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Abstract

Many various types of sensors coming from different
complex devices collect data from a city. Their under-
lying data representation follows specific manufacturer
specifications that have possibly incomplete descrip-
tions (in ontology) alignments. This paper addresses the
problem of determining accurate and complete match-
ing of ontologies given some common descriptions and
their pre-determined high level alignments. In this con-
text the problem of ontology matching consists of au-
tomatically determining all matching given the latter
alignments, and manually verifying the matching re-
sults. Especially for applications where it is crucial
that ontologies are matched correctly the latter can turn
into a very time-consuming task for the user. This pa-
per tackles this challenge and addresses the problem of
computing the minimum number of user inputs needed
to verify all matchings. We show how to represent this
problem as a reasoning problem over a bipartite graph
and how to encode it over pseudo Boolean constraints.
Experiments show that our approach can be success-
fully applied to real-world data sets.

Introduction
Handling variations in meaning in description interpretation
or ambiguity is an open problem (Agrawal et al. 2008). Ei-
ther it cannot be solved automatically or the returned solu-
tion is not guaranteed to be correct. However, for several ap-
plications correctness is crucial. Consider, for example, the
matching problem in smart buildings that consists in identi-
fying among thousands of sensor descriptions the ones that
are needed as inputs to energy efficiency approaches (Roth
et al. 2005). If the matching is done incorrectly the energy
saving approaches do not operate correctly and cannot pre-
vent energy waste.

This paper presents an approach for semi-automatically
solving matching problems for applications such as the
building one for which correctness is crucial. Contrary to
existing works (Pavel and Euzenat 2013) in ontology match-
ing we assume that common descriptions and representa-
tions are shared among the ontologies to be matched but
not all mappings are known. Such problems occur in many
real-world scenarios where different systems manufacturers
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(e.g., in the context of building, energy or water management
systems) use state-of-the-art representation / vocabularies
for defining specific features of their systems. In most cases
manufacturers implement their own ontologies for internal
representation and rarely update the core state-of-the-art vo-
cabulary. Therefore each and every domain (e.g., building,
energy or water) has multitude variance of their knowledge
representation, which differ from one manufacturer to an-
other. Integrating systems from different providers and man-
ufacturers is then a difficult problem. We study this problem
of ontology matching given some pre-determined common
representation and high-level alignments, i.e. alignments of
descriptions from where underlying alignments can be dis-
covered. In our context the two ontologies to be aligned have
(some, not all) common structures and having some align-
ments implies (indirectly) that some underlying (i.e., sub or
super) descriptions will be also aligned.

Given these high level alignments, that can be computed
using for example the method of (Stoilos, Stamou, and Kol-
lias 2005), our goal is to find the matching of the specific de-
scriptions that are guaranteed to be correct which is a man-
ual, complex and hence time consuming task.

Suppose we would verify ontology matching results by
asking the user for each alignment of the result set whether it
is correct or not and put his response on record. Our aim is to
obtain exactly this record of responses but without the need
of having to involve the user for each alignment verification.
The problem here is: Which alignments need to be verified
by the users such that the user response for the remaining
ones can be automatically inferred?

Our approach complements existing approaches in map-
ping verification but cannot be compared to them: Mapping
verification approaches such as (Cruz, Stroe, and Palmonari
2012; Jiménez-Ruiz et al. 2013; Shi et al. 2009) determine
iteratively individual mappings that need to be verified in
order to improve the matching result. In contrast, we deter-
mine simultaneously the set of mappings that need to be ver-
ified in order to verify the complete matching result. For our
problem this simultaneous computation of the mapping set
is necessary in order to indeed minimize user involvement
rather than verifying the mapping result in a greedy way.

Figure 1 illustrates our problem setting. In this example
we have the three descriptions A, X , and Y that are part of
the common domain vocabulary, and descriptions A1, A2,
B, B1, B2, B3, and B4 that are part of the manufacturer
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specification. There is an alignment between the high level
descriptions A and B and our aim is to find the alignments
for descriptionsA1 andA2 that are guaranteed to be correct.
For this task we make use of an ontology matching approach
like (Stoilos, Stamou, and Kollias 2005) that employs varia-
tion metrics for computing similarity scores.

Instead of presenting the entire ontology matching result
to users we iteratively ask them in each round to verify the
correctness of a single mapping. Our aim is to minimize user
involvement, i.e. the number of rounds needed for verify-
ing the entire result. We approach it by encoding all condi-
tions for automatically inferring user responses over pseudo
Boolean constraints. Based on them we then define the ob-
jective function for our problem and solve it using an effi-
cient maximum satisfiability (max-SAT) solver (Heras, Lar-
rosa, and Oliveras 2008).

The paper is organized as follows: We start by introducing
a use case and by providing an overview of our approach.
Then we show how to compute and organize alignments
which may need to be validated by the user. Our approach
for minimizing the number of alignments that require user
verification is presented in the following section. The paper
concludes with an experimental evaluation.

Figure 1: Two simple ontologies and an alignment.

Use Case: Smart Buildings
We start by presenting our building use case to which we
will refer throughout the paper. Buildings are responsible
for 40% of the energy in industrialized countries and 15%
to 30% of it could be saved if energy efficiency approaches
would be deployed more widely. The main obstacle for it
lies in their high deployment costs (Roth et al. 2005). A sig-
nificant part of it is due to the need of identifying among
thousands of sensor readings in a building the ones that are
required as inputs to the energy saving approaches and thus
due to the need of solving a problem that can be viewed as
an ontology matching problem.

For commercial buildings, related data is managed and
stored in Building Management Systems (BMSs). When up-
dating the BMS control strategy for new equipment addi-
tions, new data is labeled by most BMS vendor technicians
in an ad-hoc manner despite some standardization efforts
(ISO16484-3 2005). Therefore it cannot be assumed that on-
tology matching approaches can compute the correct match-
ing without involving a user. As correctness is crucial for this
task the matching problem is solved entirely manual today.

We illustrate our method for deploying the APAR (air-
handling unit performance assessment rules) approach
(Schein and Bushby 2006) since it is the state-of-the-art

fault detection and diagnosis method for air handling units
(AHUs), i.e. for one of the main energy consumers in build-
ings (Castro et al. 2003). Using the domain ontology in
(Schumann, Ploennigs, and Gorman 2014) we will show
how we can significantly reduce the requirements for user
involvement.

Overview of the Approach
Figure 2 presents an overview of our approach. Its on-line
part starts with the computation of the ontology matching
result (OMR), noted M. We then compute the smallest set
of matchings that the user needs to verify such that the user
responses for the remaining ones can be automatically in-
ferred (step (2)). These matchings are iteratively presented
to the user (loop (2)-(5)) as long as they are consistent with
M, i.e. as long as the user verifies that the alignments of the
matching result are correct.

Once we have collected consistent feedback for all user
requests the OMR is verified and the approach terminates.
Each time the user provides feedback that is inconsistent
with M we adapt the OMR accordingly, i.e. we remove the
inconsistent alignment and check whether it can be replaced
by an alignment whose similarity score is above a given
threshold. If this is the case this alignment is added to the
OMR (step (1)). Then we compute the smallest set of ad-
ditional matching that needs to be verified by the user to
validate the modified OMR (step 2).

The computation of the latter, i.e. the minimum user re-
quest set, is based on an alignment graph that represents all
possible alignments between a source ontology (BMS labels
for our use case) and a target ontology (APAR labels for our
use case) and the dependencies among alignments.

Figure 2: Overview of Approach. Dashed lines correspond
to required inputs and solid lines to the flow of the approach.

Computing and Organizing User Requests
A user request corresponds to a matching m = (A,B) be-
tween a concept A of the target ontology and a concept B
of the source ontology. The user response states either that
the matching is correct or that it is incorrect. Only matching
whose correctness cannot be automatically inferred need to
be presented to the user.

Automatically verifiable matchings correspond to those
whose descriptions are semantically strictly more (resp. less)
similar than that of a matching which has been previously
verified by the user as correct (resp. incorrect). We will
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SupplyAT ≡ Tmp u ∃loc.Building u ∃supplyBy.Fan
ReturnAT ≡ Tmp u ∃loc.Area
ExtAT ≡ Tmp u ∃rely.Pressureu ∃supplyBy.Blower
∃loc.Building ≡ ∃loc.Area u ∃coilUnit.CoilUnit

Figure 3: Extract of EL++ Domain Ontology T . AT de-
notes air temperature, Tmp refers to concept temperature.

exploit such dependencies among matching for computing
minimum user request sets (see Section 4).

Now, we briefly review DLs basics and the logic we adopt.
Then we formally state the conditions under which match-
ings can be verified automatically by defining the descrip-
tion matching problem and a subsumption-based hierarchy.

Semantic Representation
We use DL as a formal knowledge representation language
for ontologies and illustrate our work with the DL EL++

(Baader, Brandt, and Lutz 2005) where satisfiability and
subsumption are decidable. These properties are required for
efficiently performing the semantic reasoning for our match-
ing problem. Figure 3 shows an extract of the ontology for
our use case expressed in EL++. For example, supply air
temperature (SupplyAT ) is a Temperature (Tmp), cached
by a sensor, located in at least a Building (∃loc.Building)
which is supplied by at least a fan (∃supplyBy.Fan).

We use the DL constructive reasoning difference (or sub-
traction operation) (Brandt, Küsters, and Turhan 2002) for
comparing our EL++ DL-based descriptions that differ
only from a few properties (among a dozen and more).
While this is not intuitive in other ontology matching prob-
lems, it roots in contexts where sensor and physical device
manufacturers base their data model on standard ontologies
with some significant in-house extensions. Therefore map-
ping models from two manufacturers can be established by
evaluating their difference, which is more appropriate in
this context. A compact representation of the DL difference
X\Y between two DL concepts X and Y defined through
axioms in T (e.g. Figure 3) is:

X\Y .
= min
�d

{Z|Z u Y ≡ X u Y } (1)

(1) refers to information required by X but not pro-
vided by Y . For instance, the difference SupplyAT \
ReturnAT of the two EL++ concepts SupplyAT
and ReturnAT consists in difference (Tmp u
∃loc.Building u ∃supplyBy.Fan) \ (Tmp u
∃loc.Area). The concept ∃loc.Building corresponds to
∃loc.Area u ∃coilUnit.CoilUnit. So their difference is:
∃supplyBy.Fan u∃coilUnit.CoilUnit. The computation
of (1) is elaborated with respect to the subdescription order-
ing �d (Küsters 2001), which deals with syntactical redun-
dancies. In other words the concept with the minimal num-
ber of properties and concepts in its description is returned.

Automatic Verification of Matchings
Matchings m of the form (A,B) can automatically be ver-
ified as incorrect if the two descriptions have no semantic
similarity. Two descriptions from the two ontologies (to be

aligned) can be unrelated, at least from a subsumption per-
spective. All other matchings, i.e. those comparable under
vT , could possibly be correct. They are solutions to the de-
scription matching problem that is defined for a description
A of the target ontology and a set of descriptions B of the
source ontology.
Definition 1 (Description Matching Problem - DMP)
Let L be a DL; A, B be respectively a concept and a set
of concepts in L, T be a set of axioms in L. A Description
Matching Problem, denoted as DMP〈L,B, A, T 〉, consists
in retrieving concepts B′ ⊆ B such that ∀B ∈ B′:

T 6|= A uB v ⊥ (2)
This ensures that the conjunction between concepts B ∈ B′

and A is satisfiable, so semantically possible matching m =
(A,B) are retrieved and then incompatible concepts in B,
(i.e. T |= A u B v ⊥), are automatically discarded as in-
correct.

In order to reduce the number of user feedbacks required
for verifying which of the DMP solutions are indeed cor-
rect we compare them by first evaluating how concepts of
B′ are different from A (Definition 1) and then organizing
their difference along a vT -hierarchy. It captures the hier-
archy of matchings m = (A,B) i.e., all pairs (A′, B′) such
that the difference between A and B is more specific than
the difference of A′ and B′. The latter ensures to capture
more ”loose” matching or ”less specific” matching. In other
words (A′, B′) is still a matching but there exists a more
general matching (A,B) whose difference is more specific.
Definition 2 (vT -Hierarchy of Matchings)
Let L be a DL; A, A′, B̂ =DMP〈L,B, A, T 〉,
B̃ =DMP〈L,B, A′, T 〉 be respectively two concepts and
two sets of concepts in L, and T be a set of axioms in L.
The hierarchy of a matching (A,B) with B ∈ B̂ is defined
as:

H(A,B) = {(A′, B′)|B′ ∈ B̃ and T 6|= B ≡ B̃ and
T |= (A\B) v (A′\B′)} (3)

This definition ensures the comparison of matchings
where the concept of ”hierarchy of matches” is a set of re-
lations between matches i.e., concept couples of the form
m = (A′, B′). (3) ensures that the concepts of a matching
m = (A,B′) ∈ H(A,B) are semantically strictly more
similar than those of matching m′ = (A,B). It implies that
m has additional evidence for being correct. Thus, if the user
has verified a matching m′ as correct we can automatically
infer that m is also correct. For example, consider the differ-
ence between matching m = (SupplyAT,ReturnAT ) and
m′ = (SupplyAT,ExtAT ). Here the concepts of matching
m are strictly more similar than that of m′ since:
SupplyAT\ExtAT

.
= ∃supplyBy.Fan u ∃loc.Building
.
= ∃supplyBy.Fan u ∃coilUnit.CoilUnit u ∃loc.Area
.
= SupplyAT\ReturnAT u ∃loc.Area
v SupplyAT\ReturnAT.

Note that we take all matchings into account that could
possibly be correct. Similarity scores are used only to obtain
the initial ontology matching result. They are not used for
discarding matchings.
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Alignment Graph
As shown in Figure 2 we base our minimization approach on
an alignment graph that represents the possible alignments,
their dependencies, and further information that is typically
available for matching problems in the manufacturer context
and that can be exploited to further reduce the requirements
for user input. This includes knowledge about descriptions
that are guaranteed to have an alignment in the source on-
tology. Consider, for example, our use case where we do
ontology matching to deploy an energy saving approach for
AHUs. This implies that we have AHUs in our building and
hence AHU descriptions in our ontology.

Definition 3 (Alignment Graph) The alignment graphG =
(A,B,M, δ,H, T ,A′) is a bipartite graph where:

• A,B: are two disjoint sets of vertices corresponding to
the target and source ontology,

• M ⊆ A × B: is the set of edges corresponding to the
semantically possible matching between descriptions of
the target and source ontology (Definition 1),

• δ: is the degree of a vertex, i.e. it corresponds to the num-
ber of edges incident to a vertex (δ : A ∪B 7→ N+),

• H is the hierarchy of matchings (Definition 2),

• T is the set of axioms, and

• A′ ⊆ A is the set of vertices that is guaranteed to have
an alignment with a description of the source ontology.1

We also write H(m) to denote the the set of subsumers of
m. M(v) denotes the set of matchings starting in vertex
v ∈ A ∪ B. Figure 4 illustrates an alignment graph. We
will use the graph as a running example throughout the next
section. Thus, for quick reference, we have also added iden-
tifiers A1 to A3 for the APAR descriptions, and B1 to B4

for the BMS descriptions. All of the APAR descriptions are
guaranteed to have an alignment with a BMS description,
i.e. {A1, . . . , A3} ∈ A′.

Figure 4: Example of an Alignment Graph: Each edge m =
(A,B) is labeled with a tuple consisting of the matching
identifier m, and the set H . Only for ease of presentation
B1 . . . , B4 are connected to A rather than A1 and A2.

We presented a way to identify and organize all seman-
tically possible matchings. The next section tackles the
matching problem from a complementary angle and de-
scribes the computation of the correct matching set by taking
user feedbacks into account.

1A′ may be empty.

Minimizing User Involvement
We now address the problem of computing the correct la-
bel matching solution with minimum user requests. A naive
approach would iteratively select arbitrary matchings for
user validation until the ontology matching result is verified.
We reduce the number of user consultations by exploiting
vT -hierarchy and further information that is typically avail-
able for matching problems in the manufacturer context. All
these conditions for automatically verifying mappings we
encode over pseudo Boolean constraints. This allows us to
use efficient max-SAT solvers (Heras, Larrosa, and Oliveras
2008) for minimizing user involvement.

Computation of Minimum User Request Set
This section describes the computation of the minimum set
of user inputs U which is required to validate the ontology
matching result M that is retrieved using the approach in
(Stoilos, Stamou, and Kollias 2005). Now the problem is not
to determine whether a matching is correct or not but to de-
termine whether the entire matching set M is correct or not.

To model our problem as max-SAT problem over Boolean
variables we introduce for each matchingm a set of Boolean
temporal variables {t0m, . . . , tzm} where t0m = true implies
that matching m was verified by users and tkm = true im-
plies that m was automatically verified in time step k > 0.

In order to generalize our problem formalization we in-
troduce function η : A 7→ N+ that maps any description
to the number of specific descriptions that are guaranteed to
have an alignment with a description from the source ontol-
ogy and that have the same high level description. If none of
the descriptions is guaranteed to have such an alignment we
set η(A) to δ(A).

The general problem formalization is given in Problem 1.
(4) states that we aim to minimize the truth assignments to
variables t0m, so the number of required user inputs is min-
imized. Constraints (5) ensures that each matching is veri-
fied in exactly one time step and (6) states that an incorrect
matching m = (A,B) /∈ M can be automatically verified
as false2 in time step k, iff at least one of the conditions is
satisfied:
i a matching that subsumes m was previously verified as

false, i.e.
∨k−1

l=0, m̂:m∈H(m̂)\M t
l
m̂ holds,

ii a matching starting in bwas previously verified as correct,
i.e. is in M:

∨k−1
l=0, m̆∈M(B)∩M t

l
m̆ holds,

iii given those matching that have already been verified as
correct, m cannot be correct given that only η(A) cor-
rect matchings exist for A. More precisely, the number n
of previously verified correct matching that are not sub-
sumed by m and that start in A is so large that m can-
not be correct considering all those matchings that must
be correct if m is correct, i.e. those in H(m). That is, if
η(A) − |H(m)| ≤ n holds, and hence if yk,m holds sub-
ject to constraint (7). This condition is only satisfiable for
applications with A′ 6= ∅.
2Since matchings could be automatically verifiable as correct

based on matchings that have previously been verified as incorrect
(see (9)) we also seek to verify false matchings automatically.

1579



Problem 1 Minimum User Request Problem
MURP (G,M, z)

Constant z ∈ N
Variables: xk,m and yk,m ∀k ≤ z, m = (A,B) ∈M
for each m ∈M : tm = {t0m, . . . , tzm} where tjm ∈ {0, 1}

Minimize:
∑
m∈M

t0m (4) ∀tm
z∑

l=0

tlm = 1 (5)

∀k ∈ {1, . . . , z}, m = (A,B) /∈M

t
k
m∨yk,m∨

k−1∨
l=0, m̂:m∈H(m̂)\M

tlm̂∨
k−1∨

l=0, m̆∈M(B)∩M

tlm̆ (6)

−1 · yk,m · (η(A)− |H(m)|) +
k−1∑
l=0

∑
m̆∈M(A)∩M\H(m)

tlm̆ ≥ 0

(7)
∀k ∈ {1, . . . , z}, m = (A,B) ∈M

t
k
m ∨ xk,m ∨

k−1∨
l=0, m̂∈H(m)∩M

tlm̂ (8)

−1 · xk,m · g +
k−1∑
l=0

∑
ḿ∈M(A)\M with m/∈H(ḿ)

tlḿ ≥ 0 (9)

where g = δ(A)− η(A)− |{m̂ s.t. m ∈ H(m̂)}|

Otherwise, tkm must be true and hence m is not verifiable
in time step k. Constraint (8) states that a correct matching
m = (A,B) ∈ M can be automatically verified as true in
time step k, iff at least one of the conditions is satisfied:

iv a matching that is subsumed bymwas previously verified
as true, i.e.

∨k−1
l=0, m̂∈H(m)∩M t

l
m̂ holds,

v the number of previously verified incorrect matching that
m does not subsume and that start in a is at least as large
as the number of incorrect matching starting in a, i.e. if
xk,m holds (see (9)).

Again, the latter condition is only satisfiable for applications
with A′ 6= ∅.

Computing the Verified Matching Result
With the ability to compute minimum user request sets we
can retrieve the verified solution to the ontology matching
problem as shown in Procedure 1.3 As already described in
Section 2 it starts by computing the ontology matching result
M (line 4) and based on that the minimum user request set
RUI (line 5) which is computed via a max-SAT solver that
also takes previous user feedbacks as input. Then, as long
as the user feedback is in line with M we iteratively request
feedback for an element in RUI (lines 7–10). Otherwise,
we adapt the OMR accordingly, i.e. we remove the incon-
sistent alignment and check whether it can be replaced by

3As variables RUI and u require initialization they are set to
an arbitrary element in M (resp. M).

an alignment whose similarity score is above a given thresh-
old. If this is the case this alignment is added to M. Then
we recompute the minimum user request set by taking pre-
vious user feedbacks into account (lines 4–5). Our approach
terminates once the user has provided feedback on all user
requests (line 3). Then it returns the correct matching set
that is composed only of those matchings that were either
verified by the user or that can be automatically verified.

Procedure 1 GetV alidatedOMR(G, z)

1: RUI ← GetElem(M) // required user inputs
2: U ← ∅ // user input set
3: while not(RUI ⊆ U ) do
4: M← GetOntologyMatchingResult(G,U)
5: RUI ← GetMaxSATsol(MURP (G,M, z), U)
6: u← GetElemIn(M) // user input
7: while (M |= u) and not(RUI ⊆ U ) do
8: r ← GetElement(RUI \ U)
9: u← GetUserInput(r)

10: U ← U ∪ u
11: return M

Experimental Evaluation
We are not aware of any work that addresses our prob-
lem nor any existing experimental evaluations to which
we could compare our work. While the OAEI test cases
(http://oaei.ontologymatching.org/2013/) do contain bench-
marks for evaluating interactive matching approaches they
consider the problem of improving the matching result rather
than verifying it. We do not present any new method for com-
puting or improving matching results. The two problems of
improving and verifying matching results are complemen-
tary but they are not comparable.

We therefore evaluated our approach for two use cases for
which we had access to the correct matching as verified by
a domain expert. The first one is from the building domain.
We have evaluated our approach on a commercial site con-
sisting of 9 buildings, all managed by a single BMS with
2,239 descriptions. In order to deploy the APAR rules to its
23 AHUs we need to find for each of the seven high level
APAR descriptions4 the corresponding BMS description, i.e.
139 descriptions.5 The semantic analysis (Definition 1) de-
termines 1, 317 matchings as potential solutions, and hence
as matching set of our alignment graph G. To increase the
computational efficiency of our approach we automatically
partitioned G into 7 subgraphs with one high level APAR
description (and all its potential matchings) each. As the
APAR approach has already been applied to that building
we had access to the correct ontology matching result. Thus,
each time our approach requests a feedback from the user
we compared our solution to the correct matching.

4The APAR approach is based on 20 variables, 7 of which cor-
respond to BMS data points. The others are adjustable thresholds.

5Six high level APAR descriptions are each guaranteed to be
aligned to 23 BMS descriptions and one APAR description (out-
door air temperature) is guaranteed to be aligned to one BMS de-
scription.
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Experiments were run on a Linux Dual-Core PC with
2GB of RAM using the Pseudo-Boolean maxSAT solver
MiniSAT+ (Een and Sorensson 2006). Off-line reasoning
has been performed with CEL DL reasoner (http://lat.inf.tu-
dresden.de/systems/cel/) on label descriptions, enriched us-
ing an EL++ ontology of the APAR domain (55 concepts,
39 properties; 19 concepts subsume the 36 remaining ones
with a maximal depth of 3). Computing semantic matching
solutions and their vT -hierarchies requires 8.4 seconds.

The results are shown in Figure 5. When performing the
matching without any semantics techniques the user had to
consider 2, 239×7 = 15, 673 possible alignments. Utilizing
the semantic descriptions and exploiting (2) of the descrip-
tion matching problem reduced the need for user input to
1,317 requests. When taking advantage of ontology match-
ing approaches where the user was asked to verify align-
ments only if their quality was above a certain threshold
only 145 alignments needed to be presented to the user. In
contrast, our new approach allowed for the retrieval of the
validated matching set by requesting user feedback for 28
alignments only.

Figure 5: For the building and the transportation use case:
Required user inputs for our approach (MURP), for the
one considering only alignments that are likely to be cor-
rect (OMR), for the one considering only alignments if their
corresponding descriptions are semantically similar (DMP),
and for the one not utilizing any semantic techniques (NoSe-
mantics).

On average each request was presented to the user every
2.5 seconds, with a maximum of 10.6. This was the case
when we had to consider 20,033 clauses and 382 variables
for computing the minimum user request set.

As a second use case we evaluated our approach in the
context of transportation and particularly traffic sensors. In
such a domain sensors do not follow any standard represen-
tation but rather specific characteristics that represent their
functionalities. It is very common that sensor manufacturers
provide sensor descriptions using non-standard vocabularies
(to describe them). Similarly to the building domain man-
ufacturers use a common basis of vocabularies and slightly
diverge to represent the data that their sensors expose. We
specifically notice this common behavior across cities where
national manufacturers expose similar functionalities of sen-
sors with changes in the data representation model. Adapting
one system from one city to another one could be very ex-
pensive and time consuming because data to be ingested by
the system does not necessarily fit. In order to ease data in-
gestion and limit system upgrading, we exploit our approach

to guide transportation experts in aligning vocabularies of
different sensors from different cities. In the end the same
system could be used without tuning its set up. We exploit
our approach in the context of transportation loop detector
data from Dublin (Ireland) and Bologna (Italy), where both
are described in English and refer to some concepts from a
common ontology. The objective is to support the end-user
in retrieving the appropriate alignment while minimizing the
number of requests. The Dublin model consists of 1,234
concepts while the Bologna model consists of 890 concepts
descriptions. The core common representation is about 4%
of the Bologna model, which all fit the domain loop detector
ontology model (123 concepts, 290 properties; 40 concepts
subsume the 83 remaining ones with a maximal depth of
6). Computing the semantic matching solutions and their C-
hierarchies requires 340.4 seconds. Based on these we could
verify the ontology matching result by requesting user feed-
back for 41 alignments only as shown in Figure 5.

Conclusions, Related & Future Work

We have developed a novel approach for verifying ontol-
ogy matching results without the need of presenting the
complete result to the user. This required the development
and integration of semantic reasoning, constraint modeling,
and satisfiability solving techniques. Specifically we have
used semantic reasoning techniques to compute dependen-
cies among alignments and have shown how an efficient
max-SAT solver can be used for minimizing the amount of
user involvement. We have also successfully applied our ap-
proach to two real-world data sets and have shown that it can
indeed reduce user involvement significantly.

To the best of our knowledge the presented approach is the
first one that tackles the problem of minimizing the number
of user requests for verifying entire ontology matching re-
sults. It is also the first one that addresses the problem of
minimizing user inputs based on a bipartite graph and a set
of constraints. From a constraint solving point of view other
SAT solvers or mixed integer problem solvers could have
also been considered. An evaluation of the different solvers
was beyond the scope of the paper. The closest work to our
method for computing optimal user requests are active learn-
ing approaches (Settles 2009). However, in contrast to the
latter that seek to minimize the amount of user input needed
for obtaining a good estimate of the probability distribution
underlying the data, we seek to compute the minimum user
requests for obtaining the matching set that is guaranteed to
be correct.

Future work includes extending our approach to ontol-
ogy matching problems where a complete validation of the
matching correctness is not essential and hence were the
trade-off between the benefits of having a validated result
and the costs for getting it need to be considered. It would
also be interesting to integrate crowdsourcing techniques
such as Crowdmap (Sarasua, Simperl, and Noy 2012) to
get the mappings verified. For applications that require a
high level of domain expertise, such as the building one, we
would need to resort to a crowd of experts.
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