
On Elementary Loops and Proper Loops
for Disjunctive Logic Programs

Jianmin Ji
School of Computer Science and Technology

University of Science and Technology of China
Hefei 230027, China
jianmin@ustc.edu.cn

Hai Wan∗ and Peng Xiao
School of Software

Sun Yat-sen University
Guangzhou 510006, China
wanhai@mail.sysu.edu.cn

Abstract

This paper proposes an alternative definition of elemen-
tary loops and extends the notion of proper loops for
disjunctive logic programs. Different from normal logic
programs, the computational complexities of recogniz-
ing elementary loops and proper loops for disjunctive
programs are coNP-complete. To address this problem,
we introduce weaker versions of both elementary loops
and proper loops and provide polynomial time algo-
rithms for identifying them respectively. On the other
hand, based on the notion of elementary loops, the
class of Head-Elementary-loop-Free (HEF) programs
was presented, which can be turned into equivalent nor-
mal logic programs by shifting head atoms into bodies.
However, the problem of recognizing an HEF program
is coNP-complete. Then we present a subclass of HEF
programs which generalizes the class of Head-Cycle-
Free programs and provide a polynomial time algorithm
to identify them. At last, some experiments show that
both elementary loops and proper loops could be re-
placed by their weak versions in practice.

Introduction
The notions of loops and loop formulas were first proposed
by Lin and Zhao (2004) for Normal Logic Programs (NLPs).
They showed that a set of atoms is an answer set of a pro-
gram iff it satisfies both the loop formulas and the program.
Later, the notions and the result were extended to Disjunc-
tive Logic Programs (DLPs) (Lee and Lifschitz 2003). These
results guarantee the correctness and completeness of SAT
approach based answer set solvers for both NLPs and DLPs,
like ASSAT (Lin and Zhao 2004), cmodels (Giunchiglia,
Lierler, and Maratea 2006), clasp (Gebser et al. 2007), and
claspD (Drescher et al. 2008).

In general there may be an exponential number
of loops (Lifschitz and Razborov 2006). Gebser and
Schaub (2005) showed that not all loops are necessary for
selecting the answer sets among the models of a NLP. They
introduced the subclass elementary loops and refined the
Lin-Zhao theory by considering elementary loops only. Ji et
al. (2014) further showed that some elementary loops could

∗Corresponding author
Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

also be disregarded in the answer set computation. They in-
troduced a subclass proper loops of elementary loops and
refined the Lin-Zhao theory by considering a special form
of loop formulas for proper loops only.

Gebser, Lee, and Lierler (2011) extended the notion of
elementary loops to DLPs and showed that these elemen-
tary loops are sufficient for selecting the answer sets among
the models of a DLP. Based on elementary loops, they pre-
sented the class of Head-Elementary-loop-Free (HEF) pro-
grams, which strictly generalizes the class of Head-Cycle-
Free (HCF) programs in (Ben-Eliyahu and Dechter 1994).
Like an HCF program, an HEF program can be turned into
an equivalent NLP in polynomial time by “shifting” head
atoms into the body.

In this paper, we extend the notion of proper loops to
DLPs, show that they are a subclass of elementary loops, and
refine the Lin-Zhao theory to DLPs by considering a spe-
cial form of loop formulas for proper loops only. Based on
proper loops, we introduce the class of Head-Proper-loop-
Free (HPF) programs, which strictly generalizes the class of
HEF programs, and show that an HPF program can be turned
into an equivalent NLP by “shifting”. Although properties of
elementary loops and proper loops could benefit the answer
set computation, the computational complexities of recog-
nizing them are coNP-complete. To address this problem, we
introduce weaker versions of elementary loops and proper
loops and provide polynomial time algorithms for identify-
ing these classes of loops respectively. Moreover, we present
a subclass of HEF programs which still generalizes HCF
programs and provide a polynomial time algorithm to iden-
tify them. At last, we provide experiments to illustrate how
these notions of loops work out in the benchmark suite. The
result implies that both elementary loops and proper loops
could be replaced by their weak versions in practice.

Preliminaries
Disjunctive Logic Programs
In this paper, we consider only fully grounded finite logic
programs. A (disjunctive) logic program (DLP) is a finite
set of (disjunctive) rules of the form

a1 ∨ · · · ∨ak ← ak+1, . . . , am, not am+1, . . . , not an, (1)

where n ≥ m ≥ k ≥ 1 and a1, . . . , an are atoms. If k = 1,
it is a normal rule. In particular, a normal logic program

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

1518

rp q

Figure 1: The positive dependency graph of program P1

(NLP) is a finite set of normal rules.
We will also write rule r of form (1) as

head(r)← body(r),

where head(r) is a1 ∨ · · · ∨ ak, body(r) = body+(r) ∧
body−(r), body+(r) is ak+1 ∧ · · · ∧ am, and body−(r)
is ¬am+1 ∧ · · · ∧ ¬an, and we identify head(r), body+(r),
body−(r) with their corresponding sets of atoms. Let R be
a set of rules, we denote head(R) =

⋃
r∈R head(r).

The answer sets of a DLP are defined in (Gelfond and
Lifschitz 1991). Given a DLP P and a set S of atoms, the GL
transformation of P on S, written PS , is obtained from P
by deleting:

1. each rule that has not p in its body with p ∈ S, and
2. all not p in the bodies of the remaining rules.
For any S, PS has a set of minimal models, denoted Γ(PS).
Now a set S of atoms is an answer set of P iff S ∈ Γ(PS).

Gelfond et al. (1991) provided a mapping from a DLP to
a NLP by “shifting” head atoms into the bodies. We denote
sh(P) be the NLP obtained from a DLP P by substituting
every rule of form (1) with the k rules

ai ← not a1, . . . , not ai−1, not ai+1, . . . , not ak,

ak+1, . . . , am, not am+1, . . . , not an. (1 ≤ i ≤ k)

It is known that every answer set of sh(P) is also an an-
swer set of P , but the converse is not true in general. Ben-
Eliyahu and Dechter (1994) identified a class of DLP, called
“Head-Cycle-Free” (HCF), and showed that the converse is
true if P is an HCF program. In particular, a DLP P is called
HCF if |head(r) ∩ L| ≤ 1 for every rule r of P and every
loop L of P , and the answer sets of an HCF program P co-
incide with the answer sets of the NLP sh(P).

Loops and Loop Formulas
Lee and Lifschitz (2003) extend the notion of loops and loop
formulas to DLPs. Given a DLP P , the positive dependency
graph of P , written GP , is the directed graph whose vertices
are atoms in P , and there is an arc from p to q if there is a rule
r ∈ P s.t. p ∈ head(r) and q ∈ body+(r). A set L of atoms
is said to be a loop of P if the L-induced subgraph of GP is
strongly connected. Note that, every singleton whose atom
occurs in P is also a loop of P .
Example 1 Consider the logic program P1:

p ∨ q ← r. r ← p. r ← q. p← .

Figure 1 shows the positive dependency graph of P1. P1 has
six loops: {p}, {r}, {q}, {p, r}, {r, q}, and {p, r, q}.

Let L be a loop of a program, a rule r is an external sup-
port of L if head(r) ∩ L 6= ∅ and L ∩ body+(r) = ∅. Let
R−(L) be the set of external support rules of L. Note that,
the function R− can be defined for any set C of atoms, i.e.,

R−(C) =
{
r ∈ P | head(r) ∩ C 6= ∅, C ∩ body+(r) = ∅

}
.

The disjunctive loop formula of L under P , written
DLF (L,P), is the following implication

∨
p∈L

p ⊃
∨

r∈R−(L)

body(r) ∧
∧

q∈head(r)\L

¬q

 . (2)

An alternative definition of a loop formula (Lee and Lif-
schitz 2003) replaces

∨
in the antecedent of (2) with

∧
,

called the conjunctive loop formula and written CLF (L,P):

∧
p∈L

p ⊃
∨

r∈R−(L)

body(r) ∧
∧

q∈head(r)\L

¬q

 . (3)

Moveover, we can replace the antecedent of (2) or (3) with
a propositional formula that entails

∨
p∈L p and is entailed

by
∧

p∈L p. For instances, for any loop L, let FL be a for-
mula formed from atoms in L using conjunctions and dis-
junctions. Thus let LF (L,P) denote a formula of the form:

FL ⊃
∨

r∈R−(L)

body(r) ∧
∧

q∈head(r)\L

¬q

 .

Theorem 1 (Theorem 1 in (Lee and Lifschitz 2003))
Let P be a DLP and S a set of atoms. If S satisfies P , then
following conditions are equivalent:

1. S is an answer set of P ;
2. S satisfies DLF (L,P) for all loops L of P ;
3. S satisfies CLF (L,P) for all loops L of P ;
4. S satisfies LF (L,P) for all loops L of P .

Elementary Loops and HEF Programs
Gebser and Schaub (2005) introduced a subclass elemen-
tary loops of loops for NLPs. Later, Gebser, Lee, and Lier-
ler (2011) extend the notion to DLPs.

Let X be a set of atoms and Y a subset of X , we say that
Y is outbound in X for a DLP P if there is a rule r in P s.t.

• head(r) ∩ Y 6= ∅,
• body+(r) ∩ (X \ Y) 6= ∅,
• head(r) ∩ (X \ Y) = ∅, and
• body+(r) ∩ Y = ∅.
A loop L is an elementary loop of P if all nonempty proper
subsets of L are outbound in L for P .

Example 1 (Continued) Program P1 has five elementary
loops: {p}, {r}, {q}, {p, r}, {r, q}. {p, r, q} is not an el-
ementary loop as {p} is not outbound in {p, r, q}.
Theorem 2 (Theoremd 1(d) in (Gebser et al. 2011))
Each of following conditions is equivalent to each of
conditions in Theorem 1:

5. S satisfies CLF (L,P) for all elementary loops L of P ;
6. S satisfies DLF (L,P) for all elementary loops L of P ;
7. S satisfies LF (L,P) for all elementary loops L of P .

Gebser and Schaub (2005) proved that the problem of rec-
ognizing an elementary loop for a NLP is tractable. How-
ever, the problem for a DLP is coNP-complete (Gebser, Lee,
and Lierler 2011).

1519

Based on the notion of elementary loops, Gebser, Lee, and
Lierler (2011) presented the class of Head-Elementary-loop-
Free (HEF) programs, which generalizes the class of HCF
programs. A DLP P is called HEF if |head(r) ∩ L| ≤ 1
for every rule r of P and every elementary loop L of P .
They proved that the answer sets of an HEF program P co-
incide with the answer sets of sh(P). Moveover, the prob-
lem of recognizing an elementary loop for an HEF program
is tractable. However, the problem of identifying HEF pro-
grams is coNP-complete (Fassetti and Palopoli 2010).

An Alternative Definition of Elementary Loops
Ji et al. (2014) provided an alternative definition of ele-
mentary loops for NLPs. Here we extend the idea to DLPs.
The problem of identifying an elementary loop for DLPs is
coNP-complete, then based on the new definition, we pro-
vide a tractable approximate algorithm for the problem.

Let X , Y be sets of atoms in a DLP P , we denote

R−X(Y) = {r | r ∈ R−(Y) and head(r) ∩ (X \ Y) = ∅}.

Note that, if P is a NLP, then R−X(Y) = R−(Y).
Proposition 1 Let P be a DLP and L1, L2 be loops of P .
If L1 ⊆ L2 and R−L2

(L1) ⊆ R−(L2), then CLF (L1, P) ⊃
CLF (L2, P).
From Proposition 1, the conjunctive loop formula of such a
loop L2 could be ignored for the answer set computation.

A loop L is an elementary loop if all nonempty proper
subsets of L are outbound in L. A set C is outbound in L
iff there exists a rule r s.t. r ∈ R−L (C) and r /∈ R−(L) iff
R−L (C) 6⊆ R−(L). Then we have the following proposition.
Proposition 2 Let P be a DLP and L a loop of P . L is
an elementary loop of P iff there does not exist a nonempty
proper subset C of L s.t. R−L (C) ⊆ R−(L).

Gebser, Lee, and Lierler (2011) proved that the prob-
lem of recognizing an elementary loop for a DLP is coNP-
complete. From the new definition, we provide Algorithm 1
running in polynomial time to decide whether a loop L is in
EL∗(P), a superset of all elementary loops of a DLP P .

Algorithm 1: EL∗(L, P)
1 for each atom a ∈ L do
2 G∗ := the L \ {a} induced subgraph of GP ;
3 SCC∗ := the set of SCCs of G∗;
4 for each C ∈ SCC∗ do
5 if R−L (C) ⊆ R−(L) then
6 return C

7 else
8 GC := the C \ head(R−L (C) \R−(L))
9 induced subgraph of G∗;

10 SCCC := the set of SCCs of GC ;
11 append new elements fromSCCC toSCC∗;

12 return L

Intuitively, EL∗(L,P) considers sub-loops of L one by
one in a top-down process. L′ is a sub-loop of L iff L′ is
a Strongly Connected Component (SCC) of a subgraph of

the L induced subgraph of GP . For each C of such SCCs,
there are two cases: either R−L (C) ⊆ R−(L) or not. If
R−L (C) ⊆ R−(L), then we already find a loop C prevent-
ing L to be an elementary loop. In the latter case, for any
rule r ∈ R−L (C) \ R−(L), if |head(r) ∩ C| = 1, then
head(r) ∩ C cannot be in a loop L′ ⊆ C not outbound
in L, otherwise r must be in R−L (L′), a contradiction with
R−L (L′) ⊆ R−(L). If |head(r) ∩ C| > 1, there could be a
loop L′ ⊆ C s.t. r ∈ R−(L′) and head(r) ∩ (L \ L′) 6= ∅,
then L′∩ (head(r)∩C) 6= ∅. So if |head(r) ∩ C| = 1, then
we can remove head(r) from the subgraph and continue the
procedure, else we cannot remove head(r) in general. How-
ever, Algorithm 1 removes head(R−L (C)\R−(L)) from the
subgraph, then for some loop L that is not an elementary
loop, EL∗(L,P) would still return L.

Algorithm 1 removes at least one atom in the subgraph at
one time. In the worst case, the process runs n2 times where
n is the number atoms in L. As the set of SCCs of a subgraph
can be computed in linear time, the time complexity of the
algorithm is O(n2).
Proposition 3 For any DLP P and any loop L of P , the
function EL∗(L,P) returns either L or a set C of atoms s.t.
C is a loop of P , C ⊂ L, and R−L (C) ⊆ R−(L) in O(n2),
where n is the number of atoms in L. If EL∗(L,P) returns
C s.t. C 6= L, then L is not an elementary loop of P .
EL∗(L,P) may return L while L is not an elementary loop.
Example 2 Consider a loop L = {p, q, r} of a program P2:

p ∨ q ← r. p ∨ r ← q. q ∨ r ← p. r ← .

EL∗(L,P) returns L, while L is not an elementary loop as
R−L ({p, q}) = ∅.

We use EL(P) to denote the set of all elementary loops of
a DLP P . With a slight abuse of the notion, we denote

EL∗(P) = {L | L is a loop of P and EL∗(L,P) returns L}.
For any DLP P , EL(P) ⊆ EL∗(P). If P is a NLP, then
EL(P) = EL∗(P). The result is also true for HEF programs.
Proposition 4 For any HEF program P , EL(P) = EL∗(P).

Weak Elementary Loops and HWEF
Programs

Although properties of elementary loops and HEF programs
could benefit the answer set computation, the computational
complexities of recognizing them are coNP-complete. In
this section, we present a superclass of elementary loops and
a subclass of HEF programs and provide polynomial time
algorithms to recognize them respectively.

For any loops L1, L2, R−(L1) ⊆ R−(L2) implies
R−L2

(L1) ⊆ R−(L2). Proposition 1 implies the corollary.
Corollary 3 Let P be a DLP and L1, L2 loops of P . If
L1 ⊆ L2 and R−(L1) ⊆ R−(L2), then CLF (L1, P) ⊃
CLF (L2, P).

Then we can define a weaker version of elementary loops.
Let P be a DLP and L a loop of P , we say that L is a weak
elementary loop of P if there does not exist a proper sub-
set C of L s.t. R−(C) ⊆ R−(L).

1520

Proposition 5 For any DLP P and any loop L of P , L is an
elementary loop of P implies L is a weak elementary loop,
but not vice versa in general.

Example 1 (Continued) {p, q, r} is a weak elementary
loop of P1 but it is not an elementary loop.

The problem of deciding whether a loop is a weak el-
ementary loop for a DLP is tractable. We can construct a
polynomial time algorithm by replacing each occurrence of
the formula R−L (C) with R−(C) in Algorithm 1. In specific,
we use WEL(L,P) to denote the resulting function.

Proposition 6 For any DLP P and any loop L of P , the
function WEL(L,P) returns either L or a set C of atoms s.t.
C is a loop of P , C ⊂ L, and R−(C) ⊆ R−(L) in O(n2),
where n is the number of atoms in L. WEL(L,P) returns L
iff L is a weak elementary loop.

We use WEL(P) to denote the set of all weak elementary
loops of P . For any DLP P , EL(P) ⊆ EL∗(P) ⊆WEL(P).
If P is a NLP, then WEL(P) = EL∗(P) = EL(P).

Proposition 7 For any HEF program P , EL(P) = EL∗(P)
= WEL(P).

Based on the notion, we define a class of DLP, called
“Head-Weak-Elementary-loop-Free” (HWEF). A DLP P is
called HWEF if |head(r) ∩ L| ≤ 1 for every rule r of P and
every weak elementary loop L of P . An HWEF program is
an HEF program, so the answer sets of an HWEF program P
coincides with the answer sets of sh(P). However it is still
coNP-hard to identify HWEF programs.

Proposition 8 Let P be a DLP. Deciding whether P is an
HWEF program is coNP-complete.

Weak elementary loops have some interesting properties,
that could help us to construct a polynomial time algorithm
to identify a subclass of HWEF programs.

Proposition 9 Let P be a DLP, L a weak elementary loop
of P and E a nonempty proper subset of L. Then there exists
a rule r ∈ P s.t. body+(r)∩E 6= ∅, body+(r)∩(L\E) = ∅
and head(r) ∩ (L \ E) 6= ∅.
In the proposition, if such a rule r does not exist, then L \
E ⊂ L and R−(L \ E) ⊆ R−(L), a contradiction with the
condition that L is a weak elementary loop. On the other
hand, if there do not exist such a loop L and a rule r, then
every proper superset of E is not a weak elementary loop of
P .

For any DLP P and any nonempty set E of atoms, we
provide Algorithm 2 to decide whether there exists a loop L
and a rule r s.t. E ⊆ L, body+(r) ∩ E 6= ∅, body+(r) ∩
(L \ E) = ∅, and head(r) ∩ (L \ E) 6= ∅, i.e., L has the
possibility to be a weak elementary loop of P .

Proposition 10 For any DLP P and any nonempty set E
of atoms, the function EWEL(P,E) returns either true or
false in O(m), where m is the number of rules in P . If
EWEL(P,E) returns false, then there does not exist a weak
elementary loop L of P s.t. E ⊂ L.

We provide Algorithm 3 running in polynomial time to
decide whether a DLP is in a subclass of HWEF programs.

Algorithm 2: EWEL(P , E)
1 G := the positive dependency graph of P ;
2 if there does not exist a SCC C of G s.t. E ⊆ C then
3 return false

4 C := the SCC of G s.t. E ⊆ C;
5 RE := {r | r ∈ P and body+(r) ∩ E 6= ∅};
6 for each r ∈ RE do
7 Gr := the C\

(
body+(r)\E

)
induced subgraph of G;

8 if there exists a SCC Cr of Gr s.t. E ⊆ Cr and
9 head(r) ∩ (Cr \ E) 6= ∅ then

10 return true

11 return false

Algorithm 3: HWEF∗(P)

1 E :={{a, b}|there is a rule r∈P s.t. {a, b}⊆head(r) };
2 for each E∈E do
3 if E is a weak elementary loop of P then
4 return false

5 if EWEL(P,E) returns true then
6 return false

7 return true

Proposition 11 For any DLP P , the function HWEF∗(P)
returns either true or flase in O(mn2) where m is the
number of rules in P and n is the number of atoms in P .
If HWEF∗(P) return true, then P is an HWEF program.

With a slight abuse of the notion, we call a DLP P to be an
HWEF∗ program, if HWEF∗(P) returns true. An HWEF∗

program is an HWEF program, but not vice versa in general.
Example 3 Consider the logic program P3:

p ∨ q ← r. r ← p, q. p← .

P3 has five weak elementary loops: {p}, {q}, {r}, {p, r},
{r, q}. The loop {p, r, q} is not a weak elementary loop as
R−({p, r, q}) = {p← .} and R−({r, q}) = ∅. So P3 is an
HWEF program, however EWEL(P3, {p, q}) returns true,
then HWEF∗(P3) returns false.

The class of HWEF∗ programs strictly generalizes the
class of HCF programs and the problem of recognizing them
is tractable. We found that 32% DLPs in “qbf.cgs”, a class
of benchmark for DLPs which are not HCF (Gebser, Kauf-
mann, and Schaub 2012), are HWEF∗ programs.1

Proper Loops and HPF Programs
Following the idea proposed in (Ji et al. 2014), we show that
not all elementary loops are needed for the answer set com-
putation. We identify a subclass proper loops, and show that,
by applying a special form of their loop formulas, they are
sufficient for selecting answer sets from models of a DLP.
Moreover, we characterize a superclass of HEF programs
and show that these programs can be turned into equivalent
NLPs by “shifting”.

1.http://ss.sysu.edu.cn/%7ewh/properloopdlp.html

1521

Let P be a DLP and L a loop of P , we use RLF (L,P) to
denote the implication:

∧
p∈head(R−(L))∩L

p ⊃
∨

r∈R−(L)

body(r) ∧
∧

q∈head(r)\L

¬q

if R−(L) 6= ∅, otherwise∧

p∈L

p ⊃ ⊥.

Clearly, RLF (L,P) is a special case of LF (L,P).
Proposition 12 Let P be a DLP and L1, L2 loops of P .
If R−(L1) 6= ∅, R−(L2) 6= ∅, head(R−(L1)) ∩ (L1 ∪
L2) ⊆ head(R−(L2))∩L2, and R−L2

(L1) ⊆ R−(L2), then
RLF (L1, P) ⊃ RLF (L2, P).

A loop L is a proper loop of a DLP P , if
• L is an elementary loop of P , and
• there does not exist another elementary loop L′ of P

s.t. R−(L′) 6= ∅, head(R−(L′)) ∩ (L′ ∪ L) ⊆
head(R−(L)) ∩ L and R−L (L′) ⊂ R−(L).

Theorem 4 Each of following conditions is equivalent to
each of conditions in Theorem 1:

8. S satisfies RLF (L,P) for all proper loops L of P ;
9. S satisfies DLF (L,P) for all proper loops L of P .

When loop formulas are in the form of RLF , more redun-
dant loops can be removed from elementary loops.
Example 1 (Continued) Program P1 has four proper
loops: {p}, {q}, {p, r}, and {r, q}. {p, r, q} is not a
proper loop as it is not an elementary loop. {r} is not a
proper loop as R−{r}({r, q}) = {r ← p.} and R−({r}) =

{r ← p. r ← q.}.
The definition of proper loops can be simplified for pro-

grams that do not have loops without external support rules.
In particular, a DLP P is called simplified if there does not
exist a loop L of P s.t. R−(L) = ∅. Note that, every DLP P
can be turned into an equivalent DLP simp(P) by deleting:

1. each rule r that body+(r) ∩ L 6= ∅ for some loop L of P
s.t. R−(L) = ∅, and

2. all atoms p in the heads and all formulas of the form not p
in the bodies of the remaining rules that p ∈ L for some
loop L of P s.t. R−(L) = ∅.

simp(P) can be turned into simp(simp(P)), and so on. The
process continues until resulting a simplified program. Any
DLP P can be turned into an equivalent simplified program.
Proposition 13 A loop L is a proper loop of a simplified
program P , iff
• there does not exist a nonempty proper subset C of L s.t.
R−L (C) ⊆ R−(L), and

• there does not exist a nonempty set C of atoms s.t.
head(R−(C)) ∩ (C ∪ L) ⊆ head(R−(L)) ∩ L and
R−L (C) ⊂ R−(L).

Proposition 14 For any DLP P and loop L of P , the prob-
lem of deciding whether L is a proper loop of P is coNP-
complete.

Algorithm 4: PL∗(L,P)

1 SCC := the set of SCCs of GP ;
2 for each C ∈ SCC do
3 if C ⊂ L and R−L (C) ⊆ R−(L) then return C ;
4 else if head(R−(C))∩(C ∪ L)⊆head(R−(L)) ∩L
5 and R−L (C) ⊂ R−(L) then
6 return C
7 else if R−L (C) = R−(L) then
8 for each atom a ∈ C do
9 G∗ := the C \ {a} induced subgraph of GP ;

10 SCC∗ := the set of SCCs of G∗;
11 append new elements from SCC∗ to SCC;
12 else if head(R−(C)) ∩ (C ∪ L) 6⊆ head(R−(L)) ∩ L

13 and C 6⊆ L then
14 C′ := C \ ((head(R−(C)) ∩ C) \ (head(R−(L)) ∩ L));
15 G′ := the C′ induced subgraph of GP ;
16 SCC′ := the set of SCCs of G′;
17 append new elements from SCC′ to SCC;
18 else
19 GC := the C \ head(R−L (C) \R−(L)) induced
20 subgraph of GP ;
21 SCCC := the set of SCCs of GC ;
22 append new elements from SCCC to SCC;

23 return L

Similar to Algorithm 1, we provide Algorithm 4 running
in polynomial time to decide whether a loop L is in a super-
class of all proper loops of a simplified program P .

Proposition 15 For any simplified program P and any
loop L of P , PL∗(L,P) returns either L or a loop C of P
s.t.

• C ⊂ L and R−L (C) ⊆ R−(L), or
• head(R−(C)) ∩ (C ∪ L) ⊆ head(R−(L)) ∩ L and

R−L (C) ⊂ R−(L),

in O(n2), where n is the number of atoms in P . If PL∗(L,P)
returns C s.t. C 6= L, then L is not a proper loop of P .

In the following we use PL(P) to denote the set of all
proper loops of a DLP P . Similarly, we denote

PL∗(P) = {L | L is a loop of P and PL∗(L,P) returns L }.

For any simplified program P , PL(P) ⊆ PL∗(P). If P is a
simplified NLP, then PL(P) = PL∗(P).

Based on the notion of proper loops, we define a class of
DLPs, called “Head-Proper-loop-Free” (HPF). A DLP P is
called HPF if |head(r) ∩ L| ≤ 1 for every rule r of P and
every proper loop L of P . We show that, every HPF program
can also be turned into an equivalent NLP by “shifting”.

Proposition 16 For any HPF program P , a set S is an an-
swer set of P iff S is an answer set of sh(P).

Proposition 17 A DLP P is HEF implies P is HPF.

Proposition 18 The problem of deciding whether a DLP P
is HPF is coNP-complete.

1522

PL
EL EL∗

PL∗ WPL
WEL

Figure 2: Summary of relations between classes of loops

Weak Proper Loops and HWPF Programs
The computational complexities of recognizing proper loops
and HPF programs are coNP-complete respectively. In this
section, we characterize a superclass of proper loops which
can be recognized in polynomial time and present a subclass
of HPF programs.

Form Proposition 12, we have the following corollary.
Corollary 5 Let P be a DLP and L1, L2 loops of P . If
R−(L1) 6= ∅, head(R−(L1)) ∩ L1 ⊆ head(R−(L2)) ∩ L2

and R−(L1) ⊆ R−(L2), then RLF (L1, P) ⊃ RLF (L2, P).
Then we can define a weaker version of proper loops. A

loop L is a weak proper loop of a DLP P if
• L is a weak elementary loop of P , and
• there does not exist another weak elementary loop L′ of P

s.t. R−(L′) 6= ∅, head(R−(L′))∩L′ ⊆ head(R−(L))∩L
and R−(L′) ⊂ R−(L).

Example 1 (Continued) Program P1 has five weak proper
loops: {p}, {q}, {p, r}, {r, q}, {p, r, q}. {r} is not a
proper loop as R−({r, q}) = {r ← p.} and R−({r}) =
{r ← p. r ← q.}.
Theorem 6 Each of following conditions is equivalent to
each of conditions in Theorem 1:

10. S satisfies RLF (L,P) for all weak proper loops L of P ;
11. S satisfies DLF (L,P) for all weak proper loops L of P .

Proposition 19 For any DLP P and any loop L of P , L is a
proper loop of P implies L is a weak proper loop of P , but
not vice versa in general.

If P is a NLP, L is a proper loop iff L is a weak proper loop.
Figure 2 summarizes the relations between classes of loops,
where→ indicates the subset relation (also in Figure 3).

For simplified programs, the definition could be easier.

Proposition 20 A loop L is a weak proper loop of a simpli-
fied program P , iff
• there does not exist a nonempty proper subset C of L s.t.
R−(C) ⊆ R−(L), and

• there does not exist a nonempty set C s.t. head(R−(C))∩
C ⊆ head(R−(L)) ∩ L and R−(C) ⊂ R−(L).

Different from proper loops, the problem of recognizing
a weak proper loop for a simplified program is tractable.
We can construct a polynomial time algorithm by replac-
ing each occurrence of the formula R−L (C) with R−(C) and
each occurrence of the formula head(R−(C)) ∩ (C ∪ L)
with head(R−(C)) ∩ C in Algorithm 4. In specific, we use
WPL(L,P) to denote the resulting function.
Proposition 21 For any simplified program P and loop L
of P , WPL(L,P) returns either L or a loop C of P s.t.
• C ⊂ L and R−(C) ⊆ R−(L), or

HCF HWEF∗ HWEF
HEF

HWPF
HPF

Figure 3: Summary of relations between classes of DLPs

• head(R−(C)) ∩ C ⊆ head(R−(L)) ∩ L and R−(C) ⊂
R−(L),

in O(n2), where n is the number of atoms in P . WPL(L,P)
returns L iff L is a weak proper loop of P .

A DLP P is called “Head-Weak-Proper-loop-Free”
(HWPF) if |head(r) ∩ L| ≤ 1 for every rule r of P and
every weak proper loop L of P . An HWPF program is an
HPF program and an HWEF program is an HWPF program.
Figure 3 summarizes the relations between classes of DLPs.

Proposition 22 The problem of deciding whether a DLP P
is HWPF is coNP-complete.

Experiments
In this section, to compare various notions of loops in prac-
tice, i.e., elementary loops (EL), EL∗(P) (EL∗), weak el-
ementary loops (WEL), proper loops (PL), PL∗(P) (PL∗),
and weak proper loops (WPL), we count numbers of loops
in these classes on DLPs in the benchmark. The experi-
ments were run on a Linux machine with AMD A10-5800K
(3.8GHz) CPU and 3.3GB RAM, limiting each run to 1
hour. Table 12 shows average numbers of loops for differ-
ent notions on 63 DLPs from 7 classes3, which were fre-
quently used to compare the performance of ASP solvers for
DLPs (Denecker et al. 2009; Gebser, Kaufmann, and Schaub
2012; 2013). DLPs in the classes of “Sokoban” and “SCore-
disjunctiveloop” are HCF programs, while others are not
HCF. When it was “timeout” for finding all loops of a DLP,
the numbers of loops for the DLP were counted only for
loops that had been found. The last row displays average
numbers of classes of loops over all DLPs.

The result shows that, on average for these DLPs P ,
|PL(P)| is smaller than |EL(P)|, |EL∗(P)| and |WEL(P)|
are similar to |EL(P)|, and |PL∗(P)| and |WPL(P)| are sim-
ilar to |PL(P)|. Even though finding all loops is a blow up
job, in the experiment of large programs, we found that in
the process of calculating, the number of certain class of
loops increases in a similar ratio, which implies that we can
replace elementary loops and proper loops by weak elemen-
tary loops and weak proper loops respectively in practice.

Conclusion
We provide an alternative definition of elementary loops for
DLPs, which results an approximate algorithm running in
polynomial time for recognizing elementary loops. Then we
extend the notion of proper loops to DLPs and provide a fur-
ther refinement of the Lin-Zhao theorem for DLPs. We also
provide an approximate algorithm running in polynomial

2.http://ss.sysu.edu.cn/%7ewh/properloopdlp.html
3.http://www.cs.uni-potsdam.de/claspD

1523

Table 1: Numbers of loops of different types

Benchmark number timeout Loops EL EL* WEL PL PL* WPL
Sokoban (HCF) 11 0 2546 2525 2525 2525 642 642 642
SCore-disjunctiveloop (HCF) 2 1 5251 5251 5251 5251 1751 1751 1751
qbf.cgs 23 3 15095 1407 1407 1441 1407 1407 1441
qbf.gw 18 7 10751 4153 4162 5302 4150 4153 5302
SCore-Mutex 2 2 9250 2445 2562 3371 2445 2448 3371
SCore-RandomQBF 6 6 6417 6388 6391 6392 6388 6391 6392
SCore-StrategicCompanies 1 1 8000 6954 6983 6959 6983 6985 6992
Average Number 63 20 8188 4165 4180 4463 3396 3398 3698

time for recognizing proper loops. The computational com-
plexities of recognizing elementary loops and proper loops
for DLPs are coNP-complete. Then we introduce weaker
versions, i.e., weak elementary loops and weak proper loops,
and provide polynomial time algorithms for recognizing
them respectively.

The class of HEF programs which strictly generalizes
the class HCF programs are defined based on the notion
of elementary loops. Similarly, we define the class of HPF
programs, HWEF programs, and HWPF programs based
on notions of proper loops, weak elementary loops, and
weak proper loops respectively. However, recognizing these
classes of DLPs are coNP-complete. We discuss relation-
ships between these classes of loops and DLPs respectively.
Moreover, we present the class of HWEF∗ programs which
generalizes HCF programs, show that an HWEF∗ program
can be turned into an equivalent NLP by shifting head atoms
into the body, and provide a polynomial time algorithm to
identify them. At last, some experiments show that both el-
ementary loops and proper loops could be replaced by weak
elementary loop and weak proper loops in practice, which
could improve the performance of ASP solvers for DLPs.

Acknowledgments
We thank the reviewers for their comments and suggestions
for improving the paper. We are grateful to Fangzhen Lin
for many helpful and informative discussions. We are also
grateful to Yan Zhang for his useful suggestions. We would
also like to thank Xiaoping Chen and his research group
for their useful discussions. Jianmin Ji’s research was par-
tially supported by the Fundamental Research Funds for
the Central Universities under grant WK0110000035, the
National Natural Science Foundation of China under grant
61175057, the National Natural Science Foundation for the
Youth of China under grant 61403359, as well as the USTC
Key Direction Project and the USTC 985 Project. Hai Wan
thanks Research Fund for the Doctoral Program of Higher
Education of China (No. 20110171120041), Natural Sci-
ence Foundation of Guangdong Province of China (No.
S2012010009836), and Guangzhou Science and Technology
Project (No. 2013J4100058) for the support of this research.
We also thank supports from the National Natural Science
Foundation of China under grant 61370161.

References
Ben-Eliyahu, R., and Dechter, R. 1994. Propositional semantics for
disjunctive logic programs. Annals of Mathematics and Artificial
intelligence 12(1-2):53–87.
Denecker, M.; Vennekens, J.; Bond, S.; Gebser, M.; and
Truszczyński, M. 2009. The second answer set programming com-

petition. In Proceedgins of the 10th International Converence on
Logic Programming and Nonmonotonic Reasoning (LPNMR-09),
637–654. Springer.
Drescher, C.; Gebser, M.; Grote, T.; Kaufmann, B.; König, A.; Os-
trowski, M.; and Schaub, T. 2008. Conflict-driven disjunctive an-
swer set solving. In Proceedings of the 11th International Con-
ference on Principles of Knowledge Representation and Reasoning
(KR-08), 422–432.
Fassetti, F., and Palopoli, L. 2010. On the complexity of identifying
head-elementary-set-free programs. Theory and Practice of Logic
Programming 10(01):113–123.
Gebser, M., and Schaub, T. 2005. Loops: relevant or redundant?
In Proceedings of 8th International Conference on Logic Program-
ming and Nonmonotonic Reasoning (LPNMR-05), 53–65.
Gebser, M.; Kaufmann, B.; Neumann, A.; and Schaub, T. 2007.
Conflict-driven answer set solving. In Proceedings of the 20th In-
ternational Joint Conference on Artificial Intelligence (IJCAI-07),
386–392.
Gebser, M.; Kaufmann, B.; and Schaub, T. 2012. Conflict-driven
answer set solving: From theory to practice. Artificial Intelligence
187:52–89.
Gebser, M.; Kaufmann, B.; and Schaub, T. 2013. Advanced
conflict-driven disjunctive answer set solving. In Proceedings of
the 23rd International Joint Conference on Artificial Intelligence
(IJCAI-13), 912–918. AAAI Press.
Gebser, M.; Lee, J.; and Lierler, Y. 2011. On elementary loops
of logic programs. Theory and Practice of Logic Programming
11(6):953–988.
Gelfond, M., and Lifschitz, V. 1991. Classical negation in logic
programs and disjunctive databases. New generation computing
9(3-4):365–385.
Gelfond, M.; Lifschitz, V.; Przymusinska, H.; and Truszczynski,
M. 1991. Disjunctive defaults. In Proceedings of the 2nd Interna-
tional Conference on Principles of Knowledge Representation and
Reasoning (KR-91), 230–237.
Giunchiglia, E.; Lierler, Y.; and Maratea, M. 2006. Answer set
programming based on propositional satisfiability. Journal of Au-
tomated Reasoning 36(4):345–377.
Ji, J.; Wan, H.; Xiao, P.; Huo, Z.; and Xiao, Z. 2014. Elementary
loops revisited. In Proceedings of the 28th AAAI Conference on
Artificial Intelligence (AAAI-14), 1063–1069.
Lee, J., and Lifschitz, V. 2003. Loop formulas for disjunctive logic
programs. In Proceedings of the 19th International Conference on
Logic Programming (ICLP-03), 451–465.
Lifschitz, V., and Razborov, A. 2006. Why are there so many loop
formulas? ACM Transactions on Computational Logic 7(2):261–
268.
Lin, F., and Zhao, Y. 2004. ASSAT: computing answer sets of
a logic program by SAT solvers. Artificial Intelligence 157(1-
2):115–137.

1524

