
Action Language BC+: Preliminary Report

Joseph Babb and Joohyung Lee
School of Computing, Informatics, and Decision Systems Engineering

Arizona State University
Tempe, AZ, 85287, USA

{Joseph.Babb,joolee}@asu.edu

Abstract

Action languages are formal models of parts of natural lan-
guage that are designed to describe effects of actions. Many
of these languages can be viewed as high level notations of
answer set programs structured to represent transition sys-
tems. However, the form of answer set programs considered
in the earlier work is quite limited in comparison with the
modern Answer Set Programming (ASP) language, which
allows several useful constructs for knowledge representa-
tion, such as choice rules, aggregates, and abstract constraint
atoms. We propose a new action language called BC+, which
closes the gap between action languages and the modern ASP
language. Language BC+ is defined as a high level notation
of propositional formulas under the stable model semantics.
Due to the generality of the underlying language, BC+ is ex-
pressive enough to encompass many modern ASP language
constructs and the best features of several other action lan-
guages, such as B, C, C+ and BC. Computational methods
available in ASP solvers are readily applicable to compute
BC+, which led us to implement the language by extending
system CPLUS2ASP.

Introduction
Action languages are formal models of parts of natural lan-
guage that are used for describing properties of actions. The
semantics of action languages describe transition systems—
directed graphs whose vertices represent states and whose
edges represent actions that affect the states. Many action
languages, such as languages A (Gelfond and Lifschitz
1993) and B (Gelfond and Lifschitz 1998, Section 5), can
be viewed as high level notations of answer set programs
structured to represent transition systems. Languages C
(Giunchiglia and Lifschitz 1998) and C+ (Giunchiglia et
al. 2004) are originally defined in terms of nonmonotonic
causal theories, but their “definite” fragments can be equiva-
lently turned into logic programs as well, leading to the im-
plementation CPLUS2ASP, which uses ASP solvers for com-
putation (Babb and Lee 2013).

The main advantage of using action languages over ASP
programs is their structured abstract representations for de-
scribing transition systems, which allows their users to focus
on high level descriptions and avoids the “cryptic” syntax

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and the recurring pattern of ASP rules for representing tran-
sition systems. However, the existing work on action lan-
guages have two limitations. First, they do not allow many
useful ASP constructs, such as choice rules, aggregates, ab-
stract constraint atoms, and external atoms, that have re-
cently been introduced into ASP and have been shown to
be very useful. The inability to use these modern constructs
in action languages is what often prevents the users from
writing in action languages, and instead forces them to write
in the language of ASP directly.

Another issue is that even when we do not use such con-
structs, there are certain limitations that each action lan-
guage has in comparison with another. For instance, in lan-
guage B, the frame problem is solved by enforcing in the se-
mantics that every fluent be governed by the commonsense
law of inertia, which makes it difficult to represent fluents
whose behavior is described by defaults other than inertia.
Languages C and C+ do not have this limitation, but instead
they do not handle Prolog-style recursive definitions, such
as transitive closure, available in B. The recently proposed
language BC (Lee, Lifschitz, and Yang 2013) combines the
attractive features of B and C+, but it is not a proper gen-
eralization. In comparison with C+, it does not allow us to
describe complex dependencies among actions, thus it is un-
able to describe several concepts that C+ is able to express
naturally, such as defeasible causal laws (Giunchiglia et al.
2004, Section 4.3) and action attributes (Giunchiglia et al.
2004, Section 5.6).

We present a simple solution to these problems. The main
idea is to define an action language in terms of a general
stable model semantics, which has not been considered in
the work of action languages. We present a new action lan-
guage called BC+, which is defined as a high level notation
of propositional formulas under the stable model semantics
in (Ferraris 2005). It has been well studied in ASP that sev-
eral useful constructs, such as aggregates, abstract constraint
atoms, and conditional literals, can be identified with ab-
breviations of propositional formulas (e.g.,(Ferraris 2005;
Pelov, Denecker, and Bruynooghe 2003; Son and Pontelli
2007; Harrison, Lifschitz, and Yang 2014)). Thus, BC+ em-
ploys such constructs as well. Further, it is more expressive
than the other action languages mentioned above, allowing
them to be easily embedded. The computation of BC+ is car-
ried out by ASP solvers, which is implemented by modify-

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

1424



ing system CPLUS2ASP (Babb and Lee 2013), which was
originally designed to compute C+ using ASP solvers.

The paper is organized as follows. We first review propo-
sitional formulas under the stable model semantics, and
how they express the concept of defaults in the presence
of uniqueness and existence of value constraints. Next we
present the syntax and the semantics of BC+, as well as
a useful fragment and abbreviations. We also show how
propositional formulas under the stable model semantics can
be viewed as a special case of BC+. Then we show how each
of BC and C+ can be embedded in BC+, and explain the ad-
vantages of BC+ over the two languages.

Preliminaries
According to (Ferraris 2005), stable models of a proposi-
tional formula are defined as follows. The reduct FX of a
propositional formula F relative to a set X of atoms is the
formula obtained from F by replacing every maximal sub-
formula that is not satisfied by X with ⊥. Set X is called a
stable model of F if X is a minimal set of atoms satisfying
FX . It has been shown that logic programs can be identified
with propositional formulas under the stable model seman-
tics in the form of conjunctions of implications.

Throughout this paper, we consider propositional formu-
las whose signature σ consists of atoms of the form c=v, 1

where c is called a constant and is associated with a finite
set Dom(c) of cardinality ≥ 2, called the domain, and v is
an element of its domain. If the domain of c is {f, t} then
we say that c is Boolean; we abbreviate c= t as c and c= f
as ∼c.

Bartholomew and Lee [2014] show that this form of
propositional formulas is useful to express the concept of
default values on multi-valued fluents. By UECσ (“Unique-
ness and Existence Constraint”) we denote the conjunction
of ∧

v 6=w : v,w∈Dom(c)

¬(c = v ∧ c = w), (1)

and ¬¬
∨

v∈Dom(c)

c = v . (2)

for all constants c of σ. It is clear that an interpretation of
σ that satisfies UECσ can be identified with a function that
maps each constant c into an element in its domain.

Example 1 Consider a signature σ to be {c=1, c=2, c=
3}, where c is a constant and Dom(c) = {1, 2, 3}. UECσ is

¬(c=1 ∧ c=2) ∧ ¬(c=2 ∧ c=3) ∧ ¬(c=1 ∧ c=3)
∧ ¬¬(c=1 ∨ c=2 ∨ c=3).

Let F1 be (c= 1 ∨ ¬(c= 1)) ∧ UECσ . Due to UECσ , each
of {c = 1}, {c = 2}, and {c = 3} is a model of F1, but
{c= 1} is the only stable model of F1.2 This is because the
reduct F {c=1}

1 is equivalent to c=1, for which {c=1} is the
minimal model. On the other hand, for instance, the reduct

1Note that c= v is an atom in the propositional signature, and
not an equality in first-order logic.

2We identify an interpretation with the set of atoms that are true
in it.

F
{c=2}
1 is equivalent to >, for which the minimal model is
∅, not {c=2}.

Let F2 be F1 conjoined with c=2. Similarly, we can check
that the only stable model of F2 is {c= 2}. This illustrates
the nonmonotonicity of the semantics.

Note that the presence of double negations is essential
in (2). Without them, F1 would have three stable models:
{c=1}, {c=2}, and {c=3}.

In ASP, formulas of the form F ∨ ¬F are called choice
formulas and denoted by {F}ch. For example, F1 above can
be written as {c = 1}ch ∧ UECσ . As shown in Example 1,
in the presence of UECσ , a formula of the form {c = v}ch
expresses that c has the value v by default, which can be
overridden in the presence of other evidence (Bartholomew
and Lee 2014).

Aggregates in ASP can be understood as shorthand for
propositional formulas as shown in (Ferraris 2005). For in-
stance, the count aggregate expresion 2{p, q, r} is shorthand
for (p ∧ q) ∨ (q ∧ r) ∨ (p ∧ r).

Syntax of BC+
The syntax of language BC+ is similar to the syntax of C+.
The following description repeats the syntax description in
Section 4.2 from (Giunchiglia et al. 2004). In language BC+,
constants are divided into two groups: fluent constants and
action constants. Fluent constants are further divided into
regular and statically determined.

A fluent formula is a formula such that all constants oc-
curring in it are fluent constants. An action formula is a for-
mula that contains at least one action constant and no fluent
constants.

A static law is an expression of the form
caused F if G (3)

where F and G are fluent formulas. An action dynamic law
is an expression of the form (3) in which F is an action for-
mula and G is a formula. A fluent dynamic law is an expres-
sion of the form

caused F if G after H (4)
where F and G are fluent formulas and H is a formula,
provided that F does not contain statically determined con-
stants. Static laws can be used to talk about causal dependen-
cies between fluents in the same state; action dynamic laws
can be used to express causal dependencies between concur-
rently executed actions; fluent dynamic laws can be used for
describing direct effects of actions.

A causal law is a static law, an action dynamic law, or a
fluent dynamic law. An action description is a finite set of
causal laws.

The formula F in each of causal laws (3) and (4) is called
the head of the causal law.

Semantics of BC+
For any action descriptionD, we define a sequence of propo-
sitional formulas PF0(D),PF1(D), . . . so that the stable
models of PFm(D) represent paths of length m in the tran-
sition system corresponding to D. The signature σD,m of
PFm(D) has the constants i :c such that

1425



Figure 1: The transition system described by SD.

• i ∈ {0, . . . ,m} and c is a fluent constant of D, and
• i ∈ {0, . . . ,m−1} and c is an action constant of D.
The domain of i :c is the same as the domain of c. By i :F we
denote the result of inserting i : in front of every occurrence
of every constant in formula F . The translation PFm(D) is
the conjunction of
•

i :F ← i :G (5)
for every static law (3) in D and every i ∈ {0, . . . ,m},
and (5) for every action dynamic law (3) in D and ev-
ery i ∈ {0, . . . ,m−1};3

•
i+1:F ← (i+1:G) ∧ (i :H) (6)

for every fluent dynamic law (4) in D and every i ∈
{0, . . . ,m−1};
•

{0:c=v}ch (7)
for every regular fluent constant c and every v ∈ Dom(c);
• UECσD,m

, which can also be abbreviated using the count
aggregate as the conjunction of

← ¬ 1{i :c=v1, . . . , i :c=vm}1 (8)

for every i :c in σD,m and every v1, . . . , vm in Dom(i :c).
Note how the translation PFm(D) treats regular and stat-

ically determined fluent constants in different ways: formu-
las (7) are included only when c is regular. Statically de-
termined fluents are useful for describing defined fluents,
whose value is determined by the fluents in the same state
only. We refer the reader to (Giunchiglia et al. 2004, Sec-
tion 5) for more details.

As an example, the transition system shown in Figure 1
can be described by the following action description SD,
where p is a Boolean regular fluent constant and a is a
Boolean action constant.

caused p if > after a,
caused {a}ch,
caused {∼a}ch,
caused {p}ch if > after p,
caused {∼p}ch if > after ∼p,

(9)

The translation PFm(SD) turns this description into the
following propositional formulas. The first line of (9) is
turned into the formulas

i+1:p ← i :a

3We identify F ← G with G→ F .

(0 ≤ i < m), the second and the third lines into

{i :a}ch, {i :∼a}ch (10)

(0 ≤ i < m), and the fourth and the fifth lines into

{i+1:p}ch ← i :p, {i+1:∼p}ch ← i :∼p
(11)

(0 ≤ i < m). In addition,

{0:p}ch, {0:∼p}ch

come from (7), and

← ¬ 1{i :p, i :∼p}1 (0 ≤ i ≤ m),
← ¬ 1{i :a, i :∼a}1 (0 ≤ i < m)

come from (8).
For every stable modelX of PF0(D), the set of fluent for-

mulas c=v such that 0 : c=v belongs to X is a state of D.
In view of the uniqueness and existence of value constraints,
for every state s and every fluent constant c, there is exactly
one v such that c=v belongs to s.

For every stable modelX of PF1(D),D includes the tran-
sition 〈s0, e, s1〉, where si (i = 0, 1) is the set of fluent for-
mulas c=v such that i : c=v belongs to X , and e is the set
of action formulas c=v such that 0 : c=v belongs to X .

The soundness of this definition is guaranteed by the fol-
lowing fact:

Theorem 1 For every transition 〈s0, e, s1〉, s0 and s1 are
states.

The stable models of PFm(D) represent the paths of
length m in the transition system corresponding to D. For
m = 0 and m = 1, this is clear from the definition of a
transition system; for m > 1 this needs to be verified as the
following theorem shows.

For every set X of elements of the signature σD,m, let Xi

(i < m) be the triple consisting of
• the set consisting of atoms A such that i :A belongs to X ,

and A contains fluent constants,
• the set consisting of atoms A such that i :A belongs to X ,

and A contains action constants, and
• the set consisting of atoms A such that (i+ 1):A belongs

to X , and A contains fluent constants.

Theorem 2 For every m ≥ 1, X is a stable model of
PFm(D) iff X0, . . . , Xm−1 are transitions.

For example, {0 :∼p, 0 :∼a, 1 :∼p, 1 : a, 2 : p} is a stable
model of PF2(SD), and each of 〈∼p,∼a,∼p〉 and 〈∼p, a, p〉
is a transition of SD.

Useful Abbreviations
Like C+, several intuitive abbreviations of causal laws can
be defined for BC+. Expression “default c= v if F ” stands
for “caused {c= v}ch if F .”4 This abbreviation is intuitive
in view of the reading of choice formulas in the presence of
uniqueness and existence of value constraints we introduced
earlier (recall Example 1). Similarly,

default c=v if F after G
4Here and after, we often omit if F if F is >.

1426



stands for “caused {c=v}ch if F after G.”
Other abbreviations of BC+ causal laws are defined simi-

larly as in C+.

• If c is a Boolean action constant, we express that F is an
effect of executing c by “c causes F ,” which stands for
the fluent dynamic law “caused F if > after c.”
• If c is an action constant, the expression “exogenous c”

stands for the action dynamic laws “default c=v” for all
v ∈ Dom(c).
• If c is a regular fluent constant, the expression

“inertial c” stands for the fluent dynamic laws
“default c=v after c=v” for all v ∈ Dom(c).

• “constraint F ” where F is a fluent formula stands for the
static law “caused ⊥ if ¬F .”
• “always F ” stands for the fluent dynamic law

“caused ⊥ if > after ¬F .”
• “nonexecutable F if G” stands for the fluent dynamic

law “caused ⊥ if > after F ∧G.”

Embedding Formulas under SM in BC+
We defined the semantics of BC+ by reducing the language
to propositional formulas under the stable model semantics.
The reduction in the opposite direction is also possible.

Any propositional formula F under the stable model se-
mantics can be turned into an action description in BC+ by
treating every atom of F as a statically determined fluent
constant with Boolean values, rewriting F as the static law
“caused F ,” and adding “default c= f” for every constant c.

Proposition 1 The stable models of a propositional for-
mula F are exactly the states of the transition system de-
scribed by the BC+ description obtained from F by the
above translation.

It is known that the problem of determining the existence
of stable models of propositional formulas is ΣP2 -complete
(Ferraris 2005). The same complexity applies to BC+ in
view of Proposition 1. On the other hand, from the transla-
tion PFm(D), a useful fragment in NP can be defined based
on the known results in ASP. The following is an instance.

We say that action description D is definite if the head
of every causal law is either ⊥, an atom c= v, or a choice
formula {c = v}ch. We say that a formula is a simple con-
junction if it is a conjunction of atoms and count aggregates,
each of which may be preceded by negation.

A simple action description is a definite action description
such that G in every causal law (3) is a simple conjunction,
and G and H in every causal law (4) are simple conjunc-
tions. The next section presents an example of a simple ac-
tion description.

Example: Blocks World
An attractive feature of BC+ is that aggregates (or more
generally, abstract constraints) are directly usable in causal
laws because they are understood as abbreviations of propo-
sitional formulas (Ferraris 2005; Pelov, Denecker, and
Bruynooghe 2003; Son and Pontelli 2007; Lee and Meng

2009). We illustrate this advantage by formalizing an elab-
oration of the Blocks World from (Lee, Lifschitz, and Yang
2013) by a simple BC+ description.

Let Blocks be a non-empty finite set of symbols (block
names) that does not include the symbol Table. The action
description below uses the following fluent and action con-
stants:
• for each B ∈ Blocks, regular fluent constant Loc(B)

(“Location”) with the domain Blocks ∪ {Table}, and stat-
ically determined Boolean fluent constant InTower(B);
• for each B ∈ Blocks, Boolean action constant Move(B);
• for each B ∈ Blocks, action constant Dest(B) (“Destina-

tion”) with the domain Blocks∪{Table}∪{None}, where
None is an auxiliary symbol for an “undefined” value.

In the list of static and dynamic laws below, B, B1 and B2

are arbitrary elements of Blocks, and L is an arbitrary ele-
ment of Blocks ∪ {Table}.

Blocks are not on itself:
constraint Loc(B) 6=B.

The definition of InTower(B):
caused InTower(B) if Loc(B)=Table,
caused InTower(B) if Loc(B)=B1 ∧ InTower(B1),
default ∼InTower(B).

Blocks don’t float in the air:
constraint InTower(B).

No two blocks are on the same block:
constraint {b : Loc(b)=B}1.

Only k towers are allowed to be on the table (k is a positive
integer):

constraint {b : Loc(b)=Table}k.
The effect of moving a block:

Move(B) causes Loc(B)=L if Dest(B)=L

A block cannot be moved unless it is clear:
nonexecutable Move(B) if Loc(B1)=B.

Concurrent actions are limited by the number g of grippers:
always {b : Move(b)}g.

The commonsense law of inertia:
inertial Loc(B).

Actions are exogenous:
exogenous Move(B),
exogenous Dest(B).

Dest is an attribute of Move:
always Dest(B)=None↔ ¬Move(B).

Besides the inability to represent aggregates, other ac-
tion languages have difficulties in representing this exam-
ple. Languages C and C+ do not allow us to represent the
recursive definition of InTower. Languages B and BC do not
allow us to represent action attributes like Dest. (The use-
fulness of attributes in expressing elaboration tolerance was
discussed in (Lifschitz 2000).)

In the following two sections, we compare BC+ with BC
and C+.

1427



Relation to Language BC
Review: BC
The signature σ for a BC description D is defined the same
as in BC+ except that every action constant is assumed to be
Boolean. The main syntactic difference between BC causal
laws and BC+ causal laws is that the former allows only the
conjunction of atoms in the body, and distinguishes between
if and ifcons clauses.

A BC static law is an expression of the form

A0 if A1, . . . , Am ifcons Am+1, . . . , An (12)

(n ≥ m ≥ 0), where each Ai is an atom containing a fluent
constant. It expresses, informally speaking, that every state
satisfies A0 if it satisfies A1, . . . , Am, and Am+1, . . . , An
can be consistently assumed.

A BC dynamic law is an expression of the form

A0 after A1, . . . , Am ifcons Am+1, . . . , An (13)

(n ≥ m ≥ 0), where (i) A0 is an atom containing a regular
fluent constant, (ii) each of A1, . . . , Am is an atom contain-
ing a fluent constant, or a= t where a is an action constant,
and (iii) Am+1, . . . , An are atoms containing fluent con-
stants. It expresses, informally speaking, that the end state of
any transition satisfiesA0 if its beginning state and its action
satisfy A1, . . . , Am, and Am+1, . . . , An can be consistently
assumed about the end state.

An action description in language BC is a finite set con-
sisting of BC static and BC dynamic laws.

The semantics of BC is defined by using reduction PFBCm
to a sequence of logic programs under the stable model se-
mantics. The signature σD,m of PFBCm is defined the same as
that of PFm defined in Section “Semantics of BC+.”

For any BC action description D, by PFBCm (D) we denote
the conjunction of
•

i :A0 ← i : (A1 ∧ · · · ∧Am ∧ ¬¬Am+1 ∧ · · · ∧ ¬¬An)
(14)

for every BC static law (12) in D and every i ∈
{0, . . . ,m};

•
(i+ 1):A0 ← i : (A1 ∧ · · · ∧Am)∧

(i+1):(¬¬Am+1 ∧ · · · ∧ ¬¬An)
(15)

for every BC dynamic law (13) in D and every i ∈
{0, . . . ,m−1};
• the formula i : (a= t ∨ a= f) for every action constant a

and every i ∈ {0, . . . ,m−1};
• the formula (7) for every regular fluent constant c and ev-

ery element v ∈ Dom(c);
• the formulas (1) and (2) for every constant i :c in σD,m.

Note how the translations (14) and (15) treat if and ifcons
clauses differently by either prepending double negations in
front of atoms or not. In BC+, only one if clause is enough
since the formulas are understood under the stable model
semantics.

Embedding BC in BC+
Despite the syntactic differences, language BC can be eas-
ily embedded in BC+ as follows. For any BC description D,
we define the translation bc2bcp(D), which turns a BC de-
scription into an equivalent BC+ description as follows:
• replace every causal law (12) with

caused A0 if A1 ∧ · · · ∧Am ∧ ¬¬Am+1 ∧ · · · ∧ ¬¬An;
(16)

• replace every causal law (13) with

causedA0 if ¬¬Am+1∧· · ·∧¬¬An afterA1∧· · ·∧Am;

• add the causal laws “exogenous a” for every action con-
stant a.

Theorem 3 For any action description D in language BC,
the transition system described by D is identical to the tran-
sition system described by the description bc2bcp(D) in
language BC+.

Advantages of BC+ over BC
In BC, every action is assumed to be Boolean, and action
dynamic laws are not available. This prevents us from de-
scribing defeasible causal laws (Giunchiglia et al. 2004, Sec-
tion 4.3) and action attributes (Giunchiglia et al. 2004, Sec-
tion 5.6), which BC+ and C+ are able to express naturally.
Also, syntactically, BC is not expressive enough to describe
dependencies among actions. For a simple example, in BC+
we can express that action a1 is not executable when a2 is
not executed at the same time by the fluent dynamic law

caused ⊥ after a1 ∧ ¬a2,
but this not syntactically allowed in BC.

On the other hand, the presence of choice formulas in the
head of BC+ causal laws and the different treatment of A
and ¬¬A in the bodies may look subtle to those who are not
familiar with the stable model semantics for propositional
formulas. Fortunately, in many cases one can hide these con-
structs by using the default proposition in BC+ as the fol-
lowing example illustrates.

Consider the leaking container example from (Lee, Lifs-
chitz, and Yang 2013) in which a container loses k units of
liquid by default. This example was used in that paper to il-
lustrate the advantages of BC over B that is able to express
defaults other than inertia. In this domain, the default de-
crease of Amount over time can be represented in BC+ using
the default proposition

default Amount=x after Amount=x+k, (17)

which stands for fluent dynamic law

caused {Amount=x}ch after Amount=x+k,

which can be further turned into propositional formulas

{i+1:Amount=x}ch ← i :Amount=x+k (18)

(i < m). On the other hand, the abbreviation (17) in BC
stands for the causal law

caused Amount=x after Amount=x+k ifcons Amount=x,

1428



Notation: s, s′ ranges over {Switch1, Switch2};
x, y ranges over {Up,Dn}.

Regular fluent constants: Domains:
Status(s) {Up,Dn}

Action constants: Domains:
Flip(s) Boolean

Causal laws:

Flip(s) causes Status(s)=x if Status(s)=y (x 6= y)
caused Status(s)=x if Status(s′)=y (s 6= s′, x 6= y)
inertial Status(s)
exogenous Flip(s)

Figure 2: Two Switches

which is further turned into

i+1:Amount=x ← i :Amount=x+k ∧ ¬¬(i+1:Amount=x)

(i < m), which is strongly equivalent to (18).
Our experience is that, in most cases, instead of remem-

bering the subtle difference between if and if cons clauses
in BC, it is more intuitive to use the default proposition in
BC+.

Relation to C+
Due to the space limitation, we refer the reader
to (Giunchiglia et al. 2004) for the review of C+. The syntax
of C+ has the same form of causal laws as BC+.

Embedding Definite C+ in BC+
We say that C+ action description D is definite if the head of
every causal law is either⊥ or an atom c=v. For any definite
C+ description D, we define the translation cp2bcp(D),
which turns a C+ description into BC+, as follows:

• replace every C+ causal law (3) with

caused F if ¬¬G;

• replace every C+ causal law (4) with

caused F if ¬¬G after H.

The following theorem asserts the correctness of this
translation.

Theorem 4 For any definite action description D in lan-
guage C+, the transition system described by D is iden-
tical to the transition system described by the description
cp2bcp(D) in language BC+.

Advantages of BC+ over C+
Recall that the syntax of BC+ is identical to the syntax of C+,
but its semantics is given via the stable model semantics. An
advantage of this approach is that it allows the advances in
ASP directly usable in the context of action languages. We
already observed that being able to use aggregates in BC+
provides a succinct representation of the Blocks World do-
main. However, the expansion of choice formulas and ag-
gregates into propositional formulas as in the stable model

semantics does not work in C+ as defined in (Giunchiglia et
al. 2004), which is based on nonmonotonic causal theories.

The embedding of C+ in BC+ tells us that if clauses al-
ways introduce double negations, whose presence do not
necessarily lead to minimal models. This accounts for the
fact that the definite fragment of C+ does not handle the con-
cept of transitive closure correctly. The inability to consider
minimal models in such cases introduce some unintuitive be-
havior of C+ in representing causal dependencies among flu-
ents.

Consider two switches which can be flipped but cannot be
both up or down at the same time. If one of them is down and
the other is up, the direct effect of flipping only one switch
is changing the status of that switch, and the indirect effect
is changing the status of the other switch. This domain can
be represented in BC+ as shown in Figure 2.

The description in BC+ has the following four transi-
tions possible from the initial state where Switch1 is Dn and
Switch2 is Up:

〈{St(Sw1)=Dn, St(Sw2)=Up},
{∼Flip(Sw1),∼Flip(Sw2)}, {St(Sw1)=Dn, St(Sw2)=Up}〉,

〈{St(Sw1)=Dn, St(Sw2)=Up},
{Flip(Sw1),∼Flip(Sw2)}, {St(Sw1)=Up, St(Sw2)=Dn}〉,

〈{St(Sw1)=Dn, St(Sw2)=Up},
{∼Flip(Sw1), Flip(Sw2)}, {St(Sw1)=Up, St(Sw2)=Dn}〉,

〈{St(Sw1)=Dn, St(Sw2)=Up},
{Flip(Sw1), Flip(Sw2)}, {St(Sw1)=Up, St(Sw2)=Dn}〉.

The second and the third transitions exhibit the indirect
effect of the action Flip. If this description is understood in
C+, five transitions are possible from the same initial state:
in addition to the four transitions above,

〈{St(Sw1)=Dn, St(Sw2)=Up},
{∼Flip(Sw1),∼Flip(Sw2)}, {St(Sw1)=Up, St(Sw2)=Dn}〉

is also a transition because, according to the semantics of C+,
this is causally explained by the cyclic causality. Obviously,
this is unintuitive.

Conclusion
We implemented language BC+ by modifying system
CPLUS2ASP (Babb and Lee 2013), which was originally de-
signed to compute the definite fragment of C+ using ASP
solvers. As the translation PFC+m (D) for C+ is similar to the
translation PFm(D) for BC+, modifying this translation to
accept BC+ input is straightforward.

Besides the action languages considered in this paper, lan-
guage K (Eiter et al. 2004) is also defined via ASP. Since K
assumes knowledge-states, it is not directly comparable to
BC+ which assumes world-states.

A further extension of BC+ is possible. It is straightfor-
ward to extend BC+ to the first-order level, by using the first-
order stable model semantics from (Ferraris, Lee, and Lifs-
chitz 2011) or its extension with generalized quantifiers (Lee
and Meng 2012) in place of propositional formulas. This
will allow BC+ to include more general constructs, such as
constraint atoms, external atoms, nonmonotonic dl-atoms,
as they are instances of generalized quantifiers as shown
in (Lee and Meng 2012).

1429



Acknowledgements We are grateful to Michael
Bartholomew, Vladimir Lifschitz, and the anonymous
referees for their useful comments. This work was partially
supported by the National Science Foundation under Grant
IIS-1319794 and by the South Korea IT R&D program
MKE/KIAT 2010-TD-300404-001, and the Brain Pool
Korea program.

References
Babb, J., and Lee, J. 2013. Cplus2ASP: Computing action
language C+ in answer set programming. In Proceedings of
International Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR), 122–134.
Bartholomew, M., and Lee, J. 2014. Stable models of multi-
valued formulas: partial vs. total functions. In Proceed-
ings of International Conference on Principles of Knowl-
edge Representation and Reasoning (KR), 583–586.
Eiter, T.; Faber, W.; Leone, N.; Pfeifer, G.; and Polleres, A.
2004. A logic programming approach to knowledge-state
planning: Semantics and complexity. ACM Trans. Comput.
Log. 206–263.
Ferraris, P.; Lee, J.; and Lifschitz, V. 2011. Stable models
and circumscription. Artificial Intelligence 175:236–263.
Ferraris, P. 2005. Answer sets for propositional theories. In
Proceedings of International Conference on Logic Program-
ming and Nonmonotonic Reasoning (LPNMR), 119–131.
Gelfond, M., and Lifschitz, V. 1993. Representing action
and change by logic programs. Journal of Logic Program-
ming 17:301–322.
Gelfond, M., and Lifschitz, V. 1998. Action languages.5
Electronic Transactions on Artificial Intelligence 3:195–
210.
Giunchiglia, E., and Lifschitz, V. 1998. An action language
based on causal explanation: Preliminary report. In Pro-
ceedings of National Conference on Artificial Intelligence
(AAAI), 623–630. AAAI Press.
Giunchiglia, E.; Lee, J.; Lifschitz, V.; McCain, N.; and
Turner, H. 2004. Nonmonotonic causal theories. Artificial
Intelligence 153(1–2):49–104.
Harrison, A. J.; Lifschitz, V.; and Yang, F. 2014. The seman-
tics of gringo and infinitary propositional formulas. In Prin-
ciples of Knowledge Representation and Reasoning: Pro-
ceedings of the Fourteenth International Conference, KR.
Lee, J., and Meng, Y. 2009. On reductive semantics of ag-
gregates in answer set programming. In Procedings of Inter-
national Conference on Logic Programming and Nonmono-
tonic Reasoning (LPNMR), 182–195.
Lee, J., and Meng, Y. 2012. Stable models of formulas
with generalized quantifiers.6 In Proceedings of Interna-
tional Workshop on Nonmonotonic Reasoning (NMR).
Lee, J.; Lifschitz, V.; and Yang, F. 2013. Action language
BC: Preliminary report. In Proceedings of International
Joint Conference on Artificial Intelligence (IJCAI).

5http://www.ep.liu.se/ea/cis/1998/016/
6http://peace.eas.asu.edu/joolee/papers/smgq-nmr.pdf

Lifschitz, V. 2000. Missionaries and cannibals in the
Causal Calculator. In Proceedings of International Confer-
ence on Principles of Knowledge Representation and Rea-
soning (KR), 85–96.
Pelov, N.; Denecker, M.; and Bruynooghe, M. 2003. Trans-
lation of aggregate programs to normal logic programs. In
Proceedings Answer Set Programming.
Son, T. C., and Pontelli, E. 2007. A constructive semantic
characterization of aggregates in answer set programming.
TPLP 7(3):355–375.

1430




