
Splitting a Logic Program Revisited

Jianmin Ji
School of Computer Science and Technology

University of Science and Technology of China
Hefei 230027, China
jianmin@ustc.edu.cn

Hai Wan,∗ Ziwei Huo, Zhenfeng Yuan
School of Software

Sun Yat-sen University
Guangzhou 510006, China
wanhai@mail.sysu.edu.cn

Abstract

Lifschitz and Turner introduced the notion of the split-
ting set and provided a method to divide a logic program
into two parts. They showed that the task of computing
the answer sets of the program can be converted into the
tasks of computing the answer sets of these parts. How-
ever, the empty set and the set of all atoms are the only
two splitting sets for many programs, then these pro-
grams cannot be divided by the splitting method. In this
paper, we extend Lifschitz and Turner’s splitting set the-
orem to allow the program to be split by an arbitrary set
of atoms, while some new atoms may be introduced in
the process. To illustrate the usefulness of the result, we
show that for some typical programs the splitting pro-
cess is efficient and the program simplification problem
can be investigated using the concept of splitting.

Introduction
The notion of the splitting set was first introduced by Lifs-
chitz and Turner (1994). Using a splitting set, a logic pro-
gram can be divided into two parts, i.e., the “bottom” part
and the “top” part, the “bottom” part of which only men-
tions atoms in the splitting set. Moreover, the answer sets of
the program can be computed by first computing the answer
sets of the “bottom” part and then using them in the “top”
part to determine values of the rest atoms.

The idea of splitting has been proved to be a useful
method to decompose programs and a helpful tool to inves-
tigate answer set semantics (Dao-Tran et al. 2009). Lifschitz
and Turner’s splitting set theorem has been considered as
the theoretical foundation for the incremental ASP solver,
iclingo (Gebser et al. 2008). Beside, this idea has been ex-
tended to logic programs with nested expressions (Oikarinen
and Janhunen 2008) and arbitrary first-order formulas with
stable model semantics (Ferraris et al. 2009).

However, in many applications, the empty set and the set
of all atoms are the only two splitting sets of the program.
Then the program cannot be divided using Lifschitz and
Turner’s splitting method. In this paper, we propose a new
splitting method that allows the program to be split into two
parts by an arbitrary set of atoms, while one of them, the
∗Corresponding author

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

“top” part, may introduce some new atoms. We show that
the task of computing the answer sets of the program can
be converted into the tasks of computing the answer sets of
these parts. The result extends Lifschitz and Turner’s split-
ting set theorem. When a splitting set is used to split a pro-
gram, the splitting result in our method is the same as the
result in Lifschitz and Turner’s splitting method.

The usefulness of the result is illustrated through two as-
pects. First, we discuss some computational complexity is-
sues related to the splitting method. We show that for some
typical programs the splitting process is efficient, which im-
plies some potential applications. Second, we use the con-
cept of splitting to investigate the program simplification
problem, i.e., how to simplify a program by a set of atoms
that are satisfied by every answer set of the program. We
show that this problem can be regarded as a splitting prob-
lem, which results a new approach to simplify a program.

Preliminaries
Logic Programs

In this paper, we consider only fully grounded finite logic
programs. A (disjunctive) logic program (DLP) is a finite
set of (disjunctive) rules of the form
a1 ∨ · · · ∨ak ← ak+1, . . . , am, not am+1, . . . , not an. (1)

where n ≥ m ≥ k ≥ 1 and a1, . . . , an are atoms. If k = 1,
it is a normal rule. In particular, a normal logic program
(NLP) is a finite set of normal rules. With a slight abuse of
the notion, a formula of the form

← ak+1, . . . , am, not am+1, . . . , not an.
is considered as an abbreviation of the rule

f ← not f, ak+1, . . . , am, not am+1, . . . , not an.
where f is a new atom that does not appear in other rules.

We will also write rule r of form (1) as
head(r)← body(r).

where head(r) is a1 ∨ · · · ∨ ak, body(r) = body+(r) ∧
body−(r), body+(r) is ak+1 ∧ · · · ∧ am, and body−(r)
is ¬am+1 ∧ · · · ∧ ¬an, and we identify head(r),
body+(r), body−(r) with their corresponding sets of atoms,
and body(r) the set {ak+1, . . . , am, not am+1, . . . , not an}.
We denote Atoms(r) = head(r) ∪ body+(r) ∪ body−(r).
Let R be a set of rules, we denote head(R) =⋃

r∈R head(r), body+(R) =
⋃

r∈R body
+(r), and

Atoms(R) =
⋃

r∈RAtoms(r).

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

1511

A set S of atoms satisfies a propositional formula φ, writ-
ten as S |= φ, is defined following the usual recursive con-
ditions. We say S satisfies a rule r, if S |= body(r) implies
S |= head(r). S satisfies a program P , if S satisfies all rules
in P .

The answer sets of a DLP are defined in (Gelfond and
Lifschitz 1991). Given a DLP P and a set S of atoms, the GL
transformation of P on S, written PS , is obtained from P
by deleting:

1. each rule that has not p in its body with p ∈ S, and
2. all not p in the bodies of the remaining rules.
For any S, PS has a set of minimal models, denoted Γ(PS).
Now a set S of atoms is an answer set of P iff S ∈ Γ(PS).

Loops and Loop Formulas
The notions of loops and loop formulas were first proposed
by Lin and Zhao (2004) for NLPs. They showed that a set of
atoms is an answer set of an NLP iff it satisfies both the loop
formulas and the program. Lee and Lifschitz (2003) extend
the notions and result to DLPs.

Given a DLP P , the positive dependency graph of P , writ-
ten GP , is the directed graph whose vertices are atoms in P ,
and there is an arc from p to q if there is a rule r ∈ P s.t.
p ∈ head(r) and q ∈ body+(r). A set L of atoms is said to
be a loop of P if the L-induced subgraph of GP is strongly
connected. Note that, every singleton whose atom occurs in
P is also a loop of P .
Example 1 Consider the logic program P1:

a← not d. d← not c. a← c, d. c← a.
Figure 1 shows the positive dependency graph GP1

. {a, c},
{a}, {c}, and {d} are loops of P1.

ac d

Figure 1: The positive dependency graph of program P1

Given a loop L, a rule r is an external support of L if
head(r) ∩ L 6= ∅ and L ∩ body+(r) = ∅. In the following,
let R−(L,P) be the set of external support rules of L. The
function R− can be defined for any set E of atoms, i.e.,
R−(E,P) = {r ∈ P | head(r) ∩ E 6= ∅, E ∩ body+(r) = ∅}.
Given a set X of atoms, the set of external support rules of
E under X , denoted R−(E,P,X), is the set of rules r s.t.
r ∈ R−(E,P) and X |= body(r) ∧

∧
q∈head(r)\E ¬q.

The (conjunctive) loop formula of a set L of atoms under
a program P , written LF (L,P), is the following implication∧

p∈L

p ⊃
∨

r∈R−(L,P)

body(r) ∧
∧

q∈head(r)\L

¬q

 .

Theorem 1 (Theorem 1 in (Lee and Lifschitz 2003)) Let
P be a logic program and S a set of atoms. If S satisfies P ,
then the following conditions are equivalent:

1. S is an answer set of P ;
2. S satisfies LF (L,P) for all loops L of P .
3. S satisfies LF (E,P) for all sets E of atoms of P .

Splitting Sets
Lifschitz and Turner (1994) introduced the notion of the
splitting set and provided a method to split a logic program

into the “bottom” part and the “top” part based on the no-
tion. They showed that the answer sets of the program can
be computed by first computing the answer sets of the “bot-
tom” part and then using them in the “top” part to determine
values of the rest atoms.

A set U of atoms is called a splitting set of a program P ,
if for each r ∈ P , head(r)∩U 6= ∅ impliesAtoms(r) ⊆ U .
The set of rules r ∈ P s.t. head(r)∩U 6= ∅ is called the bot-
tom of P w.r.t. U and denoted by bU (P). The set P \ bU (P)
is the top of P w.r.t. U . Note that, bU (P) for a splitting set
U of a program P mentions only atoms in U .
Example 2 Consider the logic program P2:

a← not d. d← not c. a← c, d. c← .
{c, d} is a splitting set of P2 and the bottom of P w.r.t. {c, d}
is b{c,d}(P2) = {d← not c. c← .}.

Let U , X be sets of atoms, and P a program, we denote
eU (P,X) the set of rules obtained from P by deleting:

1. each rule r s.t. head(r)∩X 6= ∅, body+(r)∩U 6⊆ X , or
(body−(r) ∩ U) ∩X 6= ∅;

2. all formulas of the form a or not a where a ∈ U in the
bodies of the remaining rules.

For example, e{c,d}(P2 \ b{c,d}(P2), {c}) = {a← .}.
Let U be a splitting set of a program P . A solution of P

w.r.t. U is a pair 〈X,Y 〉 of sets of atoms s.t.

• X is an answer set of bU (P),
• Y is an answer set of eU (P \ bU (P), X).

For example, 〈{c} , {a}〉 is a solution of P2 w.r.t. {c, d}.
Theorem 2 (Splitting Set Theorem) Let U be a splitting
set of a program P . A set S is an answer set of P iff
S = X ∪ Y for some solution 〈X,Y 〉 of P w.r.t. U .

Splitting a Normal Logic Program
Lifschitz and Turner’s splitting set theorem requires the pro-
gram to be split by a splitting set. However in many appli-
cations, the empty set and the set of all atoms are the only
two splitting sets of the program, like program P1 in Exam-
ple 1, then the program cannot be divided with the splitting
method, which limits the applicability of the theorem.

Here we extend the splitting set theorem for NLPs to al-
low the program to be split by an arbitrary set of atoms. We
want to show that an NLP P can be split by a set U of atoms
into the “bottom” part Pb and the “top” part Pt, while new
atoms might be introduced in Pt. Then an answer set of P
can be computed from an answer set X of Pb and an answer
set Y of a program constructed from Pt using X .

First, we introduce some notions. Let U , X be sets of
atoms, P an NLP, bU (P) and eU (P,X) defined the same
as the notions in the previous section. ECU (P) denotes the
set
{p← not p′. p′ ← not p. | p ∈ Atoms(bU (P)) \ U} ,

where p′ is a new atom w.r.t. the atom p. ECCU (P,X) de-
notes the set
{← not p. | p ∈ Atoms(bU (P)) \ U and p ∈ X}

∪ {← p. | p ∈ Atoms(bU (P)) \ U and p /∈ X}
Note that, if U is a splitting set, thenAtoms(bU (P))\U = ∅
and ECU (P) = ECCU (P,X) = ∅.

1512

Intuitively, for every atom p that occurs in bU (P) but not
in U , ECU (P) acts as the set of disjunctions, p ∨ not p.
ECCU (P,X) states that, for such atom p, p is required to
be true iff p appears in X . Then we have the proposition.

Proposition 1 Let P be an NLP and U a set of atoms. A set
S ⊆ Atoms(P) satisfies P iff S = (X ∪ Y) ∩ Atoms(P)
for some sets X and Y s.t.

• X satisfies bU (P) ∪ ECU (P), and
• Y satisfies eU (P \ bU (P), X) ∪ ECCU (P,X).

Example 1 (Continued) We use U = {a} to split the pro-
gram P1, then

bU (P1) = {a← not d. a← c, d.} ,
ECU (P1) = {c← not c′. c′ ← not c.

d← not d′. d′ ← not d.}.
Let X = {a, c, d′} which satisfies bU (P1) ∪ ECU (P1), then

eU (P1 \ bU (P1), X) = {d← not c. c← .} ,
ECCU (P1, X) = {← not c. ← d.} .

Let Y = {c} which satisfies eU (P1 \ bU (P1), X) ∪
ECCU (P1, X), then the set X ∪ Y = {a, c, d′} satisfies P1.

Now we consider how loop formulas of loops are influ-
enced by splitting the program.

Let P be an NLP and U a set of atoms, the in-rules of P
w.r.t. U , denoted by inU (P), is the set of rules r ∈ P s.t.
head(r) ∩ U 6= ∅ and (body+(r) ∪ head(r)) 6⊆ U ; the out-
rules of P w.r.t. U , denoted by outU (P), is the set of rules
r ∈ P s.t. (body+(r)∪head(r))∩U 6= ∅ and head(r) 6⊆ U .
P is an NLP, then for each r ∈ P either head(r) ∩ U 6= ∅
or head(r) 6⊆ U , but not both. So inU (P) ⊆ bU (P) and
outU (P) ⊆ P \ bU (P).

A nonempty set E of atoms is a semi-loop of P w.r.t. U if
there exists a loop L of P s.t. E = L ∩ U and E ⊂ L. Let
X be a set of atoms, we denote
SLU (P,X) = {E | E is a semi-loop of P w.r.t. U ,

E ⊆ X and R−(E,P,X) ⊆ inU (P)}.
Intuitively, a semi-loop E is in SLU (P,X), if there exists a
loop L of P s.t. E ⊂ L and LF (L,P) is not satisfied by X .
Example 1 (Continued) Let U = {a},X = {a, c, d′}, and
X ′ = {a, c, d},

inU (P1) = {a← c, d.} , outU (P1) = {c← a.} .
{a} is the only semi-loop of P1 w.r.t. U , R−({a}, P1, X) =
{a← not d.} and R−({a}, P1, X

′) = {a← c, d.}, then
SLU (P1, X) = ∅ and SLU (P1, X

′) = {{a}}.
Let P be an NLP and U , X sets of atoms, the top of P

w.r.t. U under X , denoted by tU (P,X), is the union of the
following sets of rules:

• P \ (bU (P) ∪ outU (P)),
• {xE ← body(r) | r ∈ inU (P) and r ∈ R−(E,P,X) },

for each E ∈ SLU (P,X),
• {head(r) ← xE1 , . . . , xEt , body(r) | r ∈ outU (P),

for all possible Ei ∈ SLU (P,X) (1 ≤ i ≤ t) s.t.
body+(r) ∩ Ei 6= ∅ },

where xE’s are new atoms w.r.t. E ∈ SLU (P,X). Note that,
if SLU (P,X) = ∅, then tU (P,X) = P \ bU (P). A solution
of P w.r.t. U is a pair 〈X,Y 〉 of sets of atoms s.t.

• X is an answer set of bU (P) ∪ ECU (P),

• Y is an answer set of eU (tU (P,X), X) ∪ ECCU (P,X).

Example 1 (Continued) Let U = {a},X = {a, c, d′}, and
X ′ = {a, c, d}, then
tU (P1, X) = {d← not c. c← a.},
tU (P1, X

′) = {d← not c. x{a} ← c, d. c← x{a}, a.}.
The pair 〈X, {c}〉 is a solution of P w.r.t. U . Meanwhile,
eU (tU (P,X ′), X ′) ∪ ECCU (P,X ′) is the program:
d← not c. x{a} ← c, d. c← x{a}. ← not c. ← not d.
which does not have an answer set.

Lemma 1 For any NLP P and set U of atoms, if 〈X,Y 〉 is
a solution of P w.r.t. U and SLU (P,X) = ∅, then (X∪Y)∩
Atoms(P) is an answer set of P .

Intuitively, SLU (P,X) = ∅, then there does not exist a
loop L of P s.t. L ∩ U 6= ∅, L ∩ (Atoms(P) \ U) 6= ∅,
and X ∪ Y 6|= LF (L,P). So (X ∪ Y)∩Atoms(P) satisfies
loop formulas for all loops of P . From Proposition 1 and Lin
and Zhao’s theorem, (X ∪ Y) ∩Atoms(P) is an answer set
of P .

Theorem 3 Let P be an NLP and U a set of atoms. A set S
is an answer set of P iff S = (X ∪Y)∩Atoms(P) for some
solution 〈X,Y 〉 of P w.r.t. U .

We omit the proof here due to the limit of space.
If U is a splitting set of P , then for any set X of

atoms, SLU (P,X) = ∅, tU (P,X) = P \ bU (P), and
ECU (P) = ECCU (P,X) = ∅. Theorem 3 extends Lifschitz
and Turner’s splitting set theorem to allow the program to be
split by arbitrary sets of atoms.

Computational Complexity Issues
In the previous section, we have provided a new splitting
method to split an NLP into parts. The result extends Lif-
schitz and Turner’s splitting set theorem and has its own
theoretical interests in the investigation of the answer set
semantics as illustrated in next sections. Here we discuss
some computational complexity issues related to the split-
ting method.

When an NLP P is split by a set U of atoms and X is an
answer set of the “bottom” part bU (P)∪ECU (P), two main
issues that have impact on the computational complexity of
the splitting process are:

(i) rules inECU (P) would introduce 2|Atoms(bU (P))\U | num-
ber of answer sets for the program bU (P) ∪ ECU (P),

(ii) the size of |SLU (P,X)|would be exponential in the num-
ber of atoms in P and tU (P) would introduce an exponen-
tial number of new atoms (in the form of xE).
For the issue (i), there are two cases that could release the

computational complexity:
• the size of |Atoms(bU (P)) \ U | is small,
• atoms in U are satisfied by every answer set of P .

When the size of |Atoms(bU (P)) \ U | is small, the size of
2|Atoms(bU (P))\U | is not too large, then computing all answer
sets for the program bU (P) ∪ ECU (P) is tractable.

When atoms in U are satisfied by every answer set of P ,
we only need to consider the answer set X of the program
bU (P) ∪ ECU (P) s.t. U ⊆ X , which would greatly reduce

1513

the number of answer sets that need to be considered in the
splitting process. Moreover, in a next section, we will show
that this case is related to the problem of program simplifi-
cation and a new simplifying method would be introduced
using the concept of splitting.

For the issue (ii), we first introduce two useful cases
where SLU (P,X) = ∅.

A program P is tight if every loop of P is a singleton. A
set U of atoms is called a separating set of a program P , if
there does not exist a loop L of P s.t. L 6⊆ U and L∩U 6= ∅.
Proposition 2 For any NLP P and set U of atoms, if P is
tight or U is a separating set of P , then SLU (P,X) = ∅.

Now we show that not all semi-loops in SLU (P,X) are
necessary for the splitting process. We introduce a subset of
SLU (P,X) and refine the splitting method by considering
these semi-loops only.

Let P be an NLP and U a set of atoms, a semi-loop E of
P w.r.t. U is dominated by another semi-loop E′ of P w.r.t.
U , if E ⊂ E′, E ∩ head(inU (P)) = E′ ∩ head(inU (P)),
and E ∩ body+(outU (P)) = E′ ∩ body+(outU (P)). Intu-
itively, if E is dominated by E′, then in the “top” part of the
program, the loop formulas of loops relative to E could be
entailed from the loop formulas of loops relative to E′.

Let P be a program, U and X sets of atoms, we denote
DSLU (P,X) = {E | E ∈ SLU (P,X) and there does not

exist another E′ ∈ SLU (P,X) s.t. E is dominated by E′}.
Clearly, DSLU (P,X) ⊆ SLU (P,X). Moreover, we have

the following proposition.

Proposition 3 Let P be an NLP and U , X sets of atoms. A
semi-loop E ∈ DSLU (P,X) iff E is the union of all possi-
ble semi-loop E′ ∈ SLU (P,X) s.t. E ∩ head(inU (P)) =
E′ ∩ head(inU (P)) and E ∩ body+(outU (P)) = E′ ∩
body+(outU (P)).

Then we provide a new splitting method based on
DSLU (P,X). Let P be an NLP and U , X sets of atoms,
the dominative top of P w.r.t. U under X , denoted by
dtU (P,X), is the union of the following sets of rules:
• P \ (bU (P) ∪ outU (P)),
• {xE ← body(r) | r ∈ inU (P) and r ∈ R−(E,P,X) },

for each E ∈ DSLU (P,X),
• {head(r) ← xE1 , . . . , xEt , body(r) | r ∈ outU (P),

for all possible Ei ∈ DSLU (P,X) (1 ≤ i ≤ t) s.t.
body+(r) ∩ Ei 6= ∅ },

where xE’s are new atoms w.r.t. E ∈ DSLU (P,X).
A dominative solution of P w.r.t. U is a pair 〈X,Y 〉 of

sets of atoms s.t.
• X is an answer set of bU (P) ∪ ECU (P),
• Y is an answer set of eU (dtU (P,X), X)∪ECCU (P,X).

Theorem 4 Let P be an NLP and U a set of atoms. A set S
is an answer set of P iff S = (X ∪Y)∩Atoms(P) for some
dominative solution 〈X,Y 〉 of P w.r.t. U .

Note that |DSLU (P,X)| ≤ (2|head(inU (P))| − 1) ×
(2|body

+(outU (P))| − 1). dtU (P,X) would introduce an ex-
ponential number of new atoms in the worst case. However,
if |head(inU (P))| and |body+(outU (P))| are small, then

the size of |DSLU (P,X)| would not be too large and com-
puting the answer sets of the program eU (dtU (P,X), X) ∪
ECCU (P,X) would be tractable.

Algorithm 1: dslU (P,X)

1 dsl := ∅;
2 for each pair of nonempty sets S1 ⊆ head(inU (P))

3 and S2 ⊆ body+(outU (P)) do
4 GS

P := the S1 ∪ S2 ∪ (Atoms(P) \ (head(inU (P)) ∪
body+(outU (P)))) induced subgraph of GP ;

5 L := the Strongly Connected Component (SCC) of GS
P

s.t. S1 ∪ S2 ⊆ L;
6 if L does not exist then
7 break

8 if L ∩ U ⊆ X and R−(L ∩ U,P,X) ⊆ inU (P) then
9 append L ∩ U to dsl

10 else
11 S := head(R−(L ∩ U,P,X) \ inU (P))∪

((L ∩ U) \X);
12 GS

P := the L \ S induced subgraph of GP ;
13 goto 5

14 return dsl

We provide Algorithm 1 for computing DSLU (P,X). In-
tuitively, for every possible combination of nonempty sub-
sets of head(inU (P)) and body+(outU (P)), dslU (P,X)
tries to find out the largest semi-loop E ∈ SLU (P,X) that
contains the combination.
Proposition 4 Let P be an NLP and U , X sets of atoms.
dslU (P,X) returns DSLU (P,X) in O(m2c), where m is
the number of atoms in U and c is the number of atoms in
head(inU (P)) ∪ body+(outU (P)).

Once the splitting process for a set U of a program P is
efficient, instead of directly computing an answer set of P ,
we can first compute an answer set X of bU (P) ∪ ECU (P)
and an answer set Y of eU (dtU (P,X), X) ∪ ECCU (P,X),
then construct the answer set of P from X ∪ Y . We show
that for some typical programs the later approach is more
efficient.

We try Niemelä’s (1999) encoding of the Hamiltonian
Circuit (HC) problem1 and consider graphs with two parts,
A and B, s.t. there is exactly one arc from a node in A to
a node in B, and one arc from a node in B to a node in A.
Then any HC of the graph must go through these two arcs.

Let P be the resulting program of the HC problem for
such a graph, and U be the set of atoms corresponding to
nodes and arcs in part A. Then the splitting process for P
under U is efficient.2 In particular, |Atoms(bU (P)) \ U | =
3, every atom in Atoms(bU (P)) \ U is satisfied in every
answer set of P , and |DSLU (P,X)| = 1 for any possible
X . Moreover, every answer set X of bU (P) ∪ {p← . | p ∈

1 The structure of a graph for the HC problem is similar to the
structure of the positive dependency graph of the logic program.

2.http://ss.sysu.edu.cn/%7ewh/splitting.html

1514

Atoms(bU (P)) \U} would lead to a dominative solution of
P w.r.t. U .

Table 1 contains the running times for these programs
split in such way.3 We consider 2-N as graphs with 2 copies
of the complete graph with N nodes and with exactly one
arc from each other. For each 2-N entry in the table, we
randomly create 10 different such graphs, and the reported
times refer the average times for the resulting 10 programs.
The numbers under “whole” refer to the running times (in
seconds) of clasp (version 3.1.0 (Gebser et al. 2007)) for the
whole programs. The numbers under “bottom” (resp. “top”)
refer to the running times of clasp for the bottom (resp.
top) part of the programs split by the corresponding set U .
Clearly, the numbers under “bottom + top” refer to the run-
ning times of computing an answer set of the programs using
the splitting approach. As can be seen, it is more efficient to
use the splitting approach for these programs.
Table 1: Comparing two ways of computing an answer set

Problem whole bottom top bottom+top
2-10 0.03 0.01 0.02 0.03
2-15 0.53 0.03 0.16 0.19
2-20 1.84 0.03 0.68 0.71
2-25 5.56 0.07 2.25 2.31
2-30 14.07 0.15 5.66 5.81
2-35 27.16 0.23 12.61 12.83
2-40 52.53 0.32 23.61 23.93
2-45 106.93 0.59 48.73 49.32
2-50 171.94 0.75 80.95 81.70

Splitting a Disjunctive Logic Program
In this section, we extend the splitting method to DLPs.
Let P be a DLP and U , X sets of atoms, the notions
of bU (P), eU (P,X), ECU (P), ECCU (P,X), inU (P),
outU (P), SLU (P,X), and DSLU (P,X) are defined the
same. Different from NLPs, for some DLPs P , inU (P) ∩
outU (P) 6= ∅.

The top of a DLP P w.r.t. U under X , denoted by
tU (P,X), is the union of the following sets of rules:

• P \ (bU (P) ∪ outU (P)),
• {{xE} ∪ head(r) \ E ← body(r) | r ∈ inU (P) and r ∈
R−(E,P,X)}, for each E ∈ SLU (P,X),
• {head(r) ← xE1

, . . . , xEt
, body(r) | r ∈ outU (P), for

all possible Ei ∈ SLU (P,X) (1 ≤ i ≤ t) s.t. body+(r)∩
Ei 6= ∅ },

where xE’s are new atoms w.r.t. E ∈ SLU (P,X).
Example 3 Let U = {a} and P3 be the program:

a ∨ d← . d← not c. a← c, d. c← a.
GP3 is the same as GP1 in Figure 1. Then

bU (P3) = inU (P3) = {a ∨ d← . a← c, d.},
outU (P3) = {a ∨ d← . c← a.}.

X = {a, c, d} is an answer set of bU (P3) ∪ ECU (P3), then
R−({a}, P3, X) = {a ← c, d}, SLU (P3, X) = {{a}}. So
tU (P3, X) = {d← not c. x{a} ← c, d. c← x{a}, a.} and
eU (tU (P3, X), X) ∪ ECCU (P3, X) is the program: {d ←

3 Our experiments were done on a Linux machine with AMD
A10-5800K (3.8GHz) CPU and 3.3GB RAM. The times are in
CPU seconds as reported by Linux “usr/bin/time” command.

not c. x{a} ← c, d. c ← x{a}. ← not c. ← not d.}
which does not have an answer set.

The dominative top of a DLP P w.r.t. U under X , de-
noted by dtU (P,X), is the union of above sets of rules by re-
placing every occurrence of SLU (P,X) with DSLU (P,X).
Then the notions of solutions and dominative solutions of P
w.r.t U are defined the same as in previous sections.
Theorem 5 Let P be a DLP and U a set of atoms. A set S
is an answer set of P iff S = (X ∪Y)∩Atoms(P) for some
solution 〈X,Y 〉 of P w.r.t. U iff S = (X ∪ Y) ∩Atoms(P)
for some dominative solution 〈X,Y 〉 of P w.r.t. U .

The computational complexity issues related to the split-
ting method for DLPs are also similar to the issues discussed
above. Proposition 3 and 4 still hold for DLPs.

Strong Splitting a Logic Program
In (Lifschitz and Turner 1994), a logic program P is split
by a splitting set U into two parts, bU (P) and P \ bU (P).
For any program P ′ that does not contain atoms in U , the
answer sets of P ∪P ′ can be computed from the answer sets
of bU (P) and the answer sets of a program constructed from
(P \bU (P))∪P ′. However, the property does not hold for ar-
bitrary sets of atoms in our splitting method. In this section,
we propose a new splitting method in which the property
holds for all possible sets of atoms.

In particular, when U is a splitting set of the program, we
have the following proposition.
Proposition 5 Let U be a splitting set of a program P and
P ′ a program s.t. Atoms(P ′)∩U = ∅. A set S is an answer
set of P ∪P ′ iff S = X∪Y for some answer setX of bU (P)
and some answer set Y of eU (P \ bU (P), X) ∪ P ′.

Now we introduce the strong splitting method. Let P be a
DLP and U , X sets of atoms, we denote
SSU (P,X) = {E | E is a nonempty subset of U,

E ⊆ X and R−(E,P,X) ⊆ inU (P)}.
Intuitively, SSU (P,X) extends SLU (P,X) from semi-loops
of P w.r.t. U to all possible subsets of U . Note that, for ev-
ery program P ′ s.t. Atoms(P ′) ∩ U = ∅, bU (P ∪ P ′) =
bU (P) and for every set X of atoms, SLU (P ∪ P ′, X) ⊆
SSU (P,X). If U is a splitting set of P , then for any set X ,
SSU (P,X) = ∅.

We define the strong top of P w.r.t. U under X , denoted
by stU (P,X), to be the union of the following sets of rules:
• P \ (bU (P) ∪ outU (P)),
• {{xE} ∪ head(r) \ E ← body(r) | r ∈ inU (P) and r ∈
R−(E,P,X)}, for each E ∈ SSU (P,X),

• {head(r) ← xE1 , . . . , xEt , body(r) | r ∈ outU (P), for
all possible Ei ∈ SSU (P,X) (1 ≤ i ≤ t) s.t. body+(r)∩
Ei 6= ∅ },

where xE’s are new atoms w.r.t. E ∈ SSU (P,X).
A strong solution of P w.r.t. U is a pair 〈X,Y 〉 of sets of

atoms s.t.
• X is an answer set of bU (P) ∪ ECU (P),
• Y is an answer set of eU (stU (P,X), X)∪ECCU (P,X).

We show that, such strong splitting method also general-
izes Lifschitz and Turner’s splitting set theorem.

1515

Theorem 6 Let P be a DLP and U a set of atoms. A set S
is an answer set of P iff S = (X ∪Y)∩Atoms(P) for some
strong solution 〈X,Y 〉 of P w.r.t. U .

We show that a similar property of Proposition 5 holds for
arbitrary sets U of atoms in this strong splitting method.

Theorem 7 Let P be a DLP, U a set of atoms, and P ′ a
program s.t. Atoms(P ′) ∩ U = ∅. A set S is an answer
set of P ∪ P ′ iff S = (X ∪ Y) ∩ Atoms(P) for some an-
swer set X of bU (P) ∪ ECU (P) and some answer set Y of
eU (stU (P,X), X) ∪ ECCU (P,X) ∪ P ′.

Application: Program Simplification
A consequence of a program is a set of literals that are satis-
fied by every answer set of the program. The problem of pro-
gram simplification considers how to simplify the program
by a consequence, so that the answer sets of the program
can be computed from the answer sets of the resulting pro-
gram with the consequence. In this section, we investigate
the problem using the concept of splitting.

Given a literal l, the complement of l, written l̄ below,
is ¬a if l is a and a if l is ¬a, where a is an atom. For a set L
of literals, we let L = { l̄ | l ∈ L }.

Let set L of literals be a consequence of a program P , we
define trn(P,L) to be the program obtained from P by

1. deleting each rule r that has an atom p ∈ body+(r) with
¬p ∈ L, and

2. replacing each rule r that has an atom p ∈ head(r) or
p ∈ body−(r) with ¬p ∈ L by the rule

head(r) \ L← body+(r), body−(r) \ L.
We define trp(P,L) to be the program obtained from P by

1. deleting each rule r that has an atom p ∈ head(r) or p ∈
body−(r) with p ∈ L, and

2. replacing each rule r that has an atom p ∈ body+(r) with
p ∈ L by the rule

head(r)← body+(r) \ L, body−(r).

Note that trn(P,L) (resp. trp(P,L)) does not contain any
atom p with ¬p ∈ L (resp. p ∈ L) and trp(trn(P,L), L)
does not contain any atoms occurring in L.

The well-founded model (Van Gelder, Ross, and Schlipf
1991) of an NLP is a set of literals and it is also a conse-
quence of the program.

Proposition 6 Let L be a well-founded model of an NLP P .
A set S is an answer set of P iff S \ L is an answer set of
trp(trn(P,L), L).

As a result, in all current ASP solvers, an NLP is first simpli-
fied by its well-founded model. Meanwhile, there are other
consequences of a program that are larger than the well-
founded model and can be computed efficiently. For instant,
Chen, Ji, and Lin (2013) computes such a consequence us-
ing loop formulas of loops with at most one external support
rule. However, Proposition 6 does not hold in general for
these consequences.

We show that trn(P,L) simplifies P in general and
trp(P,L) simplifies P for only some special cases.

Proposition 7 Let L be a consequence of a program P .

• A set S is an answer set of P iff S is an answer set of
trn(P,L).
• If for every atom p ∈ L there is a rule p ← . in P , then

a set S is an answer set of P iff S \ L is an answer set of
trp(P,L).
• A set S is an answer set of P implies S \ L is an answer

set of trp(P,L), but not vice versa in general.

Intuitively, for any loop E of a program P and any conse-
quence L of P , if E is not a loop of trn(P,L), then the
answer sets of trn(P,L) still satisfy the loop formula of E
under P ; ifE is not a loop of trp(P,L), then the answer sets
of trp(P,L) may not satisfy the loop formula of E.

Example 4 Consider the logic program P4:
a← b. c← a. b← c. c← d. a← f.

d← not e. e← not d. ← not a. f ← a.
L = {a, f} is a consequence of P4, then trp(P4, L) is:
c← . b← c. c← d. d← not e. e← not d.

The only answer set of P4 is {a, b, c, d, f}. However,
trp(P4, L) has two answer sets: {b, c, d} and {b, c, e}.

Let set U of atoms be a consequence of a program P , we
can use U to split P that results a program that does not
contain atoms in U . Then using the concept of splitting, we
provide a new approach to simplify a program by a set of
atoms. Let P be a DLP and U a set of atom, we denote
CSU (P) = {E | E is a nonempty subset of U

and R−(E,P) ⊆ in′U (P)},
in′U (P) = {r ∈ P | head(r) ∩ U 6= ∅, Atoms(r) 6⊆ U}.

We define the consequence top of P w.r.t U , denoted by
ctU (P), to be the union of the following sets of rules:

• P \ (bU (P) ∪ outU (P)),
• {{xE} ∪ head(r) \ E ← body(r) | r ∈ in′U (P) and
r ∈ R−(E,P)}, for each E ∈ CSU (P),

• {head(r) ← xE1
, . . . , xEt

, body(r) | r ∈ outU (P), for
all possible Ei ∈ CSU (P) (1 ≤ i ≤ t) s.t. body+(r) ∩
Ei 6= ∅},
• {← not xE}, for each E ∈ CSU (P),

where xE’s are new atoms w.r.t. E ∈ CSU (P).

Proposition 8 Let set U of atoms be a consequence of an
NLP P . A set S is an answer set of P iff there is an answer
set S∗ of trp(ctU (P), U) s.t. S \ U = S∗ ∩Atoms(P).

trp(ctU (P), U) may introduce new atoms for elements
in CSU (P). Similar to the discussion in the section for
computational complexity issues, when |CSU (P)| is small,
trp(ctU (P), U) would be simpler than the original pro-
gram P .4 Note that, Proposition 8 may not be true for DLPs.

Example 4 (Continued) Let U = {a, f}, then CSU (P4) =
{{a, f}} and ctU (P4) is:
b← c. c← d. d← not e. e← not d.

← not a. x{a,f} ← b. c← x{a,f}, a. ← not x{a,f}.
Then trp(ctU (P4), U) is:

b← c. c← d. d← not e. e← not d.

x{a,f} ← b. c← x{a,f}. ← not x{a,f}.
The only answer set of trp(ctU (P4), U) is

{
b, c, d, x{a,f}

}
.

4.http://ss.sysu.edu.cn/%7ewh/splitting.html

1516

Conclusion
We summarize the contribution of this paper here. First, we
provide a new method to split a program into two parts by
an arbitrary set of atoms, while new atoms might be intro-
duced in the process. We show that the task of computing the
answer sets of the program can be converted into the tasks
of computing the answer sets of these parts. The result ex-
tends Lifschitz and Turner’s splitting theorem. Second, we
illustrate the usefulness of the splitting method through two
applications. We show that for some typical programs the
splitting process is efficient, which could help ASP solvers
to compute an answer set of the program. We also show
that the program simplification problem can be regarded as
a splitting program, which results a new approach to sim-
plify a program. We expect that, the idea of splitting will
find many other uses, for instance in the investigation of in-
cremental ASP solvers and forgetting.

Acknowledgments
We thank the reviewers for their comments and suggestions
for improving the paper. We are grateful to Fangzhen Lin
for many helpful and informative discussions. We would
also like to thank Xiaoping Chen and his research group
for their useful discussions. Jianmin Ji’s research was par-
tially supported by the Fundamental Research Funds for
the Central Universities under grant WK0110000035, the
National Natural Science Foundation of China under grant
61175057, the National Natural Science Foundation for the
Youth of China under grant 61403359, as well as the USTC
Key Direction Project and the USTC 985 Project. Hai Wan
thanks Research Fund for the Doctoral Program of Higher
Education of China (No. 20110171120041), Natural Sci-
ence Foundation of Guangdong Province of China (No.
S2012010009836), and Guangzhou Science and Technology
Project (No. 2013J4100058) for the support of this research.
We also thank supports from the National Natural Science
Foundation of China under grant 61370161.

References
Chen, X.; Ji, J.; and Lin, F. 2013. Computing loops with
at most one external support rule. ACM Transactions on
Computational Logic (TOCL) 14(1):3–40.
Dao-Tran, M.; Eiter, T.; Fink, M.; and Krennwallner, T.
2009. Modular nonmonotonic logic programming revisited.
In Logic Programming. Springer. 145–159.
Ferraris, P.; Lee, J.; Lifschitz, V.; and Palla, R. 2009. Sym-
metric splitting in the general theory of stable models. In
Proceedings of the 21st International Joint Conference on
Artificial Intelligence (IJCAI-09), 797–803.
Gebser, M.; Kaufmann, B.; Neumann, A.; and Schaub, T.
2007. Conflict-driven answer set solving. In Proceedings of
the 20th International Joint Conference on Artificial Intelli-
gence (IJCAI-07), 386–392.
Gebser, M.; Kaminski, R.; Kaufmann, B.; Ostrowski, M.;
Schaub, T.; and Thiele, S. 2008. Engineering an incremental
asp solver. In Logic Programming. Springer. 190–205.

Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databases. New generation
computing 9(3-4):365–385.
Lee, J., and Lifschitz, V. 2003. Loop formulas for disjunc-
tive logic programs. In Proceedings of the 19th International
Conference on Logic Programming (ICLP-03), 451–465.
Lifschitz, V., and Turner, H. 1994. Splitting a logic pro-
gram. In Proceedings of the 11th International Conference
on Logic Programming (ICLP-94), 23–37.
Lin, F., and Zhao, Y. 2004. ASSAT: computing answer sets
of a logic program by SAT solvers. Artificial Intelligence
157(1-2):115–137.
Niemelä, I. 1999. Logic programs with stable model se-
mantics as a constraint programming paradigm. Annals of
Mathematics and Artificial Intelligence 25(3-4):241–273.
Oikarinen, E., and Janhunen, T. 2008. Achieving compo-
sitionality of the stable model semantics for smodels pro-
grams. Theory and Practice of Logic Programming 8(5-
6):717–761.
Van Gelder, A.; Ross, K. A.; and Schlipf, J. S. 1991. The
well-founded semantics for general logic programs. Journal
of the ACM (JACM) 38(3):619–649.

1517

