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Abstract

In this paper, we present an approach to forgetting in disjunc-
tive logic programs, where forgetting an atom from a pro-
gram amounts to a reduction in the signature of that program.
Notably, the approach is syntax-independent, so that if two
programs are strongly equivalent, then the result of forget-
ting a given atom in each program is also strongly equivalent.
Our central definition of forgetting is abstract: forgetting an
atom from program P is characterised by the set of those SE
consequences of P that do not mention the atom to be for-
gotten. We provide an equivalent, syntactic, characterization
in which forgetting an atom p is given by those rules in the
program that do not mention p, together with rules obtained
by a single inference step from those rules that do mention
p. Forgetting is shown to have appropriate properties; in par-
ticular, answer sets are preserved in forgetting an atom. As
well, forgetting an atom via the syntactic characterization re-
sults in a modest (at worst quadratic) blowup in the program
size. Finally, we provide a prototype implementation of this
approach to forgetting.

Introduction
Forgetting is an operation for eliminating variables from a
knowledge base (Lin and Reiter 1994; Lang, Liberatore, and
Marquis 2003). It constitutes a reduction in an agent’s lan-
guage or, more accurately, the agent’s signature. It has also
been studied under different names, such as variable elim-
ination, uniform interpolation and relevance (Subramanian,
Greiner, and Pearl 1997). Forgetting has various possible
applications in a reasoning system. For example, in query
answering, if one can determine what is relevant to a query,
then forgetting the irrelevant part of a knowledge base may
yield a more efficient operation. Forgetting may also pro-
vide a formal account and justification of predicate hiding,
for example for privacy issues. As well, forgetting may be
useful in summarising a knowledge base, reusing part of a
knowledge base or clarifying relations between predicates.

The best-known definition of forgetting is with respect to
classical propositional logic, and is due to George Boole
(Boole 1854). To forget an atom p from a formula φ in
propositional logic, one disjoins the result of uniformly sub-
stituting > for p in φ with the result of substituting ⊥; that
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is, forgetting is given by φ[p/>] ∨ φ[p/⊥]. (Lin and Re-
iter 1994) investigated the theory of forgetting for first or-
der logic and its application in reasoning about action. For-
getting has been applied in various settings, among them
resolving conflicts (Eiter and Wang 2008; Zhang and Foo
1997), and ontology comparison and reuse (Kontchakov,
Wolter, and Zakharyaschev 2008; Konev et al. 2013).

In recent years, answer set programming (ASP) (Gel-
fond and Lifschitz 1988; Baral 2003; Gebser et al. 2012)
has become prominent as a knowledge representation lan-
guage within the logic programming paradigm. However,
given the nonmonotonic foundation of ASP, the Boole def-
inition for forgetting does not extend readily to logic pro-
grams. In the past few years, several approaches have been
proposed for forgetting in ASP (Eiter and Wang 2006; 2008;
Wang, Sattar, and Su 2005; Zhang, Foo, and Wang 2005;
Zhang and Foo 2006). These approaches are generally
syntactic, and the result of forgetting may differ between
programs that are strongly equivalent.1 For example, in
(Zhang, Foo, and Wang 2005; Zhang and Foo 2006) for-
getting is defined in terms of program transformations, and
is not based on answer set semantics or SE models. A
semantic theory of forgetting for normal logic programs
under answer set semantics is introduced in (Wang, Sat-
tar, and Su 2005), in which a sound and complete algo-
rithm is developed based on a series of program trans-
formations; this theory is further developed and extended
to disjunctive logic programs in (Eiter and Wang 2006;
2008). However, this theory of forgetting is defined in terms
of answer sets rather than SE models, and so again is not
syntax-independent.

In order to use forgetting in its full generality, for deal-
ing with relevance or predicate hiding, or in composing, de-
composing, and reusing answer set programs, it is desirable
for a definition to be given in terms of the logical content
of a program, that is in terms of SE models. For exam-
ple, the reuse of knowledge bases requires that when a sub-
programQ in a large program P is substituted with an equiv-
alent program Q′, the resulting program should be equiva-
lent to P . This is not the case where equivalence is defined
in terms of preserving answer sets, due to the nonmono-
tonic character of ASP. As a result, two definitions of for-

1See the next section for definitions.
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getting have been introduced in HT-logic (Wang et al. 2012;
Wang, Wang, and Zhang 2013). These approaches indi-
rectly establish theories of forgetting under SE models, as
HT-logic provides a natural extension of SE models. The
approach to interpolation for equilibrium logic introduced
in (Gabbay, Pearce, and Valverde 2011) is more general than
forgetting. However, the issue of directly establishing a the-
ory of forgetting for disjunctive logic programs under SE
models is still missing, and the issue of developing efficient
algorithms for computing the result of forgetting under SE
models is not addressed.

A key intuition regarding forgetting is that the logical con-
sequences of a set of formulas that do not mention forgot-
ten symbols should still be believed after forgetting. This
leads to a very simple (abstract) knowledge-level definition
in terms of a consequence operator in the underlying logic:
forgetting a symbol from a knowledge base is characterised
by the set of consequences that do not mention that symbol.
In this paper, we establish such a theory of forgetting for dis-
junctive logic programs that preserves strong equivalence.

In the next section we give a brief introduction to ASP,
with emphasis on the notion of SE models and on the notion
of SE consequence. The following section gives a high-level
abstract characterisation of forgetting in ASP, and shows
that it has the appropriate properties (for example, that it
is indeed syntax-independent, and that forgetting a set of
atoms is independent of the order of forgetting the individ-
ual atoms). We then give an equivalent syntactic characteri-
sation of forgetting, and we show that forgetting an atom re-
sults in at worst a quadratic blowup in the size of the knowl-
edge base. This also immediately leads to an algorithm for
computing forgetting under SE models. We investigate some
optimisation techniques for the algorithm and report a pro-
totype implementation of the algorithm. Last, we compare
our approach to related work, and briefly conclude.

Answer Set Programming
Here we briefly review pertinent concepts in answer set
programming; for details see (Gelfond and Lifschitz 1988;
Baral 2003; Gebser et al. 2012).

Let A be an alphabet, consisting of a set of atoms. A
(disjunctive) logic program over A is a finite set of rules of
the form

a1; . . . ; am ← b1, . . . , bn,∼c1, · · · ,∼cp. (1)

where ai, bj , ck ∈ A, and m,n, p ≥ 0 and m + n + p > 0.
Binary operators ‘;’ and ‘,’ express disjunction and conjunc-
tion respectively. For atom a, ∼a is (default) negation. LA
denotes the language (viz. set of rules) generated by A.

The head and body of a rule as in (1), H(r) and B(r), are
defined by:

H(r) = {a1, . . . , am} and
B(r) = {b1, . . . , bn,∼c1, . . . ,∼cp}.

Given a set X of literals, we define

X+ = {a ∈ A | a ∈ X},
X− = {a ∈ A | ∼a ∈ X}, and
∼X = {∼a | a ∈ X ∩ A}.

For simplicity, we sometimes use a set-based notation, ex-
pressing a rule as in (1) as

H(r)← B(r)+,∼B(r)− .

The reduct of a program P with respect to a set of atoms Y ,
denoted PY , is the set of rules:

{H(r)← B(r)+ | r ∈ P, B(r)− ∩ Y = ∅}.
Note that the reduct consists of negation-free rules only. An
answer set Y of a program P is a subset-minimal model of
PY . A program induces 0, 1, or more answer sets. The
set of all answer sets of a program P is denoted by AS (P ).
For example, the program P = {a ←, c; d ← a,∼b}
has answer sets AS (P ) = {{a, c}, {a, d}}. Notably, a pro-
gram is nonmonotonic with respect to its answer sets. For
example, the program {q ← ∼p} has answer set {q} while
{q ← ∼p, p←} has answer set {p}.

SE Models
As defined by (Turner 2003), an SE interpretation is a pair
(X,Y ) of interpretations such that X ⊆ Y ⊆ A. An SE
interpretation is an SE model of a program P if Y |= P and
X |= PY , where |= is the relation of logical entailment in
classical logic. The set of all SE models of a program P
is denoted by SE (P ); this notation extends in the obvious
fashion to the set of SE models for a given alphabet, viz.
SE (A). Then, Y is an answer set of P iff (Y, Y ) ∈ SE (P )
and no (X,Y ) ∈ SE (P ) with X ⊂ Y exists.

Program P is satisfiable just if SE (P ) 6= ∅.2 Thus, we
consider P = {p← ∼p} to be satisfiable, since SE (P ) 6= ∅
even though AS (P ) = ∅. Programs P and Q are strongly
equivalent, symbolically P ≡s Q, iff SE (P ) = SE (Q).
Alternatively, P ≡s Q holds iff AS (P ∪R) = AS (Q∪R),
for every program R (Lifschitz, Pearce, and Valverde 2001).
We also write P |=s Q iff SE (P ) ⊆ SE (Q).

SE Consequence
While the notion of SE models puts ASP on a monotonic
footing with respect to model theory, (Wong 2008) has sub-
sequently provided an inferential system for rules that pre-
serves strong equivalence. His notion of SE consequence is
shown to be sound and complete with respect to the seman-
tic notion of SE models. His inference system is given as
follows, where lower case letters are atoms and upper case
are sets of atoms.

Inference Rules for SE Consequence:
Taut x← x

Contra ← x,∼x
Nonmin From A← B,∼C infer

A;X ← B, Y,∼C,∼Z
WGPPE From A1←B1, x,∼C1 and

A2;x←B2,∼C2 infer
A1;A2 ← B1, B2,∼C1,∼C2

2Note that many authors define satisfiability in terms of answer
sets, in that for them a program is satisfiable if it has an answer set,
i.e., AS(P ) 6= ∅.
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S-HYP From A1 ← B1,∼x1,∼C1,
. . . ,

An ← Bn,∼xn,∼Cn,
A← x1, . . . , xn,∼C infer

A1; . . . ;An ←
B1, . . . , Bn,∼C1, . . . ,∼Cn,∼A,∼C

Several of these rules are analogous to or similar to well-
known rules in the literature. For example, Nonmin is weak-
ening; WGPPE is analogous to cut; and S-HYP is a version
of hyper-resolution. Let `s denote the consequence relation
generated by these rules, for convenience allowing sets of
rules on the right hand side of `s. Then P ↔s P

′ abbrevi-
ates P `s P ′ and P ′ `s P . As well, define

CnA(P ) = {r ∈ LA | P `s r}.
Then the above set of inference rules is sound and complete
with respect to the entailment |=s.
Theorem 1 ((Wong 2008)) P |=s r iff P `s r.

The Approach
Formal Preliminaries
Since forgetting in our approach amounts to decreasing the
alphabet, or signature, of a logic program, we need addi-
tional notation for relating signatures. Let A and A′ be two
signatures whereA ⊂ A′. ThenA is a reduction3 ofA′, and
A′ is an expansion of A. Furthermore, if w ∈ SE (A) and
w′ ∈ SE (A′) where w and w′ agree on the interpretation of
symbols in A then w is the A-reduction of w′, and w′ is an
A′-expansion ofw. For fixedA ⊂ A′, reductions are clearly
unique whereas expansions are not.

For a logic program P , σ(P ) denotes the signature of
P , that is, the set of atoms mentioned in P . SE models
are defined with respect to an understood alphabet; for SE
model w we also use σ(w) to refer to this alphabet. Thus
for example if A = {a, b, c} then, with respect to A, the
SE model w = ({a}, {a, b}) is more perspicuously writ-
ten as ({a,¬b,¬c}, {a, b,¬c}), and so in this case σ(w) =
{a, b, c}.

If A ⊂ A′ and for SE models w, w′ we have σ(w) = A
and σ(w′) = A′ then we use w′|A to denote the reduction of
w′ with respect to A and we use w↑A′ to denote the set of
expansions of w with respect to A′. This notation extends
to sets of models in the obvious way. As well, we use the
notion of a reduction for logic programs; that is, forA ⊆ A′,

P|A = {r ∈ P | σ(r) ⊆ A}.

An Abstract Characterisation of Forgetting
As described, our goal is to define forgetting with respect to
the logical content of a logic program. For example, if we
were to forget b from the program {a ← b., b ← c.}, we
would expect the rule a ← c to be in the result, since it is
implicit in the original program. Consequently, our primary
definition is the following.

3The standard term in model theory is reduct (Chang and
Keisler 2012; Doets 1996; Hodges 1997). However reduct has its
own meaning in ASP, and so we adopt this variation.

Definition 1 Let P be a disjunctive logic program over
signature A. The result of forgetting A′ in P , denoted
Forget(P,A′), is given by:

Forget(P,A′) = CnA(P ) ∩ LA\A′ .

That is, the result of forgetting a set of atoms A′ in pro-
gram P is simply the set of SE consequences of P over the
original alphabet, but excluding atoms from A′. If A′ is a
singleton, say {p}, then we sometimes drop the set braces
and write Forget(P, p).

The above concept of forgetting is defined at the knowl-
edge level. So, our definition is abstract, but is simple and
intuitive. As a consequence, many formal results are very
easy to show. On the other hand, the definition is not imme-
diately practically useful, since forgetting results in an infi-
nite set of rules. Consequently a key question is to determine
a finite characterisation (that is to say, a uniform interpolant)
of Forget. We explore these issues next.

The following results are elementary, but show that the
definition of forgetting has the “right” properties.

Proposition 1 Let P and P ′ be disjunctive logic program
and let A (possibly primed or subscripted) be alphabets.

1. P `s Forget(P,A)
2. If P ↔s P

′ then Forget(P,A)↔s Forget(P
′,A)

3. Forget(P,A) = CnA′(Forget(P,A))
where A′ = σ(P ) \ A.

4. Forget(P,A) =
Forget(Forget(P,A \ {a}), {a}) where a ∈ A

5. Forget(P,A1 ∪ A2) = Forget(Forget(P,A1),A2))

6. P is a conservative extension of Forget(P,A)
Thus, Part 1 asserts that forgetting results in no conse-
quences not in the original theory. As well, the result of
forgetting is independent of syntax and yields a deductively-
closed theory (Parts 2 and 3). Part 4 gives an iterative
means of determining forgetting on an element-by-element
basis. The next part, which generalises the previous, shows
that forgetting is decomposable with respect to a signature,
which in turn implies that forgetting is a commutative op-
eration with respect to its second argument. Last, P is a
conservative extension of the result of forgetting, which is
to say that σ(P ) \ A ⊆ σ(P ) and the consequences of P
and Forget(P,A) coincide over the language Lσ(P )\A.

With regards to SE models, we obtain the following re-
sults giving an alternative characterisation of forgetting.
Here only we use the notation SEA(P ) to indicate the SE
models of program P over alphabet A.

Proposition 2 Let A′ ⊆ A, and let σ(P ) ⊆ A.

1. SEA\A′(Forget(P,A′)) = SEA(P )|(A\A′)

2. SEA(Forget(P,A′)) = (SEA(P )|(A\A′))↑A

The first part provides a semantic characterisation of forget-
ting: the SE models of Forget(P,A′) are exactly the SE
models of P restricted to the signature A \ A′. Informally,
what this means is that the SE models of Forget(P,A′) can
be determined by simply dropping the symbols in A′ from
the SE models of P . The second part, which is a simple
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corollary of the first, expresses forgetting with respect to the
original signature.

Of course, one may wish to re-express the effect of for-
getting in the original language of P ; in fact, many ap-
proaches to forgetting assume that the underlying language
is unchanged. To this end, we can consider a variant of Def-
inition 1 as follows, where A′ ⊆ A.

ForgetA(P,A′) = CnA(Forget(P,A′)) (2)

That is, Forget(P,A′) is re-expressed in the original lan-
guage with signature A. The result is a theory over the orig-
inal language, but where the resulting theory carries no con-
tingent information about the domain of application regard-
ing elements of A′.

The following definition is useful in stating results con-
cerning forgetting.
Definition 2 Signature A is irrelevant to P , IR(P,A), iff
there is P ′ such that P ↔s P

′ and σ(P ′) ∩ A = ∅.
Zhang and Zhou (2009) give four postulates characteris-

ing their approach to forgetting in the modal logic S5. An
analogous result follows here with respect to forgetting re-
expressed in the original signature:
Proposition 3 Let A′ ⊆ A and let σ(P ), σ(P ′) ⊆ A.

Then P ′ = ForgetA(P,A′) iff
1. P `s P ′
2. If IR(r,A′) and P `s r then P ′ `s r
3. If IR(r,A′) and P 6`s r then P ′ 6`s r
4. IR(P ′,A′)
Hence, if a rule r is independent of a signature A′, then for-
getting A′ has no effect on whether that formula is a con-
sequence of the original knowledge base or not (Parts 2 and
3). Part 4 is a “success” postulate: the result of forgettingA′
yields a theory expressible without A′.

The above results refer to general properties for forget-
ting, though with respect to a disjunctive logic program. The
following result is specific to disjunctive programs:
Theorem 2 Let P be a disjunctive logic program, let A be
a set of atoms, and let X be an answer set for P .

Then X \ A is an answer set for Forget(P,A).
Thus, forgetting in disjunctive programs preserves an-

swer sets. Some comments on this result are in order: SE
models of general logic programs satisfy the constraint that
if (X,Y ) ∈ SE (P ) then (Y, Y ) ∈ SE (P ). Disjunctive
logic programs satisfy the additional constraint of being
complete, that is, if for each (X,Y ) ∈ SE (P ), then also
(X,Z) ∈ SE (P ) for any Z ⊇ Y where (Z,Z) ∈ SE (P )
(Eiter et al. 2004). The notion of completeness is essential
for the preservation of answer sets. For example, the set of
SE models S = {(∅, a), (a, a), (ab, ab)} characterises some
general logic program with answer set {a, b}. Forgetting b
results in a general program with SE models (∅, a), (a, a),
which has no answer sets. However S is not complete. The
least set of SE models that is complete and contains S is
S′ = S ∪ {(∅, ab), (a, ab)}. The disjunctive logic program
corresponding to S′ has no answer sets, so forgetting b in
that program trivially preserves answer sets.

A Finite Characterisation of Forgetting
Forgetting in propositional logic can be computed using res-
olution (see, e.g. (Delgrande 2014)), in part by finding all
resolvents on an atom to be forgotten. This is an arguably
convenient means of computing forgetting, in that it is eas-
ily implementable, and one remains with a set of clauses if
the original theory is given as a set of propositional clauses.
We can use a similar strategy for computing forgetting in
a disjunctive logic program. In particular, for forgetting an
atom a, we can use the inference rules from (Wong 2008)
to compute “resolvents” of rules mentioning a such that the
derived rules do not mention a.

In the definition below, ResLP is analogous to using res-
olution for forgetting in propositional logic. In this case, we
consider instances of WGPPE and S-HYP that, from rules
mentioning an atom a to be forgotten, can be used to derive
rules that do not mention a; these instances are given by the
two parts of the union, respectively, below.

Definition 3 Let P be a disjunctive logic program and let
a ∈ A.

Define:

ResLP (P, a) =

{r | ∃r1, r2 ∈ P such that
r1 = A1←B1, a,∼C1,

r2 = A2; a←B2,∼C2,

r = A1;A2 ← B1, B2,∼C1,∼C2 }
∪
{r | ∃r1, . . . , rn, r′ ∈ P such that a = a1
ri = Ai←Bi,∼ai,∼Ci, 1 ≤ i ≤ n
r′ = A← a1, . . . an,∼C and
r = A1; . . . ;An ←

B1, . . . , Bn,∼C1, . . . ,∼Cn,∼A,∼C }
We obtain that the result of forgetting an atom a in program
P is strongly equivalent to the program consisting of those
rules in P that don’t mention a, together with rules derived
according to ResLP .
Theorem 3 Let P be a disjunctive logic program over A
and a ∈ A. Assume that any rule r ∈ P is satisfiable, non-
tautologous, and contains no redundant occurrences of any
atom. Then:
Forget(P, a) ↔s P|(A\{a}) ∪ ResLP (P, a).

Proof Outline: From Definition 1, Forget(P, a) is de-
fined to be the set of those SE consequences of program
P that do not mention a. Thus for disjunctive rule r,
r ∈ Forget(P, a) means that P `s r and a 6∈ σ(r). Thus
the left-to-right direction is immediate: Any r ∈ P|(A\{a})
or r ∈ ResLP (P, a) is a SE consequence of P that does not
mention a.

For the other direction, assume that we have a proof of
r from P , represented as a sequence of rules. If no rule in
the proof mentions a, then we are done. Otherwise, since r
does not mention a, there is a last rule in the proof, call it rn
that does not mention a, but is obtained from rules that do
mention a. The case where rn is obtained via Taut, Contra,
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or Nonmin is easily handled. If rn is obtained via WGPPE
or S-HYP then there are rules rk and rl that mention a (and
perhaps other rules in the case of S-HYP). If rk,rl ∈ P then
rn ∈ ResLP (P, a). If one of rk, rl is not in P (say, rk)
then there are several cases, but in each case it can be shown
that the proof can be transformed to another proof where
the index of rk in the proof sequence is decreased and the
index of no rule mentioning a is increased. This process
must terminate (since a proof is a finite sequence), where
the premisses of the proof are either rules of P that do not
mention a, elements of ResLP (P, a), or tautologies.

Consider the following case, where rn = A1;A2;A3 ←
B1, B2, B3, and we use the notation that each Ai is a
set of implicitly-disjoined atoms while each Bi is a set of
implicitly-conjoined literals. Assume that rn is obtained by
an application of WGPPE from rk = a;A1;A2 ← B1, B2

and rl = A3 ← a,B3. Assume further that rk is obtained
from ri = a; b;A1 ← B1 and rj = A2 ← b, B2 by an appli-
cation of WGPPE. This situation is illustrated in Figure 1a.

a; b;

3 <− B ,1

A1 A2 <− A3 <−

B2A2 <−

B1 B2 B3<−

B ,1A ;1

A ;1 A ;2 B3B ,2

b, a,

a;

A

Figure 1a

Then essentially the steps involving the two applications
of WGPPE can be “swapped”, as illustrated in Figure 1b,
where rk is replaced by r′k = b;A1;A3 ← B1, B3.

a; b;

3 <− B ,1

A1 A2 <− A3 <−

B3A3 <−

B1 B2 B3<−

B ,1A ;1

A ;1 A ;2 B3B ,2

b, a,

b;

A

Figure 1b

Thus the step involving a is informally “moved up” in the
proof. There are 12 other cases, involving various combina-
tions of the inference rules, but all proceed the same as in
the above. �

The theorem is expressed in terms of forgetting a single
atom. Via Proposition 1.4 this readily extends to forgetting
a set of atoms. Moreover, since we inherit the results of
Propositions 1 and 3, we get that the result of forgetting is
independent of syntax, even though the expression on the
right hand side of Theorem 3 is a set of rules obtained by
transforming and selecting rules in P . It can also be ob-
served that forgetting an atom results in at worst a quadratic
blowup in the size of the program. This blowup for for-
getting comes from two sources (i.e., WGPPE and S-HYP).
This can also be seen from Steps 3 and 4 in Algorithm 1 in
the next section. While this may seem comparatively mod-
est, it implies that forgetting a set of atoms may result in an
exponential blowup.

Example 1 Let P = {p ← ∼q, r ← p}. Forgetting p
yields {r ← ∼q} (where r ← ∼q is obtained by an appli-
cation of WGPPE), while forgetting q and r yield programs
{r ← p} and {p← ∼q} respectively.

Computation of Forgetting
Using Theorem 3, we obtain the following algorithm for
computing the result of forgetting. A rule r is a tautology
if it is of the form r = A; b← b, B,∼C. A rule r is contra-
dictory if it is of the form r = A; c ← B,∼c,∼C. A rule r
is minimal if there is no rule r′ in P such thatB(r′) ⊆ B(r),
H(r′) ⊆ H(r), and one of these two subset relations is
proper; otherwise, r is non-minimal.

Algorithm 1 (Computing a result of forgetting)
Input: Disjunctive program P and atom a.
Output: Forget(P, a).
Procedure:

Step 1. Remove tautologies, contradictory rules, and non-
minimal rules from P . The resulting disjunctive program is
still denoted P .

Step 2. Collect all rules in P that do not contain the atom
a, denoted P ′.

Step 3. For each pair of rules r1 = A1 ← B1, a,∼C1

and r2 = A2; a← B2,∼C2, add the rule r = A1;A2 ←
B1, B2,∼C1,∼C2 to P ′

Step 4. For each rule r′ = A ← a1, . . . an,∼C where
for some i, ai = a, and for each set of n rules {ri = Ai←
Bi,∼ai,∼Ci | 1 ≤ i ≤ n}, add the rule r = A1; . . . ;An ←
B1, . . . , Bn,∼C1, . . . ,∼Cn,∼A,∼C to P ′.

Step 5. Return P ′ as Forget(P, a).

Some remarks for the algorithm are in order. Obviously,
Step 1 preprocesses the input program by eliminating tautol-
ogous rules, contradictory rules and non-minimal rules from
P . Initially, all rules that do not contain a, which are trivial
SE-consequences of P , are included in the result of forget-
ting. In many practical applications, a given atom will occur
in only a relatively small number of rules, and thus forget-
ting can be efficiently carried out, even though the input pro-
gram may be very large. Step 3 and Step 4 implement two
resolution rules WGPPE and S-HYP, respectively.

The correctness and completeness of Algorithm 1 are an
easy corollary of Theorem 3.

Theorem 4 For any disjunctive program P and an atom a,
Algorithm 1 outputs Forget(P, a).

An Application: Conflict Resolving by Forgetting
(Eiter and Wang 2006; 2008) explore how their forgetting
for logic programs can be used to resolve conflicts in multi-
agent systems. However, their notion of forgetting is based
on answer sets and thus does not preserve the syntactic struc-
ture of original logic programs, as pointed out in (Cheng et
al. 2006). In this subsection, we demonstrate how our SE-
forgetting can be used to overcome the shortcoming of Eiter
and Wang’s forgetting.

The basic idea of conflict resolving (Eiter and Wang 2006;
2008) consists of two intuitions:
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1. an answer set corresponds to an agreement among some
agents;

2. conflicts are resolved by forgetting some literals/concepts
for some agents/ontologies.

Definition 4 Let S = (P1, P2, . . . , Pn), where each logic
program Pi represents the preferences/constraints of Agent
i. A compromise of S is a sequence C = (F1, F2, . . . , Fn)
where each Fi is a set of atoms to be forgotten from Pi. An
agreement of S on C is an answer set of forget(S, C) =
forget(P1, F1) ∪ forget(P2, F2) ∪ · · · ∪ forget(Pn, Fn).

For specific applications, we may need to impose certain
conditions on each Fi. However, the two algorithms (Al-
gorithms 1 and 2) in (Cheng et al. 2006) may not produce
intuitive results if directly used in a practical application.
Consider a simple scenario with two agents.

Example 2 (Cheng et al. 2006) Suppose that two agentsA1

andA2 try to reach an agreement on submitting a paper to a
conference, as a regular paper or as a system description. If
a paper is prepared as a system description, then the system
may be implemented either in Java or Prolog. The prefer-
ences and constraints are as follows.

1. The same paper cannot be submitted as both a regular
paper and system description.

2. A1 would like to submit the paper as a regular one and,
in case the paper is submitted as a system description and
there is no conflict, he would prefer to use Java.

3. A2 would like to submit the paper as a system description
and not as a regular paper.

Obviously, the preferences of these two agents are jointly
inconsistent and thus it is impossible to satisfy both at the
same time. The scenario can be encoded as a collection of
three disjunctive programs, where P0 expresses general con-
straints). Then S = (P0, P1, P2) where P0 = {← R,S},
P1 = {R ← . J ← S,∼P}, and P2 = {← R. S ←}.
We use R,S, J , and P for abbreviations of “regular paper,”
“system description,” “Java” and “Prolog,” respectively.

Intuitively, if A1 can make a compromise by forgetting R,
then there will be an agreement {S, J}, that is, a system
description is prepared and Java is used for implementing
the system. However, if we directly use forgetting in conflict
resolution, by forgettingR, we can only obtain an agreement
{S} which does not contain J . In fact, this is caused by the
removal of J ← S,∼P in the process of forgetting. This rule
is redundant in P1 but becomes relevant when we consider
the interaction of A1 with other agents (here A2).

As pointed out in (Cheng et al. 2006), it is necessary to
develop a theory of forgetting for disjunctive programs such
that locally redundant (or locally irrelevant) rules in the pro-
cess of forgetting can be preserved. Our SE forgetting pro-
vides a solution to the above problem. This can be seen from
the definition of SE-forgetting and Algorithm 1 (if needed,
we do not have to eliminate non-minimal rules in Step 1). In
fact, Forget(P1, R) = {J ← S,∼P}, which preserves the
locally redundant rule J ← S,∼P .

Related Work
Earlier approaches to forgetting in answer set programming
are not based on SE models. The concepts of strong and
weak forgetting in (Zhang, Foo, and Wang 2005; Zhang and
Foo 2006) are defined in terms of a set of program transfor-
mations. So these proposals are syntactic. A semantic ap-
proach to forgetting under answer sets is proposed in (Wang,
Sattar, and Su 2005) and extended to disjunctive programs in
(Eiter and Wang 2006; 2008). This definition of forgetting
is syntax-dependent wrt SE-models.

More recently, some attempts have been made to define
forgetting under SE models (Wang et al. 2012; Wang, Wang,
and Zhang 2013). These approaches aim at forgetting in
HT-logic while here we focus on forgetting in disjunctive
programs, beginning with an abstract notion of forgetting.
Note that our approach is not a special case of their’s. Our
definition of forgetting guarantees the existence of results
of forgetting whereas (Wang et al. 2012) does not (see their
Examples 1 and 2). To overcome this shortcoming (i.e., non-
existence of forgetting), (Wang, Wang, and Zhang 2013)
proposed an improved approach to forgetting in HT-logic.
While the modified definition guarantees the existence of
forgetting in HT-logic, their result for forgetting in a dis-
junctive program may not be expressible in disjunctive pro-
grams. In addition, their definitions are more complex than
ours and lack an efficient algorithm comparable to our Al-
gorithm 1.

(Gabbay, Pearce, and Valverde 2011) is also relevant to
forgetting under SE models. This work is primarily con-
cerned with various logical properties, such as an interpo-
lation property for equilibrium logic and answer set logic.
Consequently, their objectives are different from our’s. Gab-
bay et al. touch briefly on uniform interpolation with re-
spect to disjunctive logic programs, but a uniform inter-
polant is generated directly from a program’s set of answer
sets. Similar to (Gabbay, Pearce, and Valverde 2011), the ap-
proaches of (Eiter and Wang 2006; 2008; Wang et al. 2012;
Wang, Wang, and Zhang 2013) generate the result of forget-
ting through the collection of answer sets/equilibria. Con-
sequently, in these approaches the structure of the original
program is lost. Moreover, the size of the result of forget-
ting may be exponentially large in the size of the input pro-
gram. In contrast, we do not generate answer sets; we retain
the structure of the original program (so, for example, rules
that do not mention a forgotten atom are untouched); and for
forgetting an atom we have at worst a quadratic increase in
program size.

Conclusion
In this paper we have addressed forgetting in disjunctive
logic programs, wherein forgetting amounts to a reduction
in the signature of a program. Essentially, the result of for-
getting an atom (or set of atoms) from a program is the set
of SE consequences of the program that do not mention that
atom or set of atoms. This definition then is at the knowl-
edge level, that is, it is abstract and is independent of how
a program is represented. Hence this theory of forgetting
is useful for tasks such as knowledge base comparison and
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reuse. Moreover, we gave an equivalent (with respect to
SE consequence) syntactic definition of forgetting, and from
this definition developed an efficient algorithm for comput-
ing forgetting. Hence this alternative definition, and the al-
gorithm, is complete and sound with respect to the original
knowledge-level definition.

A prototype implementation of SE-forgetting has been
implemented in Java and is available at http://1drv.ms/
1sNNClN. Our experiments on the efficiency of the system
show that it can be used to efficiently handle SE-forgetting
in large logic programs. We plan to apply this notion of for-
getting to knowledge base comparison and reuse. For future
work we also plan to investigate a similar approach to for-
getting for other classes of logic programs.
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