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Abstract
We provide a logical representation of Pearl’s structural
causal models in the framework of the causal calculus of
McCain and Turner (1997) and its first-order generalization
by Lifschitz. It will be shown that, under this representa-
tion, the nonmonotonic semantics of the causal calculus de-
scribes precisely the solutions of the structural equations (the
causal worlds of a causal model), while the causal logic from
Bochman (2004) is adequate for describing the behavior of
causal models under interventions (forming submodels).

1 Introduction
In recent years we witnessed successful uses of causal rea-
soning in two largely unrelated areas, reasoning about action
and change in AI, and reasoning in statistics, economics,
cognitive and social sciences, based mainly on Judea Pearl’s
theory (Pearl 2000). A common assumption behind both
these approaches is that reasoning in the relevant domains
cannot be expressed in the plain language of (classical)
logic, but requires the explicit use of causal concepts and a
general language of causation. In both cases, the correspond-
ing causal formalisms have provided working concepts of
reasoning that have turned out to be essential for an adequate
representation of the respective areas, as well as for broad
correspondence with commonsense descriptions. Neverthe-
less, studies in these two areas so far used apparently differ-
ent formalisms and pursued quite different objectives.

In this study we are going to show that these two causal
formalisms are based on essentially the same understanding
of causation. We will do this by demonstrating that the cen-
tral notion of Pearl’s theory, the notion of a structural causal
model (which is based, in turn, on the notion of a struc-
tural equation) can be naturally represented in the causal
calculus of (McCain and Turner 1997), and especially in the
first-order generalization of the latter, introduced in (Lifs-
chitz 1997). Moreover, this representation creates a powerful
generalization of Pearl’s formalism that relaxes many of its
more specific restrictions (such as acyclicity and uniqueness
of solutions). In addition, it allows us to clarify some of the
issues and confusions related to the use of causal concepts in
Pearl’s theory, such as the distinction between a plain math-
ematical and a causal understanding of structural equations.
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In sum, we believe that our representation provides all the
necessary conditions for returning Pearl’s theory of causal
reasoning to logic, with all the expected benefits such a logi-
cal representation could provide for its analysis, generaliza-
tion and further development.

2 Structural Equations and Causal Models
Pearl’s account
According to (Pearl 2000, Chapter 7), a causal model is a
triple M = 〈U, V, F 〉 where

(i) U is a set of background (or exogenous) variables.
(ii) V is a set {V1, V2, . . . , Vn} of endogenous variables that

are determined by variables in U ∪ V .
(iii) F is a set of functions {f1, f2, . . . , fn} such that each fi

is a mapping from U ∪ (V \Vi) to Vi, and the entire set,
F , forms a mapping from U to V .

Symbolically, Pearl continues, F is represented as a set of
equations

vi = fi(pai, ui) i = 1, . . . , n

where pai is any realization of the unique minimal set of
variables PAi in V \{Vi} (parents) sufficient for represent-
ing fi, and similarly for Ui ⊆ U .

In Pearl’s account, every instantiation U = u of the ex-
ogenous variables determines a particular “causal world” of
the causal model. Such worlds stand in one-to-one corre-
spondence with the solutions to the above equations in the
ordinary mathematical sense. However, structural equations
also encode causal information in their very syntax by treat-
ing the variable on the left-hand side of = as the effect and
treating those on the right as causes. Accordingly, the equal-
ity signs in structural equations convey the asymmetrical re-
lation of “is determined by”. This causal reading does not
affect the set of solutions of a causal model, but it plays a
crucial role in determining the effect of external interven-
tions and evaluation of counterfactual assertions with respect
to such a model (Pearl 2012).

Each structural equation in a causal model is intended
to represent a stable and autonomous physical mechanism,
which means that it is conceivable to modify (or cancel) one
such equation without changing the others. In Pearl’s theory,
this modularity plays an instrumental role in determining the
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answers to three types of queries that can be asked with re-
spect to a causal model: predictions (e.g., will the pavement
be slippery if we find the sprinkler off?), interventions (will
the pavement be slippery if we make sure that the sprinkler
is off?), and counterfactuals (would the pavement be slip-
pery had the sprinkler been off, given that the pavement is in
fact not slippery and the sprinkler is on?).

The answers to prediction queries can be obtained using
plain deductive inferences from a logical description of the
causal worlds. However, in order to obtain answers to the
intervention (action) and counterfactual queries, we have to
consider what was termed by Pearl submodels of a given
causal model. Given a particular instantiation x of a set of
variables X from V , a submodel Mx of M is described as
the causal model that is obtained from M by replacing its
set of functions F by the following set:

Fx = {fi | Vi /∈ X} ∪ {X = x}.

In other words, Fx is formed by deleting from F all func-
tions fi corresponding to members of set X and replacing
them with the set of constant functions X = x. A sub-
model Mx can be viewed as a result of performing an action
do(X = x) on M that produces a minimal change required
to make X = x hold true under any u. This submodel is
used in Pearl’s theory for evaluating counterfactuals of the
form “Had X been x, whether Y = y would hold?”

We will now recast Pearl’s ideas in a form convenient for
our analysis, starting with the propositional case.

Propositional case
Propositional formulas are formed from propositional atoms
and the logical constants f , t using the classical connectives
∧, ∨, ¬, and→.

Definition 1. Assume that the set of propositional atoms is
partitioned into a set of of background (or exogenous) atoms
and a finite set of explainable (or endogenous) atoms.

• A Boolean structural equation is an expression of the
form A = F , where A is an endogenous atom and F
is a propositional formula in which A does not appear.
• A Boolean causal model is a set of Boolean structural

equations A = F , one for each endogenous atom A.

Definition 2. A solution (or a causal world) of a Boolean
causal model M is any propositional interpretation satisfy-
ing the equivalences A↔ F for all equations A = F in M .

Example 1. In the ‘firing squad’ example from (Pearl 2000,
Chapter 7), let U,C,A,B,D stand, respectively, for the fol-
lowing propositions: “Court orders the execution”, “Captain
gives a signal”, “Rifleman A shoots”, “Rifleman B shoots”,
and “Prisoner dies.” The story is formalized using the fol-
lowing causal model M , in which U is the only exogenous
atom:

{C = U, A = C, B = C, D = A ∨B}.

It has two solutions: in one of them all atoms are true, in
the other all atoms are false. This causal model allows us

to answer ‘static’ queries concerning the domain. For in-
stance, M implies ¬A→¬D, in the sense that this impli-
cation is satisfied by every causal world of M . That gives us
a prediction:

S1. If rifleman A did not shoot, the prisoner is alive.
It implies also the implication ¬D → ¬C, which amounts
to abduction:

S2. If the prisoner is alive, the Captain did not signal.
And it implies A→ B, which amounts to transduction:

S3. If rifleman A shot, then B shot as well.

Definition 3. Given a Boolean causal model M , a subset X
of the set of endogenous atoms, and a truth-valued function I
on X , the submodel M I

X of M is the causal model obtained
from M by replacing every equation A = F , where A ∈ X ,
with A = I(A).

Example 1, continued. Consider the action sentence
S4. If the captain gave no signal and rifleman A decides
to shoot, the prisoner will die and B will not shoot.

To evaluate it, we need to consider the submodelM I
{A} ofM

with I(A) = t:

{C = U, A = t, B = C, D = A ∨B}.

Since this submodel implies both ¬C→D and ¬C→¬B, S4
is justified.

First-order case
Terms are formed from object constants and function sym-
bols as usual in first-order logic.
Definition 4. Assume that the set of object constants is par-
titioned into a set of rigid symbols, a set of of background
(or exogenous) symbols, and a finite set of explainable (or
endogenous) symbols.
• A structural equation is an expression of the form c = t,

where c is an endogenous symbol and t is a ground term
in which c does not appear.
• A causal model consists of an interpretation of the set of

rigid symbols and function symbols (in the sense of first-
order logic) and a set of structural equations c = t, one
for each endogenous symbol c.

Definition 5. A solution (or a causal world) of a causal
model M is an extension of the interpretation of rigid sym-
bols and function symbols in M to the exogenous and en-
dogenous symbols that satisfies all equalities c = t in M .
Definition 6. Given a causal model M , a subset X of the
set of endogenous symbols, and a function I from X to the
set of rigid constants, the submodel M I

X of M is the causal
model obtained from M by replacing every equation c = t,
where c ∈ X , with c = I(c).

Example 2. Let us consider a closed gas container with vari-
able volume that can be heated. P, V, T will denote, respec-
tively, pressure, volume and temperature of the gas. In this
particular setup, it is natural to treat P and V as endogenous,
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while T as an exogenous symbol. The corresponding causal
model will involve two structural equations that are actually
two directional instances of the Ideal Gas Law:

P = c · T
V

V = c · T
P

where c is a (rigid) constant. The language may include also
names of real numbers; we classify them as rigid. A causal
model is constructed by combining the above equations with
the interpretation that has the set of positive real numbers as
its universe, and interprets the function symbols as corre-
sponding mathematical operations (i.e., multiplication and
division).

As can be seen, the above causal model is cyclic with re-
spect to its endogenous parameters P and V . However, if we
fix the volume V , we obtain a submodel

P = c · T
V

V = v

This submodel provides a description of Gay-Lussac’s Law,
according to which pressure is proportional to temperature.
Note, however, that this submodel is still “structural” in that
the temperature of the gas is not determined by its pressure.

Similarly, by fixing pressure, we obtain another submodel

P = p V = c · T
P

that represents Charles’s Law by which the volume is pro-
portional to temperature (though not the other way round).

3 Review: Causal Calculus
Now we will turn to a logical theory of causal reasoning that
has emerged in AI — the causal calculus.

Based on the ideas from (Geffner 1992), the causal cal-
culus was introduced in (McCain and Turner 1997) as a
nonmonotonic formalism purported to serve as a logical ba-
sis for reasoning about action and change in AI. A gen-
eralization of the causal calculus to the first-order classi-
cal language was described in (Lifschitz 1997). This line
of research has led to the action description language C+,
which is based on this calculus and serves for describing dy-
namic domains (Giunchiglia et al. 2004). A logical basis of
the causal calculus was described in (Bochman 2003), while
(Bochman 2004; 2007) studied its possible uses as a general-
purpose nonmonotonic formalism.

Propositional case
In this section we identify a propositional interpretation
(‘world’) with the set of propositional formulas that hold in
it.

Definition 7. A propositional causal rule is an expression
of the form A⇒B (“A causes B”), where A and B are
propositional formulas.1 The formula A is the body of the
rule, and B is its head. A propositional causal theory is a
set of propositional causal rules.

1(Giunchiglia et al. 2004) adopted a more cautious informal
reading of such rules, namely “If A holds, then B is caused”.

A nonmonotonic semantics of a causal theory can be de-
fined as follows.

Definition 8. • For a causal theory ∆ and a set u of propo-
sitions, let ∆(u) denote the set of propositions that are
caused by u in ∆:

∆(u) = {B | A⇒B ∈ ∆, for some A ∈ u}

• A world α is an exact model of a causal theory ∆ if it is
the unique model of ∆(α). The set of exact models forms
a nonmonotonic semantics of ∆.

The above nonmonotonic semantics of causal theories is
equivalent to the semantics described in (McCain and Turner
1997). It can be verified that exact models of a causal theory
are precisely the worlds that satisfy the condition

α = Th(∆(α)),

where Th is the logical closure operator of classical proposi-
tional logic. Informally speaking, an exact model is a world
that is closed with respect to the causal rules and also has
the property that any proposition that holds in it is caused
(determined) ultimately by other propositions.

Definite causal theories and completion
A propositional causal theory is determinate if the head of
each of its rules is a literal or the falsity constant f . A causal
theory is called definite if it is determinate and no literal is
the head of infinitely many rules of ∆. It turns out that the
nonmonotonic semantics of a definite causal theory ∆ coin-
cides with the classical semantics of the propositional the-
ory obtained from ∆ by a syntactic transformation similar
to program completion (Clark 1978).

The (literal) completion of a definite causal theory ∆ is
the set of all classical formulas of the forms

p↔
∨
{A | A⇒ p ∈ ∆}

¬p↔
∨
{A | A⇒¬p ∈ ∆},

for any atom p, plus the set {¬A | A⇒ f ∈ ∆}.
As proved in (McCain and Turner 1997), the completion

of a determinate causal theory provides a classical logical
description of its nonmonotonic semantics:

Proposition 1. The nonmonotonic semantics of a definite
causal theory coincides with the classical semantics of its
completion.

It should be kept in mind, however, that this completion
transformation is not modular with respect to the causal rules
of the source theory and, moreover, it changes nonmono-
tonically with the changes of the latter. Speaking generally,
the completion (as well as the nonmonotonic semantics it-
self) does not fully represent the logical content of a causal
theory. This distinction between logical and nonmonotonic
aspects of a causal theory bears immediate relevance to the
distinction between causal and purely mathematical under-
standing of structural equations in Pearl’s theory.
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The logical basis of the causal calculus
The causal calculus, like other nonmonotonic formalisms,
can be viewed as a two-layered construction. The nonmono-
tonic semantics defined above forms its top level. Its bottom
level is the monotonic logic of causal rules introduced in
(Bochman 2003; 2004); it constitutes the causal logic of the
causal calculus.

In the following definition, � denotes entailment in the
sense of classical propositional logic.

A causal inference relation is a relation ⇒ on the set of
propositions satisfying the following conditions:
(Strengthening) If A � B and B⇒C, then A⇒C;
(Weakening) If A⇒B and B � C, then A⇒C;
(And) If A⇒B and A⇒C, then A⇒B ∧ C;
(Or) If A⇒C and B⇒C, then A ∨B⇒C;
(Cut) If A⇒B and A ∧B⇒C, then A⇒C;
(Truth) t⇒ t;
(Falsity) f⇒ f .

Causal inference relations satisfy almost all the usual pos-
tulates of classical inference, except ReflexivityA⇒A. The
absence of the latter has turned out to be essential for an ad-
equate representation of causal reasoning.

A possible worlds semantics. A logical semantics of
causal inference relations has been given in (Bochman 2004)
in terms of possible worlds (Kripke) models.
Definition 9. A causal rule A⇒B is said to be valid in a
Kripke model (W,R, V ) if, for any worlds α, β such that
Rαβ, if A holds in α, then B holds in β.

It has been shown that causal inference relations are com-
plete for quasi-reflexive Kripke models, that is, for Kripke
models in which the accessibility relation R satisfies the
condition that if Rαβ, for some β, then Rαα.

The above semantics sanctions a simple modal represen-
tation of causal rules. Namely, the validity of A⇒B in a
possible worlds model is equivalent to validity of the for-
mula A→�B, where � is the standard modal operator. In
fact, this modal representation has been used in many other
approaches to formalizing causation in action theories (see,
e.g., (Geffner 1990; Turner 1999; Giordano, Martelli, and
Schwind 2000; Zhang and Foo 2001)).

Strong equivalence. It has been shown in (Bochman
2003) that if ⇒∆ is the least causal inference relation that
includes a causal theory ∆, then ⇒∆ has the same non-
monotonic semantics as ∆. This has shown that the rules of
causal inference are adequate for reasoning with respect to
the nonmonotonic semantics. Moreover, as a consequence of
a corresponding strong equivalence theorem, it was shown
that the above causal inference relations constitute a maxi-
mal such logic.
Definition 10. Causal theories Γ and ∆ are called
• objectively equivalent if they have the same nonmono-

tonic semantics;

• strongly equivalent if, for any set Φ of causal rules, ∆∪Φ
is objectively equivalent to Γ ∪ Φ;

• causally equivalent if ⇒∆ =⇒Γ.
Two causal theories are causally equivalent if each theory

can be obtained from the other using the inference postu-
lates of causal relations. Then the following result has been
proved in (Bochman 2004):
Proposition 2 (Strong equivalence). Causal theories are
strongly equivalent iff they are causally equivalent.

First-order case
According to (Lifschitz 1997), a first-order causal rule is
an expression of the form G⇒F , where F and G are first-
order formulas. A first-order causal theory ∆ is a finite set
of first-order causal rules coupled with a list c of object,
function and/or predicate constants, called the explainable
symbols of ∆.

The nonmonotonic semantics of first-order causal theories
was defined in (Lifschitz 1997) by a syntactic transformation
that turns ∆ into a second-order sentenceD∆. That sentence
provides a precise formal description of the requirement that
the explainable symbols should be explained, or determined,
by ∆.

This transformation is defined as follows. Let vc denote a
list of new variables similar to c,2 and let ∆(vc) denote the
conjunction of the formulas

∀x(G→ F c
vc)

for all rules G⇒F of ∆, where x is the list of all free vari-
ables of F , G, and F c

vc denotes the result of substituting the
variables vc for the corresponding constants c in F . Then
D∆ is the second-order sentence

∀vc(∆(vc)↔ (vc = c)).

The sentence D∆ (and its classical interpretations) is
viewed then as describing the nonmonotonic semantics of
the causal theory ∆. Informally speaking, these are the mod-
els of ∆ in which the interpretation of the explainable sym-
bols c is the only interpretation of these symbols that is de-
termined, or “causally explained,” by the rules of ∆.

The process of literal completion, defined for definite
propositional causal theories, is extended to two classes of
first-order causal theories in (Lifschitz 1997) and (Lifschitz
and Yang 2013). We consider here the special case of the
definition from the second paper when every explainable
symbol of ∆ is an object constant, and ∆ consists of rules
of the form

G(x)⇒ c = x,

one for each explainable symbol c, where G(x) is a formula
without any free variables other than x. The (functional)
completion of ∆ is defined in this case as the conjunction
of the sentences

∀x(c = x↔ G(x))

2That is to say, the lists c and vc have the same length; object
constants in the former correspond to object variables in the latter,
function symbols correspond to function variables, and predicate
symbols to predicate variables.
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for all rules of ∆.
The first-order causal calculus is closer to the causal mod-

els of Pearl than the propositional causal calculus, not only
because it is based on a richer language, but also because
it relaxes the requirement of total explainability of the lat-
ter, and restricts it to explainable symbols only. It has been
noted in (Lifschitz 1997), however, that we can easily turn,
for example, an unexplainable (exogenous) predicate Q(x)
into an explainable predicate by adding the following two
causal rules:

Q(x)⇒Q(x) ¬Q(x)⇒¬Q(x).

This will not change the nonmonotonic semantics. Still, it
will allow us to reduce partial explainability to the universal
explainability of the propositional causal calculus.

Describing the monotonic (logical) basis of the first-order
causal calculus remains at this point an open problem.

4 Representing Structural Equations by
Causal Rules

We will describe now a formal representation of Pearl’s
causal models as causal theories3. The representation itself
is fully modular, and the nonmonotonic semantics of the
resulting causal theory corresponds to the solutions of the
causal model.

Propositional case
Definition 11. For any Boolean causal modelM , ∆M is the
propositional causal theory consisting of the rules

F ⇒A and ¬F ⇒¬A

for all equations A = F in M and the rules

A⇒A and ¬A⇒¬A

for all exogenous atoms A of M .
Theorem 3. The causal worlds of a Boolean causal model
M are identical to the exact models of ∆M .
Remark. The above representation was chosen from a num-
ber of alternative (logically non-equivalent) translations pro-
ducing the same nonmonotonic semantics. The choice re-
flected Pearl’s dictum that both truth and falsity assignments
to an endogenous atom should be determined by the corre-
sponding function. It has turned out to be adequate also for
establishing a logical correspondence between the two for-
malisms (described in the next section).

Example 1, continued. If M is the causal model from the
firing squad example then ∆M consists of the causal rules

U⇒C, ¬U⇒¬C, C⇒A, ¬C⇒¬A,
C⇒B, ¬C⇒¬B, A ∨B⇒D, ¬(A ∨B)⇒¬D,

U⇒U, ¬U⇒¬U.

This causal theory has two exact models, identical to the so-
lutions (causal worlds) of M .

3It should be noted here that a connection between structural
equation models and the causal theory by McCain and Turner has
been pointed out already in (Geffner 1997).

Definition 12. Given a determinate causal theory ∆, a setX
of atoms, and a truth-valued function I on X , the subtheory
∆I

X of ∆ is the determinate causal theory obtained from ∆
by (i) removing all rules A⇒B and A⇒¬B with B ∈
X , (ii) adding the rule t⇒B for each B ∈ X such that
I(B) = t, and (iii) adding the rule t⇒¬B for each B ∈ X
such that I(B) = f .

Subtheories of propositional causal theories exactly cor-
respond to submodels of Boolean causal models: the causal
theory ∆MI

X
is essentially identical to the subtheory (∆M )

I
X

of ∆M . The only difference is that the former contains addi-
tional trivial rules with the body f .

Example 1, continued. The submodel M I
{A} of M with

I(A) = t that was used for evaluating the action sentence
S4 corresponds to the subtheory ∆I

{A}:

U⇒C, ¬U⇒¬C, t⇒A,
C⇒B, ¬C⇒¬B, A ∨B⇒D, ¬(A ∨B)⇒¬D,

U⇒U, ¬U⇒¬U.

First-order case
We will generalize now the above representation to a first-
order language.
Definition 13. For any first-order causal model M , ∆M is
the first-order causal theory whose explainable constants are
the endogenous symbols of M , and whose rules are

x = t ⇒ x = c,

for every structural equation c = t from M (where x is a
variable).

The following theorem is a key result of this study:
Theorem 4. An extension of the interpretation of rigid and
function symbols in M to the exogenous and endogenous
symbols on a universe of cardinality > 1 is a solution of M
iff it is a nonmonotonic model of ∆M .

The proof of the above result follows from the results
on functional completion, described in (Lifschitz and Yang
2013).

5 Logical and Causal Correspondences
It has been shown above that Pearl’s causal models are rep-
resentable as causal theories of the causal calculus in such a
way that the nonmonotonic semantics of the resulting causal
theory corresponds to the solutions of the source structural
equations. However, in order to establish a full correspon-
dence between Pearl’s causal formalism and its representa-
tion in the causal calculus, we have to show also that the
causal logic associated with the causal calculus provides an
adequate basis for causal reasoning in Pearl’s theory. At this
point, some more specific features and constraints of Pearl’s
causal models will turn out to be crucial for establishing a
proper correspondence.

Our representation of causal models produces quite spe-
cific causal theories. More precisely, in the propositional
case it implies, in effect, that for any explainable atom p
there exists a propositional formula F in which p does not
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occur, such that F ⇒ p and ¬F ⇒¬p are the only causal
rules of the corresponding causal theory that involve p in
heads. A slight generalization of these restrictions will lead
us to the following special kind of causal theories:
Definition 14. A propositional causal theory will be called
a causal Pearl theory if it is determinate and satisfies the
following conditions:
• no atom can appear both in the head and the body of a

causal rule;
• two rules A⇒ p and B⇒¬p belong to a causal theory

only if A ∧B is classically inconsistent.
The above class of causal theories will be sufficient for

the correspondence results, given below. It should be noted,
however, that the second condition above can be traced back
at least to (Darwiche and Pearl 1994), where it played an
essential role in constructing symbolic causal networks sat-
isfying the Markov property.

Manipulability vs. causal equivalence
On Pearl’s view, the causal content of a causal model is re-
vealed in forming its submodels. We will try to formalize
this understanding by introducing the following
Definition 15. Determinate causal theories Γ and ∆ will be
called intervention-equivalent if, for every set X of atoms
and every truth-valued function I , the subtheory ΓI

X has the
same nonmonotonic semantics as the subtheory ∆I

X .
On our ‘reconstruction’ of Pearl’s views, intervention-

equivalent causal theories must have the same causal con-
tent, since they determine the same answers for all possi-
ble interventions. Given this understanding, it is only natu-
ral to inquire how this notion of equivalence is related to the
logical notion of causal equivalence from the causal calcu-
lus. The comparison is not straightforward, however, since
causal equivalence characterizes the behavior of causal the-
ories with respect to expansions of a causal theory with new
rules (see Proposition 2). In contrast, causal Pearl theories
do not easily admit additions of new rules at all. Despite
this, the following key result gives us one direction of the
correspondence:
Theorem 5. Causal Pearl theories are intervention-
equivalent only if they are causally equivalent.

It should be noted, however, that the above result ceases
to hold for more general causal theories:

Example 3. Causal theories {p⇒ p} and {t⇒ p} are not
causally equivalent. Still, it is easy to verify that they, and all
their subtheories, have the same nonmonotonic semantics.

Unfortunately, causal equivalence does not imply
intervention-equivalence, and the reason is that causal equiv-
alence is in general not preserved by subtheories. The fol-
lowing example is instructive in showing why this happens:

Example 4. Let us consider two causal theories
{p⇒¬q, r⇒ s} and {p⇒¬q, r∧¬(p ∧ q)⇒ s}. It
is easy to show that these theories are causally equivalent.
However, if we fix q, we obtain non-equivalent subtheories
{t⇒ q, r⇒ s} and {t⇒ q, r ∧ ¬(p ∧ q)⇒ s}.

The intervention produced non-equivalent theories be-
cause the antecedent of the rule r∧¬(p ∧ q)⇒ s contained
a superfluous part ¬(p ∧ q) that could be eliminated using
the first rule p⇒¬q, but has become non-superfluous when
the latter rule has been removed. Speaking generally, Pearl’s
interventions are sensitive to the presence of redundant pa-
rameters in rules (as well as in structural equations).

Fortunately, a so far neglected further restriction appear-
ing in Pearl’s description of a causal model turns out to be
essential for providing a proper correspondence; it is the re-
quirement that every structural equation should involve only
a minimal set of parameters (= parents) sufficient for rep-
resenting the corresponding function fi. It should be kept
in mind, however, that the process of finding such a mini-
mal set of parameters is essentially derivational, because it
involves exploring possible substitutions of endogenous pa-
rameters in equations by their determining functions. Below
we will introduce a counterpart of this restriction for causal
theories.
Definition 16. • A rule A⇒ l of a causal theory ∆ will be

called modular in ∆ if B � A whenever B⇒∆ l.
• A determinate causal theory will be called modular if all

its rules are modular.
A causal rule A⇒ l is modular in a causal theory ∆ if its

body A constitutes a logically weakest cause of the literal l
with respect to ∆4. Then we obtain
Theorem 6. Causally equivalent modular causal theories
are intervention-equivalent.

The above two theorems jointly lead to the following
Corollary 7. Modular causal Pearl theories are
intervention-equivalent iff they are causally equivalent.

The above result establishes, in effect, a required corre-
spondence between Pearl’s manipulative account of causa-
tion and its logical counterpart in the causal calculus.

6 Summary and Prospects
It was noted by Pearl in the Epilogue to (Pearl 2000), ‘The
Art and Science of Cause and Effect’, that many scientific
discoveries have been delayed for the lack of a mathematical
language that can amplify ideas and let scientists communi-
cate results. In this respect, we hope that our representation
has provided a missing logical language for Pearl’s causal
reasoning, a language that would return this reasoning back
to logic, albeit a nonmonotonic one.

The fact that Pearl’s causal models are interpreted in this
study as nonmonotonic causal theories allows us to clarify
a large part of confusions surrounding a causal reading of
structural equations. As we discussed in Section 3, the causal
calculus is a two-layered construction. On the first level it
has the underlying causal logic, a fully logical, though non-
classical, formalism of causal inference relations that has its
own (possible worlds) logical semantics. This causal logic
and its semantics provide a formal interpretation for the

4A ‘brute’ way of constructing such a modular rule for a (finite)
causal theory could consist in finding all minimal conjunctions of
literals that cause l and forming their disjunction.
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causal rules. Above this layer, however, the causal calculus
includes a nonmonotonic ‘overhead’ that is determined by
the corresponding nonmonotonic semantics. Furthermore,
in our particular case, this nonmonotonic semantics can be
captured by classical logical means, namely by forming the
completion of the source causal theory, which is an ordi-
nary classical logical theory that provides a complete de-
scription for the nonmonotonic semantics. In the first-order
case it directly describes the corresponding equations in the
usual mathematical sense. Still, this completion construction
is global and non-modular with respect to the source causal
theory, and it changes nonmonotonically with changes of the
latter. That is why the nonmonotonic causal reasoning is not
reducible to a standard logical reasoning5.

Despite the established connection between the two
causal formalisms, there are obvious differences in the re-
spective objectives of these theories, as well as in required
expressive means. Thus, the restrictions appearing in our
definition of a causal Pearl theory make such theories com-
pletely inadequate for describing dynamic domains in rea-
soning about action and change. Consequently, an ‘attun-
ing’ of the causal calculus to the demands of Pearl’s theory
would obviously require a significant effort in developing
the necessary formal tools and appropriate reasoning mech-
anisms. Nevertheless, the suggested representation consti-
tutes a highly expressive logical replacement of structural
equations for many of the purposes envisaged by Pearl. We
are planning to explore this representation for studying the
key concepts of Pearl’s theory, such as interventions (ac-
tions), counterfactuals, actual causation and explanations.
For instance, the logical generality offered by the causal
calculus could be exploited in analyzing Pearl’s approach
to counterfactuals, without restrictions to recursive (acyclic)
causal models or unique solutions (cf. (Halpern 2000)), and
even for extending it to counterfactuals with arbitrary an-
tecedents, in contrast to Pearl’s representation that restricts
them to conjunctions of atoms, thus preventing an analysis
of disjunctive counterfactuals such as “If Bizet and Verdi
were compatriots...”.
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