
asprin: Customizing Answer Set Preferences without a Headache

Gerhard Brewka
Universität Leipzig
Leipzig, Germany

brewka@informatik.uni-leipzig.de

James Delgrande
Simon Fraser University
Burnaby, B.C., Canada

jim@cs.sfu.ca

Javier Romero Torsten Schaub∗

Universität Potsdam
Potsdam, Germany

{javier,torsten}@cs.uni-potsdam.de

Abstract

In this paper we describe asprin1, a general, flexible, and ex-
tensible framework for handling preferences among the sta-
ble models of a logic program. We show how complex pref-
erence relations can be specified through user-defined pref-
erence types and their arguments. We describe how prefer-
ence specifications are handled internally by so-called pref-
erence programs, which are used for dominance testing. We
also give algorithms for computing one, or all, optimal stable
models of a logic program. Notably, our algorithms depend
on the complexity of the dominance tests and make use of
multi-shot answer set solving technology.

Introduction
Preferences are pervasive. The computation of preferred, or
optimal, solutions is required in many real-world applica-
tions. Often this involves combining various qualitative and
quantitative preferences. Although preferences have been
widely studied in Answer Set Programming (ASP; (Baral
2003)) in various contexts (cf. (Delgrande et al. 2004)), cur-
rent ASP systems are limited to optimization statements over
sum or count aggregates, as specified either by #minimize
statements or weak constraints. As well, these systems gen-
erally handle only a fixed, predefined, set of preferences.

We address these limitations in the system asprin, a gen-
eral, flexible, and extensible framework for implementing
preferences among the stable models of a logic program.
Our framework is general and captures the major existing
approaches to preference. Also, it is extensible and allows
for an easy implementation of new or extended approaches
to preference handling. Our framework builds on recent con-
trol capabilities for multi-shot ASP solving (providing suc-
cessive yet operational grounding and solving of changing
logic programs). This technology allows us to direct the
search for specific preferred solutions without modifying the
ASP solver. As well, it significantly reduces redundancies
found in an iterated setting. Finally, this technology paves
the way for the high customizability of our framework by
offering an implementation of preferences via ordinary ASP
encodings.

∗Affiliated with Inria Rennes, France, and SFU, Canada.
Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1asprin stands for “ASP for preference handling”.

From an abstract point of view, the aim is to determine the
preferred stable models of a given logic program and pref-
erence relation. That is, we determine a strict partial order
� on the stable models of a logic program P , representing a
preference relation, such that X � Y means that X is pre-
ferred to Y . Then, a stable model X of P is �-preferred if
there is no other stable model Y such that Y � X . Restrict-
ing preferences to (strict) partial orders has the advantage
that a satisfiable program has preferred stable models.2

The next section gives an overview of the asprin system,
explaining its general functionality. We then describe in
more detail how preferences are represented and handled in
asprin via repeated calls to so-called preference programs.
The following section describes some of the underlying al-
gorithms. We then report results of evaluations we have per-
formed. We conclude with a discussion of related work.

We assume some familiarity with ASP. For a comprehen-
sive introduction, see (Gebser et al. 2012), from which we
also take our notation. Our ASP encodings rely upon the
new ASP language standard ASPCore2.0 (Calimeri et al.
2012). Other notation is introduced when first used.

Overview of asprin
In a nutshell, asprin allows a user to declare and evaluate
preference relations among the stable models of an ASP
program. Preferences are declared within a program by
so-called preference statements. A preference statement is
composed of an identifier, a type, and an argument set. The
identifier names the preference relation, whereas the type
and argument define the relation. Here is an example:

#preference(costs, less(weight)){40:sauna, 70:dive}
(1)

This statement declares a preference relation named costs
with type less(weight) and argument set {40 : sauna, 70 :
dive}, and which minimizes the sum of weights of the atoms
mentioned in the argument. Hence, stable models with
neither sauna nor dive are preferred over those with only
sauna . Stable models with only dive are still less preferred,
while those with both sauna and dive are least preferred.

2asprin can also reason with prioritized classical models: pro-
grams having these models as answer sets are easily designed.

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

1467

While the arguments of preference types are sets, we see
later on that the elements contained in these sets—which we
call preference elements—can be more complex than in the
example. In the most general case we even admit conditional
elements, which are used to capture conditional preferences.
Moreover, preference types may refer to other preferences
in their arguments, for example:

#preference(all , pareto)

{name(costs),name(fun),name(temps)} (2)

This defines a preference relation all which is the Pareto or-
dering of 3 preference relations costs , fun and temps . That
is, stable model S1 is strictly preferred to S2 iff it is at least
as good as S2 with respect to the 3 argument orderings, and
strictly better with respect to at least one of them.

Since preference statements may be needed for the spec-
ification of other relations, the user must explicitly spec-
ify which preference relation is to be used for optimization.
This is done via an #optimize statement with the name of
the respective preference statement as argument.

Once the preference and optimize statements are given,
the computation of preferred stable models is done via a
preference program. Such programs, which need to be de-
fined for each preference type, take as input a stable model
S1 of the original program P and produce a stable model
of P strictly better than S1, according to the optimize state-
ment, if such a stable model exists. An optimal stable model
is computed stepwise, by repeated calls to the ASP solver:
first, an arbitrary stable model of P is generated; then this
stable model is “fed” to the preference program to produce
a better one, etc. Once the preference program becomes un-
satisfiable, the last stable model obtained is an optimal one.

We also provide an asprin library which contains a num-
ber of predefined, common, preference types along with the
necessary preference programs. Users happy with what is
available in the library can thus use the available types with-
out having to bother with preference programs at all. How-
ever, if the predefined preference types are insufficient, users
may define their own relations (and so become preference
engineers). In this case, they also have to provide the prefer-
ence programs asprin needs to cope with the new preference
relations. How this works is explained in the following.

Expressing Preferences
We provide a generic preference language for expressing a
wide range of preference relations. To keep our framework
open for extensions, we do not fix a set of predefined pref-
erences. Rather we give examples of how well-known pref-
erences can be expressed and implemented. Many of these
are included in asprin’s preference library, which provides
basic building blocks for defining new preferences.

Syntax Our language is made up of the following ele-
ments: weighted formulas, preference elements, preference
statements, and preference specifications.

Let A be a fixed alphabet. A weighted (propositional)
formula is of the form3 w1, . . . , wl : φ where each wi is a

3This syntax follows aggregate elements (Calimeri et al. 2012).

term and φ is a Boolean expression overA with logical con-
nectives >, ¬, ∧, and ∨. We write φ whenever l = 0. For
expressing composite preferences, we use a dedicated unary
naming predicate name that allows us to refer to auxiliary
preferences. That is, a naming atom, name(s), refers to re-
lations associated with a preference statement s (see below).

A preference element is of the form4

Φ1 > · · · > Φm ‖ φ (3)

where φ is a non-weighted formula giving the context, and
each Φr is a set of weighted formulas for r = 1, . . . ,m and
m ≥ 1. Intuitively, r gives the rank of the respective set
of weighted formulas. Preference elements provide a (pos-
sible) structure to a set of weighted formulas by giving a
means of conditionalization and a symbolic way of defining
pre-orders (in addition to using weights). For convenience,
we may drop the surrounding braces of such sets and omit
“‖φ” if φ is tautological. Also, we drop “>” if m = 1.
Hence {a,¬b} > c stands for {a,¬b} > {c} ‖ >. Simi-
larly, 40:sauna in (1) stands for {40:sauna} ‖ >.

A preference statement p is of the form

#preference(s, t){e1, . . . , en} (4)

where s and t are ground terms giving the preference name
and its type, respectively, and each ej is a preference ele-
ment. In what follows, we use id(p) to denote p’s identi-
fier s and refer to its type by ts. The preference type de-
termines the set of admissible preference elements. For in-
stance, less(weight) in (1) is restricted to weighted literals.
A preference type may or may not require naming atoms,
depending on whether it is composite or primitive. For in-
stance, pareto in (2) is composite.

A set of preference statements is accompanied by a single
optimization directive, #optimize(s), telling a solver to re-
strict its reasoning mode to the preference relation declared
by s. The collection of preference statements in a program
has to satisfy certain requirements to be useful. We say a set
of preference statements S is
• closed, if p ∈ S for some p with id(p) = s whenever
name(s) occurs in S, and
• acyclic, if the dependency relation induced among prefer-

ence statements in S by naming atoms is acyclic.
A preference specification is a set of preference statements
S along with a single directive #optimize(s) such that S
is acyclic and closed and, for some p ∈ S, id(p) = s. We
call p the primary preference statement in S and refer to
statements in S \ {p} as secondary.

Semantics A preference statement like (4) declares a pref-
erence relation with associated preference type and prefer-
ence elements. More formally, a preference type, t, is a func-
tion mapping a set of preference elements, E, to a (strict)
preference relation t(E) on stable models. The full gener-
ality of preference elements is not always needed. For this
reason, we will specify for each preference type t its domain
dom(t). A preference statement #preference(s, t)E is said

4Following (Bienvenu et al. 2010).

1468

to be admissible, if E ∈ dom(t). For simplicity, we also
denote the relation t(E) by �s.

Here is an example of defining a preference type:

• Define less(card) by: dom(less(card)) = P({a,¬a |
a ∈ A}), where P(S) is the power set of S, and
(X,Y) ∈ less(card)(E) iff
|{` ∈ E | X |= `}| < |{` ∈ E | Y |= `}|

Our approach centres on the implementation of the decision
problem: (X,Y) ∈ t(E)? The resulting algorithmic frame-
work requires that the induced preference relations be strict
partial orders. We can still define strict preference relations
in terms of non-strict or other auxiliary preference relations,
as long as the preference relation subject to optimization is
irreflexive and transitive.

Here is a further example from asprin’s library, going be-
yond existing preferences in ASP solvers.

• Define subset by: dom(subset) = P({a,¬a | a ∈ A}),
and (X,Y) ∈ subset(E) iff

{` ∈ E | X |= `} ⊂ {` ∈ E | Y |= `}
Composite preferences are formed by aggregation. The

naming predicate name is used to refer to auxiliary prefer-
ences. For a naming atom name(s′), we let �s′ be the non-
strict preference relation associated with preference state-
ment s′. Relations �s′ , =s′ , ≺s′ , �s′ are similarly defined.

For example, let N be the set of naming atoms. Then:

• Define pareto by: dom(pareto) = P({n |n∈N}), and
(X,Y) ∈ pareto(E) iff∧

name(s)∈E(X �s Y) ∧
∨

name(s)∈E(X �s Y)

• Define lex by: dom(lex)=P({w:n |n∈N,w∈N}) and
(X,Y) ∈ lex (E) iff∨
w:name(s)∈E((X�sY)∧

∧
v:name(s′)∈E,v<w(X =s′ Y))

Other composite preference types are easily defined.
Here are examples with specific preference elements.

• #preference(1, less(card)){a,¬b, c}) declares X �1 Y
as

|{` ∈ {a,¬b, c} | X |= `}| < |{` ∈ {a,¬b, c} | Y |= `}|

• #preference(2,more(weight)){1:a, 2:¬b, 3:c} declares
X �2 Y as∑

(w:`)∈{1:a,2:¬b,3:c},X|=` w>
∑

(w:`)∈{1:a,2:¬b,3:c},Y |=` w

• #preference(3, subset){a,¬b, c} declares X �3 Y as
{` ∈ {a,¬b, c} | X |= `} ⊂ {` ∈ {a,¬b, c} | Y |= `}

• #preference(4, pareto){name(1),name(2),name(3)}
declares X �4 Y as (X �1 Y) ∧ (X �2 Y) ∧ (X �3

Y) ∧ ((X �1 Y) ∨ (X �2 Y) ∨ (X �3 Y))

• #preference(5, lex){1 : name(1), 2 : name(2), 3 :
name(3)} declares X �5 Y as (X �1 Y) ∨ ((X =1

Y)∧(X �2 Y))∨((X =1 Y)∧(X =2 Y)∧(X �3 Y))

Handling Preferences
We now discuss how preferences in asprin are handled
through preference programs.

Instance format Preference statements are represented in-
ternally as a collection of facts. A weighted formula of form
w1, . . . , wl : φ occurring in some set Φr of a preference el-
ement ej in a preference statement s as in (4) is represented
as a fact of form

preference(s, j, r, for(tφ), (w1, . . . , wl)).

where each wi representswi for i = 1, . . . , l and tφ is a term
representing φ by using function symbols neg/2, and/2,
and or/2. For simplicity, we use indexes, r and j, for identi-
fying the respective structural components. For representing
the condition of ej , we set r to 0. A naming atom name(s)
is represented analogously, except that for(tφ) is replaced
by name(s).

We let Fs,j denote the set of all facts obtained for all
weighted formulas and naming atoms contained in prefer-
ence element ej belonging to preference statement s. With
this, we define the translation of a preference statement
#preference(s, t){e1, . . . , en} as

Fs = {preference(s, ts).} ∪
⋃
j=1,...,n Fs,j

For example, some of the previous preference statements
are translated as follows.
• #preference(1, less(card)){a,¬b, c}) yields

preference(1,less(cardinality)).

preference(1,1,1,for(a),()).

preference(1,2,1,for(neg(b)),()).

preference(1,3,1,for(c),()).

• #preference(2,more(weight)){1 : a, 2 : ¬b, 3 : c})
yields
preference(2,more(weight)).

preference(2,1,1,for(a),(1)).

preference(2,2,1,for(neg(b)),(2)).

preference(2,3,1,for(c),(3)).

• #preference(5, lex){1 : name(1), 2 : name(2), 3 :
name(3)} yields
preference(5,lexico).

preference(5,1,1,name(1),(1)).

preference(5,2,1,name(2),(2)).

preference(5,3,1,name(3),(3)).

Encoding We consider logic programs over a set A of
atoms and refer to them as base programs. We assume that
a preference program is formed over a set E ∪ F of atoms
disjoint from A. While F provides a fixed set of internal
atoms (formed from dedicated predicate symbols, such as
preference), E can be customized.

For deciding whether one stable model is preferred to an-
other, we implement each preference type t by an ASP en-
coding Et. Et defines under which conditions a (new) sta-
ble model is strictly better than an old one, given preference
type t and facts Fs. This is expressed using a unary predi-
cate better. In addition, preference programs use auxiliary
rules, C, describing problem-independent internal concepts
like satisfaction of Boolean expressions. C also contains the
integrity constraint:
:- not better(P), optimize(P).

1469

This constraint ensures the preference program is unsat-
isfiable whenever no strictly better stable model can be
found. To implement the obligatory optimization directive
#optimize(s), we add ‘optimize(s).’ to the facts Fs of
the primary preference s.

The question to be addressed now is: How do we repre-
sent stable models in order to compare them? For this we
rely on ASP’s meta-interpretation capacities and reify atoms
to constants by using unary predicates holds and holds ′. We
define for X ⊆ A the following sets.

HX = {holds(a) | a ∈ X}
H ′
X = {holds ′(a) | a ∈ X}

RX = {holds(a)← a | a ∈ X}
R′
X = {holds ′(a)← a | a ∈ X}

GX = {{h} ← | h ∈ HX}
G′
X = {{h′} ← | h′ ∈ H ′

X}

RX provides the dynamic counterpart of HX relative to an
encompassing model X . Atoms formed by using predicates
holds and holds ′ are internal and thus belong to F .

The next results form the theoretical foundation of our
approach.
Definition 1 Let s be a preference statement declaring pref-
erence relation �s and let the programs Ets , Fs, and A be
as described above. We call Ets ∪ Fs ∪C a preference pro-
gram for s, if for all sets X,Y ⊆ A, we have

X �s Y iff Ets ∪ Fs ∪ C ∪HX ∪H ′
Y is satisfiable.

Note that preference programs refer only to atom sets and
are thus initially independent of any base programs. This
changes once a program P together with reifying or gener-
ating rules, like RX or GX , is considered (instead of HX).

For illustration, consider the implementation of a prefer-
ence program for #preference(3, subset){a,¬b, c} that al-
lows us to check whether {a, b} �3 {a} holds.

Esubset=


better(P) :- preference(P,subset),

1 #sum{ 1,X : not holds(X), holds’(X),

preference(P,_,_,for(X),_) },

holds’(X) : preference(P,_,_,for(X),_),

holds(X).


F3 =


preference(3,subset). optimize(3).

preference(3,1,1,for(a),()).

preference(3,2,1,for(neg(b)),()).

preference(3,3,1,for(c),()).


C =


:- not better(P), optimize(P).

holds(neg(A)) :- not holds(A),

preference(_,_,_,for(neg(A)),_).

holds’(neg(A)) :- not holds’(A),

preference(_,_,_,for(neg(A)),_).


H{a,b} = { holds(a). holds(b). }
H ′

{a} = { holds’(a). }

Grounding and solving the above programs yields a sta-
ble model containing better(3) indicating that {a, b} �3

{a}, or {a} ⊂ {a,¬b}, holds.
Base and preference programs are formed over disjoint

sets of atoms. Interactions among them are controlled by

mapping atoms in A to HA and H ′
A, respectively. The next

proposition makes precise how preference programs capture
the semantics of preference statements.

Proposition 1 Let Ets ∪ Fs ∪ C be a preference program
for preference statement s.

1. If Z is a stable model of Ets ∪ Fs ∪ C ∪GA ∪G′
A,

then {a | holds(a) ∈ Z} �s {a | holds ′(a) ∈ Z}.
2. If X �s Y , then there is a stable model Z of Ets ∪ Fs ∪
C ∪GA ∪G′

A such that

X = {a | holds(a)∈Z} and Y = {a | holds ′(a)∈Z}.
The above implies that �s= {(X,Y) | X,Y ⊆ A, (Ets ∪
Fs ∪ C ∪HX ∪H ′

Y) is satisfiable}.
Now, replacing H{a,b} and H{a} among the above pro-

grams by

G{a,b,c} = { { holds(a); holds(b); holds(c) }. }
G′

{a,b,c} = { { holds’(a); holds’(b); holds’(c) }. }

yields 19 stable models capturing preference relation �3.
Next, we show how preference programs can be used for

deciding whether a stable model of a base program is pre-
ferred, and how a dominating model is obtained.

Proposition 2 Let P be a program over A and let s be a
preference statement.

1. If X is a stable model of P , then X is �s-preferred iff(
P ∪ Ets ∪ Fs ∪ C ∪RA ∪H ′

X

)
is unsatisfiable.

2. If Y is a stable model of
(
P ∪Ets ∪Fs ∪C ∪RA ∪H ′

X

)
for some X ⊆ A, then Y ∩A is a stable model of P such
that (Y ∩ A) �s X .

We use (P ∪Ets∪Fs∪C∪RA∪H ′
X) for checking whether

there is a model dominating X . Note how the usage of pro-
gram P ∪RA restricts candidates to stable models of P (un-
like arbitrary subsets of A as in Proposition 1).

Now, adding P and replacing H{a,b} by R{a,b,c} among
the above programs, where

P = { 2 { a; b; c } 2. }

R{a,b,c} =

 holds(a) :- a.

holds(b) :- b.

holds(c) :- c.


allows us to check whether a set X is dominated by some
stable model of P . For instance, checking whether {a} is
dominated is done by keeping H ′

{a}. This yields a stable
model containing holds(a) and holds(b) and tells us that
{a} is dominated by {a, b}. Now, replacing H ′

{a} by H ′
{a,b}

yields an unsatisfiable program, indicating that {a, b} is a
�3-preferred stable model of P .

Both primitive and composite preference types are imple-
mented by preference programs. For the latter, the defini-
tion of better depends on the respective definitions of the
constituent preference types. Note that for some cases def-
initions of non-strict versions of the intended preference re-
lations, respectively equality, need to be provided as well.

1470

Thus, given a preference specification S, we let the prefer-
ence program Ets ∪Fs of the primary preference s in S also
account for the specifications of all secondary preferences.

In the rest of this section we show how selected preference
types are implemented in asprin.
• less(card) is implemented by

better(P) :- preference(P,less(cardinality)),

1 #sum{ -1,X: holds(X), preference(P,_,_,for(X),_);

1,X: holds’(X), preference(P,_,_,for(X),_) }.

• more(weight) is implemented by
better(P) :- preference(P,more(weight)),

1 #sum{ W,X: holds(X), preference(P,_,_,for(X),(W));

-W,X: holds’(X),preference(P,_,_,for(X),(W))}.

The preference type pareto uses a non-strict relation
bettereq ; for less(cardinality) and more(weight) this is
implemented by simply replacing the above lower bound 1
by 0. Given this, pareto is implemented by
better(P) :- preference(P,pareto),

better(P’’), preference(P,_,_,name(P’’),_),

bettereq(P’) : preference(P,_,_,name(P’),_).

In general the correctness of a preference program is the
responsibility of the implementer, just as with regular ASP
encodings. However, for asprin’s preference library, we can
provide correctness results.

Computing Preferences
Our algorithms rely upon successive calls to a (multi-shot)
ASP solver (for this we use clingo 4). For a (normal or dis-
junctive) program P , define

solve(P) =

{
X if X is (some) stable model of P
⊥ if P is unsatisfiable

Computing one preferred model Given a program P and
a preference statement s, Algorithm 15 computes a �s-
preferred stable model of P . We put no restrictions on the
program P or on the preference program; both may even be
disjunctive programs. Note that the non-dominance test for
candidate models is implemented as prescribed by Proposi-
tion 1. This is done in Line 5 where we check whether there
is a Y such that Y �s X .6

Theorem 1 Given a program P and preference statement s,
Algorithm 1 computes a �s-preferred stable model of P if
P is satisfiable, and ⊥ otherwise.

Computing all preferred models While base programs
remain unrestricted, we limit ourselves here to preferences
for which we can decide whetherX � Y holds for setsX,Y
in polynomial time. Given this, we assume without loss of
generality that preference programs are stratified (Apt et al.
1987), since each problem decidable in polynomial time can
be represented as a stratified logic program.

5This algorithm is inspired by ideas in (Brewka et al. 2003;
Giunchiglia and Maratea 2012), see the discussion for details.

6Note that Algorithm 1 can easily be turned into an anytime
algorithm returning the best answer set computed so far.

Algorithm 1: solveOpt(P, s)

Input : A program P over A and preference
statement s.

Output : A �s-preferred stable model of P , if P is
satisfiable, and ⊥ otherwise.

1 Y ← solve(P)
2 if Y = ⊥ then return ⊥
3
4 repeat
5 X ← Y
6 Y ← solve(P ∪ Ets ∪ Fs ∪ C ∪RA ∪H ′

X) ∩ A
7 until Y = ⊥
8 return X

Given a program P and a preference statement s, Algo-
rithm 2 computes all �s-preferred stable models of P . The

Algorithm 2: solveOptAll(P, s)

Input : A program P over A and preference
statement s.

Output : The set of �s-preferred stable models of P .

1 X ← ∅
2 loop
3 Y ← solve

(
P ∪

⋃
Xi∈X

(
NXi
∪ (Ets ∪ Fs ∪ C ∪

HXi
)i ∪R′i

A
))
∩ A

4 if Y = ⊥ then return X
5
6 repeat
7 X ← Y

8 Y ← solve
(
P ∪Ets ∪Fs ∪C ∪RA ∪H ′

X

)
∩A

9 until Y = ⊥
10 X ← X ∪ {X|X |+1}

idea is to collect preferred models computed in analogy to
Algorithm 1. To see this, observe that Lines 3-8 correspond
to Lines 1-6 in Algorithm 1. That is, starting from an initial
model Y in Line 3 a preferred model,X , is obtained after the
repeat loop via successive non-dominance tests. Preferred
models are accumulated in the indexed set X .

The most intricate part of Algorithm 2 is Line 3. The
goal is to compute a stable model of P that is neither dom-
inated by nor equal to any preferred model in X . Line 3
checks whether there is a stable model Y of P such that
Xi 6= Y and Xi �s Y for all i ∈ I . (We already have
Y �s Xi since each Xi ∈ X is �s-preferred.) The condi-
tion Xi 6= Y is guaranteed by the integrity constraint NXi

of form NX = {← X ∪ {∼a | a ∈ A \ X}} for each
i ∈ I . Although such solution recording is exponential in
space, it is non-intrusive to the solver. For the condition
Xi �s Y , preference programs are not directly applicable
since they result in an unsatisfiability problem according to
Definition 1. Instead, we need to encode the condition as a
satisfiability problem in order to obtain a stable model as a

1471

starting point for the subsequent search. Due to our restric-
tion to stratified preference programs, this is accomplished
as follows: Given a program P , define P as the program

(P \ {r ∈ P | head(r) = ∅}) ∪
{u← body(r) | r ∈ P, head(r) = ∅} ∪ { ← ∼u} ,

where u is a new atom. Now, if program P is stratified, P is
satisfiable iff P is unsatisfiable. Moreover, let Ets ∪ Fs ∪C
be a stratified preference program for preference statement
s. Then, for all sets X,Y of atoms over A, we have

X �s Y iff Ets ∪ Fs ∪ C ∪HX ∪H ′
Y is satisfiable.

Based on this, we can prove soundness and completeness.

Theorem 2 Given a program P and a preference statement
s, Algorithm 2 computes the set of all �s-preferred stable
models of P .

In addition to the algorithms described above, asprin also
provides algorithms for more complex preferences and for
an axiomatic approach to preferences. Due to space restric-
tions we cannot go into detail here. In brief: Our algorithms
for complex preferences (described elsewhere) build upon
the saturation technique of (Eiter and Gottlob 1995) and the
meta-interpretation-based approach in (Gebser et al. 2011).
In the axiomatic approach, a program is extended so that
the stable models of the extended program correspond to the
preferred stable models of the original one. This extension
is again formulated via saturation (cf. (Gebser et al. 2011)).

The asprin system
We implemented asprin by means of the ASP-Python in-
tegration of clingo 4.4 (Gebser et al. 2014); it is publicly
available at (potassco). In fact, Algorithm 1 and 2 are im-
plemented in Python and interact with a continuously run-
ning clingo object through ground and solve functions.
The current asprin library includes more and less as re-
gards cardinality and weight, respectively, subset
and superset, aso (Brewka et al. 2003), partial orders of
(Giunchiglia and Maratea 2012), lexico, pareto, and
and neg (Son and Pontelli 2006).

Although asprin’s unique characteristics lie in its flexi-
bility and generality, let us investigate how much this costs
confronted with dedicated implementations, and also an-
alyze the effect of preference composition. To this end,
we have gathered 193 benchmark instances from eight dif-
ferent classes: 15-Puzzle, Crossing, and Valves stem from
the ASP competitions7 of 2009 and 2013; Ricochet Robots
from (Gebser et al. 2013a), Circuit Diagnosis from (Sid-
diqi 2011) and adapted to ASP in (Gebser et al. 2013b),
Metabolic Network Expansion from (Schaub and Thiele
2009), Transcription Network Repair from (Gebser et al.
2010), and Timetabling from (Banbara et al. 2013). All
classes involve a single optimization statement; Valves and
Timetabling deal with weight summation, all others with
cardinality. We selected from each class (if possible) the
30 most runtime-consuming instances solvable in 300s by

7Other competition classes were either too easy or too difficult.

clingo 4.4.8 The number of instances is given in parentheses
in the first column of Table 1, followed by the average num-
ber of ground atoms comprised in the optimization state-
ments. Each other entry (above the last line) provides the
average runtime per class with the system indicated in the
column header; the last line gives the overall average and
timeouts. Each run was restricted to 900s CPU time (on In-
tel Xeon dual-core processors with 3.4 GHz and 4 GB RAM
under Linux). Timeouts account for 900s; their respective
number is given in parentheses.

First, let us consider mono-objective cardinality and
weight optimization (c/w) to contrast asprin’s outer solver
optimization with the inner solver one of clingo (using
branch-and-bound in its default setting). Comparing the re-
sults given in the columns headed by clingo and ‘asprinc/w’,
we observe that on average clingo 4.4 takes only one third of
the time needed by asprin (based on the same clingo 4.4 con-
figuration), which moreover times out in 11 cases. This dif-
ference is mainly caused by the respective performance on
Diagnosis, Expansion, and Timetabling instances. Although
all three have optimization statements involving large sets of
atoms, this cannot be the major cause in view of the moder-
ate difference observed on Repair instances. In fact, a closer
look reveals that all three classes exhibit the longest conver-
gence to the optimum. That is, both asprin as well as clingo
enumerate a large number of candidate models before they
find the optimal one. While asprin and clingo inspect on av-
erage 123.87 and 167.35 stable models, they probe 362.64,
291.86, 236 and 361.37, 301.23, 565.58, respectively, on the
aforementioned classes. Although asprin converges glob-
ally even better than clingo, each unsuccessful model makes
it ground further rules. As a result, on these classes asprin
spends 20-50% of its runtime on intermediate grounding,
while this is negligible on all other classes. This is obviously
a bottleneck of our approach; however, it can be remedied
by improving the convergence to the optimum. An effective
way is to suppress memorized phase assignments (Pipatsri-
sawat and Darwiche 2007) among consecutive solve calls,
as offered by clingo’s option --forget. The result can be
seen in the column headed ‘asprinc/w -f’. This strategy re-
sults in an enumeration of only 74.98 models on average and
leads to a corresponding improvement in runtime, although
in some cases we get more timeouts.9

Consider now mono-objective subset optimization (s). In
ASP, this is done via saturation-based encodings using dis-
junctive logic programs. The metasp system reflects this ap-
proach by compiling a normal logic program along with a
subset-oriented optimization statement into such a disjunc-
tive logic program, which can then be solved with clingo 4.4.
The results in the last three columns of Table 1 show that as-
prin (using normal logic programs) outperforms metasp, and
moreover that finding subset-minimal models is even easier
than cardinality-minimal ones (ignoring weights).

Next, let us briefly summarize our experiments on the
impact of preference composition. For this, we turned
the above mono-objective problems into multi-objective

8A cutoff at 900s brought only a handful of additional instances.
9We get a higher average of 358.90 models with Timetabling.

1472

Benchmark \ System clingo asprinc/w asprinc/w -f metasp asprins asprins -f
Ricochet (30) 20.00 104.74 (0) 174.26 (0) 113.45 (0) 811.32 (24) 175.71 (0) 109.91 (0)
Timetabling (12) 23687.75 35.82 (0) 490.39 (5) 694.92 (8) 798.75 (10) 142.03 (0) 12.01 (0)
Puzzle (7) 580.57 77.00 (0) 77.39 (0) 96.70 (0) 34.79 (0) 17.06 (0) 17.22 (0)
Crossing (24) 211.92 48.43 (0) 105.64 (1) 67.50 (0) 62.33 (0) 0.50 (0) 0.46 (0)
Valves (30) 56.63 52.53 (0) 72.85 (0) 78.11 (0) 900.00 (30) 45.01 (0) 39.31 (0)
Expansion (30) 7501.87 91.53 (0) 373.56 (2) 241.05 (7) 900.00 (30) 292.57 (0) 21.12 (0)
Repair (30) 6750.73 71.78 (0) 102.19 (0) 43.94 (0) 900.00 (30) 6.88 (0) 2.19 (0)
Diagnosis (30) 1669.00 84.96 (0) 254.19 (3) 101.33 (0) 181.71 (6) 41.55 (0) 1.56 (0)
Average 70.85 (0) 206.31 (11) 179.63 (15) 573.61 (130) 90.16 (0) 25.47 (0)

Table 1: Comparing different asprin settings with clingo 4.4 and metasp

ones by splitting their optimization statements, which were
then composed in different ways. First, we distribute the
atoms in an optimization statement to obtain 16 statements
of the same type. We then use 1,3,7,15 pareto (or
lexico) statements to compose the 16 ones in a tree-like
fashion. Note that all four representations are equivalent
(and lexico- implies pareto-optimality). As regards
pareto, we observe a similar performance on all four con-
figurations. An exception is observed on Expansion and Re-
pair where a single pareto led to much shorter conver-
gence and hence better performance. Globally, the addition
of pareto led to a worse performance than obtained in Ta-
ble 1; and it gets even worse when using lexico, although
as before all four representations show similar results. Sec-
ond, we divided the atoms in an optimization statement into
1, 2, 4, 8, 16 statements of the same type and connected them
with a single pareto (or lexico) statement. This re-
sults in different preferences with a decreasing number of
preferred models. This is also reflected by asprin’s perfor-
mance that improves with an increasing number of optimiza-
tion statements. A similar behavior with worse performance
is observed with lexico.

Finally, we compared asprin with the system satpref
(di Rosa and Giunchiglia 2013) computing optimal models
of satisfiability problems with partially ordered qualitative
preferences. We ran all the benchmarks of (di Rosa and
Giunchiglia 2013) in the same machine and with the same
time limit as before. For asprin we translated the satisfi-
ability problems to ASP and used option --forget, and
for satpref we used the approach optsat-bf.10 On random
benchmarks asprin is faster, it takes 59.54 seconds average
time and 99 timeouts, while satpref needs 101.38 seconds
and timeouts 182 times. On structured benchmarks the pic-
ture is different and satpref is faster: asprin spends 103.16
seconds on average and does 195 timeouts, while satpref av-
erage time goes down to 15.16 seconds and timeouts only 26
times.

Discussion
This paper introduces a general, flexible and extendable
framework for preference handling in ASP. Our intention
was not primarily to come up with new preference relations

10A comparison between both systems modifying the heuristic
of the underlying solver is left as future work.

on stable models that have not been previously studied (al-
though one can certainly introduce such new relations in
asprin). Rather our goal was to provide ASP technology
matching the substantial research on preference handling in
ASP and beyond. Essentially, we want to put this research
into practice. We believe that asprin may play a similar role
for answer set optimization (Brewka et al. 2003) as the de-
velopment of efficient ASP solvers had in boosting the basic
answer set solving paradigm.

We expect two types of users: those who are happy using
the preference relations in the asprin library, and those who
want to exploit the extensibility of the system and define
their own preference orderings. For the former, much of the
technical capabilities of the system are not needed. In fact,
they can use asprin as a preference handling system where
all one needs to know are the available preference types and
their arguments. For the latter type of users, let’s call them
preference engineers, the system provides all the additional
functionality to define interesting new preference orderings.

There is a large body of work on preferences in logic
programming. This literature is too large to be discussed
here in detail; see (Delgrande et al. 2004) for a compre-
hensive (though somewhat dated) overview and (Costan-
tini et al. 2010) for more recent work on preferences re-
lated to (quantitative) resources. A study of the computa-
tional complexity of the ASO approach with related algo-
rithms can be found in (Zhu and Truszczyński 2013). Our
algorithms are inspired by ideas in (Brewka et al. 2003;
Giunchiglia and Maratea 2012; Gebser et al. 2011), but
while the methods presented in those papers are defined for
specific types of preferences, our algorithms can handle any
preference type defined in ASP. In fact, most approaches one
encounters in the literature can be modelled in our system.
This includes established ASP optimization techniques like
#minimize directives (Simons et al. 2002) and weak con-
straints (Leone et al. 2006), but also ASO (Brewka et al.
2003), the proposal in (Giunchiglia and Maratea 2012) and
the language for specifying preferences in planning domains
in (Son and Pontelli 2006). Arguably, the approach clos-
est to ours is (Brewka 2004), in which a specific preference
language with a predefined set of preference relations and
combination methods is specified. However, this latter lan-
guage is fixed and lacks the flexibility of our approach, and
the only reasoning problem addressed is computing a single
preferred model.

1473

Acknowledgement This work was partly supported by
DFG research unit FOR 1513 (HYBRIS). The second au-
thor was partially supported by a Canadian NSERC Discov-
ery Grant.

References
Apt, K.; Blair, H.; Walker, A. 1987. Towards a the-
ory of declarative knowledge. Foundations of Deductive
Databases and Logic Programming. Morgan Kaufmann,
89–148.
Banbara, M.; Soh, T.; Tamura, N.; Inoue, K.; Schaub, T.
2013. Answer set programming as a modeling language for
course timetabling. Theory and Practice of Logic Program-
ming 13(4-5):783–798.
Baral, C. 2003. Knowledge Representation, Reasoning and
Declarative Problem Solving. Cambridge University Press.
Bienvenu, M.; Lang, J.; Wilson, N. 2010. From preference
logics to preference languages, and back. In (Lin and Sattler
2010), 414–424.
Brewka, G.; Niemelä, I.; Truszczyński, M. 2003. Answer set
optimization. Proceedings of the Eighteenth International
Joint Conference on Artificial Intelligence (IJCAI’03), 867–
872. Morgan Kaufmann.
Brewka, G. 2004. Complex preferences for answer set op-
timization. Proceedings of the Ninth International Confer-
ence on Principles of Knowledge Representation and Rea-
soning (KR’04), 213–223. AAAI Press.
Cabalar, P.; Son, T., eds. 2013. Proceedings of the Twelfth
International Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR’13). Springer.
Calimeri, F.; Faber, W.; Gebser, M.; Ianni, G.; Kaminski,
R.; Krennwallner, T.; Leone, N.; Ricca, F.; Schaub, T. 2012.
ASP-Core-2: Input language format.
Coste-Marquis, S.; Lang, J.; Liberatore, P.; Marquis, P.
2010. Expressive Power and Succinctness of Propositional
Languages for Preference Representation. In (Lin and Sat-
tler 2010), 203–212.
Costantini, S.; Formisano, A.; Petturiti, D. 2010. Extending
and implementing RASP. Fundamenta Informaticae 105(1-
2):1–33.
Delgrande, J.; Schaub, T.; Tompits, H.; Wang, K. 2004. A
classification and survey of preference handling approaches
in nonmonotonic reasoning. Computational Intelligence
20(2):308–334.
di Rosa, E.; Giunchiglia, E. 2013. Combining approaches
for solving satisfiability problems with qualitative prefer-
ences. AI Communications 26(4):395–408.
Eiter, T.; Gottlob, G. 1995. On the computational cost of
disjunctive logic programming: Propositional case. Annals
of Mathematics and Artificial Intelligence 15(3-4):289–323.
Gebser, M.; Guziolowski, C.; Ivanchev, M.; Schaub, T.;
Siegel, A.; Thiele, S.; Veber, P. 2010. Repair and predic-
tion (under inconsistency) in large biological networks with
answer set programming. In (Lin and Sattler 2010), 497–
507.

Gebser, M.; Kaminski, R.; Kaufmann, B.; Schaub, T. 2012.
Answer Set Solving in Practice. Morgan and Claypool.
Gebser, M.; Jost, H.; Kaminski, R.; Obermeier, P.; Sabuncu,
O.; Schaub, T.; Schneider, M. 2013a. Ricochet robots:
A transverse ASP benchmark. In (Cabalar and Son 2013),
348–360.
Gebser, M.; Kaufmann, B.; Otero, R.; Romero, J.; Schaub,
T.; Wanko, P. 2013b. Domain-specific heuristics in answer
set programming. Proceedings of the Twenty-Seventh Na-
tional Conference on Artificial Intelligence (AAAI’13), 350–
356. AAAI Press.
Gebser, M.; Kaminski, R.; Kaufmann, B.; Schaub, T. 2014.
Clingo = ASP + control: Preliminary report. Technical
Communications of the Thirtieth International Conference
on Logic Programming (ICLP’14). Theory and Practice of
Logic Programming, Online Supplement.
Gebser, M.; Kaminski, R.; Schaub, T. 2011. Complex opti-
mization in answer set programming. Theory and Practice
of Logic Programming 11(4-5):821–839.
Giunchiglia, E.; Maratea, M. 2012. Algorithms for solv-
ing satisfiability problems with qualitative preferences. Cor-
rect Reasoning: Essays on Logic-Based AI in Honour of
Vladimir Lifschitz, 327–344. Springer.
Leone, N.; Pfeifer, G.; Faber, W.; Eiter, T.; Gottlob, G.;
Perri, S.; Scarcello, F. 2006. The DLV system for knowl-
edge representation and reasoning. ACM Transactions on
Computational Logic 7(3):499–562.
Lin, F.; Sattler, U., eds. 2010. Proceedings of the Twelfth
International Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR’10). AAAI Press.
Pipatsrisawat, K.; Darwiche, A. 2007. A lightweight com-
ponent caching scheme for satisfiability solvers. Proceed-
ings of the Tenth International Conference on Theory and
Applications of Satisfiability Testing (SAT’07), 294–299.
Springer.
Potassco. http://potassco.sourceforge.net
Schaub, T.; Thiele, S. 2009. Metabolic network expan-
sion with ASP. Proceedings of the Twenty-fifth Interna-
tional Conference on Logic Programming (ICLP’09), 312–
326. Springer.
Siddiqi, S. 2011. Computing minimum-cardinality diag-
noses by model relaxation. Proceedings of the Twenty-
second International Joint Conference on Artificial Intelli-
gence (IJCAI’11), 1087–1092. IJCAI/AAAI.
Simons, P.; Niemelä, I.; Soininen, T. 2002. Extending and
implementing the stable model semantics. Artificial Intelli-
gence 138(1-2):181–234.
Son, T.; Pontelli, E. 2006. Planning with preferences using
logic programming. Theory and Practice of Logic Program-
ming 6(5):559–608.
Zhu, Y.; Truszczyński, M. 2013. On optimal solutions of an-
swer set optimization problems. In (Cabalar and Son 2013),
556–568.

1474

