answer is used to update the DPI as well as the set
D. From the latter we remove all elements that are not di-
agnoses of the updated DPI. The main loop of the algorithm
exits if either there is a diagnosis which probability satis-
fies the threshold σ or only one diagnosis remains. Finally,
the most probable diagnosis (the first diagnosis in case of
a myopic strategy) is returned to a user. Algorithm 3 was
prototypically implemented as a part of a general diagnosis
framework3. A plug-in for an IDE providing a user-friendly
interface for the interactive debugging is in development.

Conclusions
In this paper we presented an approach to the interactive
query-based debugging of disjunctive logic programs. The
differentiation between the diagnoses is done by means of
queries which are automatically generated from answer sets
of the debugging meta-program. Each query partitions a set
of diagnoses into subsets that make different predictions for
an answer of an oracle. Depending on the availability of
heuristics assessing the probability of a diagnosis to be the
target one, the debugger can use different query selection
strategies to find the most informative query allowing effi-
cient identification of the target diagnosis.

Acknowledgments
We would like to thank Gerhard Friedrich and Patrick Rodler
for the discussions regarding query selection strategies and
anonymous reviewers for their helpful comments.

2www.kr.tuwien.ac.at/research/debug
3https://code.google.com/p/rmbd/wiki/AspDebugging

1602

References
Baral, C. 2003. Knowledge representation, reasoning and
declarative problem solving. Cambridge University Press.
Brain, M.; Gebser, M.; Pührer, J.; Schaub, T.; Tompits, H.;
and Woltran, S. 2007. Debugging ASP programs by means
of ASP. In Proceedings of the 9th International Conference
on Logic Programming and Nonmonotonic Reasoning, 31–
43.
Brewka, G.; Eiter, T.; and Truszczynski, M. 2011. Answer
set programming at a glance. Communications of the ACM
54(12):92–103.
Cliffe, O.; Vos, M.; Brain, M.; and Padget, J. 2008. As-
pviz: Declarative visualisation and animation using answer
set programming. In Garcia de la Banda, M., and Pontelli,
E., eds., Logic Programming, volume 5366 of Lecture Notes
in Computer Science, 724–728. Springer Berlin Heidelberg.
de Kleer, J., and Williams, B. C. 1987. Diagnosing multiple
faults. Artificial Intelligence 32(1):97–130.
Febbraro, O.; Reale, K.; and Ricca, F. 2011. ASPIDE: In-
tegrated development environment for answer set program-
ming. In Proceedings of the 11th International Conference
on Logic Programming and Nonmonotonic Reasoning, 317–
330. Springer.
Gebser, M.; Pührer, J.; Schaub, T.; and Tompits, H. 2008.
A meta-programming technique for debugging answer-set
programs. In Proceedings of 23rd AAAI Conference on Ar-
tificial Intelligence (AAAI’08), 448–453.
Gebser, M.; Kaminski, R.; Kaufmann, B.; Ostrowski, M.;
Schaub, T.; and Schneider, M. 2011. Potassco: The Pots-
dam Answer Set Solving Collection. AI Communications
24(2):107–124.
Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T.
2012. Answer Set Solving in Practice. Morgan & Claypool
Publischers.
Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databases. New generation
computing 9(3-4):365–386.
Janhunen, T.; Niemelä, I.; Oetsch, J.; Pührer, J.; and Tom-
pits, H. 2010. On Testing Answer-Set Programs. In 19th Eu-
ropean Conference on Artificial Intelligence (ECAI-2010),
951–956.
Leone, N.; Pfeifer, G.; Faber, W.; Eiter, T.; Gottlob, G.; Perri,
S.; and Scarcello, F. 2006. The DLV system for knowledge
representation and reasoning. ACM Transactions on Com-
putational Logic (TOCL) 7(3):499–562.
Mikitiuk, A.; Moseley, E.; and Truszczynski, M. 2007. To-
wards Debugging of Answer-Set Programs in the Language
PSpb. In Proceedings of the 2007 International Conference
on Artificial Intelligence, 635–640.
Oetsch, J.; Pührer, J.; Seidl, M.; Tompits, H.; and Zwickl,
P. 2011. VIDEAS : Supporting Answer-Set Program De-
velopment using Model-Driven Engineering Techniques. In
Proceedings of the 11th International Conference on Logic
Programming and Nonmonotonic Reasoning, 382–387.

Oetsch, J.; Pührer, J.; and Tompits, H. 2010. Catching
the Ouroboros: On Debugging Non-ground Answer-Set Pro-
grams. Theory and Practice of Logic Programming 10(4-
6):2010.
Oetsch, J.; Pührer, J.; and Tompits, H. 2011a. Stepping
through an Answer-Set Program. In Proceedings of the 11th
international conference on Logic programming and non-
monotonic reasoning, volume 231875, 134–147.
Oetsch, J.; Pührer, J.; and Tompits, H. 2011b. The SeaLion
has Landed: An IDE for Answer-Set Programming – Pre-
liminary Report. CoRR abs/1109.3989.
Polleres, A.; Frühstück, M.; Schenner, G.; and Friedrich, G.
2013. Debugging Non-ground ASP Programs with Choice
Rules, Cardinality and Weight Constraints. In Cabalar, P.,
and Son, T., eds., Logic Programming and Nonmonotonic
Reasoning, volume 8148 of Lecture Notes in Computer Sci-
ence. Springer Berlin Heidelberg. 452–464.
Pontelli, E.; Son, T. C.; and El-Khatib, O. 2009. Justifica-
tions for logic programs under answer set semantics. Theory
and Practice of Logic Programming 9(01):1.
Reiter, R. 1987. A Theory of Diagnosis from First Princi-
ples. Artificial Intelligence 32(1):57–95.
Settles, B. 2012. Active Learning, volume 6 of Synthesis
Lectures on Artificial Intelligence and Machine Learning.
Morgan & Claypool Publischers.
Shchekotykhin, K.; Friedrich, G.; Fleiss, P.; and Rodler, P.
2012. Interactive ontology debugging: Two query strategies
for efficient fault localization. Web Semantics: Science, Ser-
vices and Agents on the World Wide Web 12-13(0):88–103.
Simons, P.; Niemelä, I.; and Soininen, T. 2002. Extend-
ing and implementing the stable model semantics. Artificial
Intelligence 138(1-2):181–234.
Sureshkumar, A.; Vos, M. D.; Brain, M.; and Fitch, J. 2007.
APE: An AnsProlog* Environment. In Software Engineer-
ing for Answer Set Programming, 101–115.
Syrjänen, T. 2006. Debugging Inconsistent Answer Set Pro-
grams. In Proceedings of the 11th International Workshop
on Non-Monotonic Reasoning, 77–84.

1603

