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Abstract

The recent years have seen several proposals aimed at
placing the revision of logic programs within the be-
lief change frameworks established for classical logic.
A crucial challenge of this task lies in the nonmono-
tonicity of standard logic programming semantics. Ex-
isting approaches have thus used the monotonic charac-
terisation via SE-models to develop semantic revision
operators, which however neglect any syntactic infor-
mation, or reverted to a syntax-oriented belief base ap-
proach altogether. In this paper, we bridge the gap be-
tween semantic and syntactic techniques by adapting
the idea of a partial meet construction from classical
belief change. This type of construction allows us to
define new model-based operators for revising as well
as contracting logic programs that preserve the syntac-
tic structure of the programs involved. We demonstrate
the rationality of our operators by testing them against
the classic AGM or alternative belief change postulates
adapted to the logic programming setting. We further
present an algorithm that reduces the partial meet re-
vision or contraction of a logic program to performing
revision or contraction only on the relevant subsets of
that program.

Introduction
For three decades now has the study of belief change ad-
dressed the dynamics within knowledge representation sys-
tems. The most widely-adopted belief change approach is
the so-called AGM framework (Alchourrón, Gärdenfors,
and Makinson 1985; Gärdenfors 1988), which classifies the
possible changes to a knowledge base as expansion, revision,
and contraction operations. On the one hand, the framework
provides a set of postulates that each rational change oper-
ator should satisfy, and, on the other hand, defines specific
operators that satisfy these criteria. Although the AGM ap-
proach has been applied to a variety of knowledge repre-
sentation formalisms (Wassermann 2011), its adaptation to
logic programs faces a major challenge in form of the non-
monotonicity of standard logic programming semantics. Yet,
only recently was belief revision, as understood in the strict
sense of the AGM framework, adapted to logic programs in
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a seminal work (Delgrande et al. 2013). The adaptation rests
upon characterising an agent’s beliefs in terms of possible
worlds, more specifically, in terms of the set of SE-models
of a logic program. SE-models provide a monotonic charac-
terisation for logic programs and thus circumvent any obsta-
cles presented by nonmonotonicity. For the revision of a pro-
gram P by a programQ, the set-containment-based operator
returns those SE-models from the set of SE-models ofQ that
are closest to the SE-models of P , denoted by SE(P ? Q).
Closeness is determined by computing the set difference be-
tween SE-models; we refer to the original paper for further
details.

While this adaptation is clearly a milestone in merging
classical belief change with a nonmonotonic knowledge rep-
resentation formalism, we point out some drawbacks of this
approach. Specifically, we question whether taking the set
of SE-models as the characterisation of beliefs expressed by
a program is the correct choice. Before explaining our point
of view further, we start by giving some examples using the
proposed revision operator. For convenience, we provide a
possible program that corresponds to the revision outcome
for each example, which we denote by P ? Q. In the exam-
ples, we assume that the underlying language contains only
the symbols that occur in the programs.

1) P = { a., b← a. } Q = {⊥ ← a. }
SE(P ? Q) = {(b, b)} P ? Q = {⊥ ← a., b. }

2) P = {⊥ ← a., b← not a. } Q = { a. }
SE(P ? Q) = {(ab, ab)} P ? Q = { a., b. }

3) P = { a., b← not c. } Q = {⊥ ← c. }
SE(P ? Q) = {(ab, ab)} P ? Q = { a., b., ⊥ ← c. }

4) P = { a., b← not a. } Q = {⊥ ← a. }
SE(P ? Q) = {(∅, ∅), (∅, b), (b, b)}
P ? Q = {⊥ ← a. }

5) P = {⊥ ← a., b← a. } Q = { a. }
SE(P ?Q) = {(a, a), (a, ab), (ab, ab)} P ?Q = { a. }

In Example 1), the initial belief state expressed by pro-
gram P consists of a and b. In fact, the second rule in P
says that we believe b if we believe a. After revising by the
program Q, which simply states that we do not believe a,
we still believe b even though the reason to believe b is not
given anymore. The explanation for this is that the revision
operator acts on a program-level, not on a rule-level, as it
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considers just the SE-models of the program in its entirety.
However, the dependency of b on a is not captured by the
SE-models of the program, only by the SE-models of the
second rule. Therefore, b is treated as an independent fact
during the revision process. The situation is similar in Ex-
ample 2). Here, we initially believe b due to the absence of
belief a. After the revision, we continue to believe b even
though the grounds for b do not exist anymore.

In Example 3), we are indifferent with respect to b ini-
tially and should believe b when we do not believe c. The
revising program Q contains information that c indeed does
not hold. Thus, b is incorporated into the new belief state.
Yet, Example 4) describes a similar scenario in which b is
not included in the resulting belief state, thereby showing a
clear discrepancy to the behaviour of the revision operator in
the previous example. It seems that some dependencies be-
tween atoms expressed in P are respected, while others are
not.

Comparing Examples 4) and 5) demonstrates another
characteristic of the revision operator. In both examples,
the revision operation effectively disregards the second rule
in P . This is due to the fact that the set of SE-models of P
is exactly the set of SE-models of the first rule. The second
rule is thus locally irrelevant (Delgrande and Wang 2014).
Consequently, the revision operator returns a result as if P
had consisted merely of the first rule.

We can attribute these two characteristics of the revision
operator to its focus on the program-level. In such an ap-
proach, a program may freely be substituted with any other
that has the same set of SE-models and the revision out-
put will remain the same. Obviously, this is a direct con-
sequence of the assumption that an agent’s beliefs are rep-
resented by the set of SE-models of a program. Yet, the in-
formation expressed by a program is more than just its set
of SE-models – a program also encodes any relationships
between the atoms occurring in it (Leite and Pereira 1998).
We take these relationships into account in the construction
of belief change operators for logic programs presented in
the next sections. Instead of a program-level perspective, we
take a more fine-grained, rule-level perspective by under-
standing a belief state as the collection of the sets of SE-
models of all rules in a program, in the spirit of (Slota and
Leite 2012). We represent a belief state in the format of a
program, such that each rule in the program represents one
element of the collection.

The contributions of this paper are the following:

• We define model-based operators for the expansion, revi-
sion, and contraction of logic programs that preserve the
syntactic information about relationships between atoms
encoded in a program. Our operators thereby bridge the
gap between semantic and syntactic belief change ap-
proaches, and, to the best of our knowledge, present the
first definition of a model-based contraction operator for
logic programs.

• We adapt the classic AGM belief change postulates to the
logic programming setting and show that our operators
satisfy all major postulates. For those postulates that are
not satisfied, we discuss their suitability, provide alterna-

tive postulates, and demonstrate compliance.
• We introduce the notion of a module as a subset of a pro-

gram and define which modules are relevant to a revision
or contraction operation. Using this definition, we develop
an algorithm that reduces the revision or contraction of a
program to revising or contracting only the relevant mod-
ules of that program.

Preliminaries
We first briefly recall syntax and semantics of logic pro-
grams (Lifschitz, Pearce, and Valverde 2001; Turner 2003)
and review the foundations of belief change.

Logic Programming
LetA be a finite vocabulary of propositional atoms. A rule r
over A has the form

a1; . . . ; ak;not b1; . . . ;not bl ← c1, . . . , cm,

not d1, . . . , not dn. (1)

Here, all ai, bi, ci, di ∈ A and k, l,m, n ≥ 0. The op-
erators ‘not’, ‘;’, and ‘,’ stand for default negation, dis-
junction, and conjunction, respectively. For convenience, let
H+(r) = {a1, . . . , ak}, H−(r) = {b1, . . . , bl}, B+(r) =
{c1, . . . , cm}, and B−(r) = {d1, . . . , dn}. If k = 1 and
l = m = n = 0, then r is called a fact and we omit ‘←’; if
k = l = 0, then r is a constraint and we denote the empty
disjunction by ⊥. Let At(r) and At(R) denote the set of all
atoms that occur in a rule of the form (1) and in a set of
rules R, respectively. A (generalised) logic program is a fi-
nite set of rules of the form (1). We write LP for the class
of all logic programs.

An interpretation Y ⊆ A satisfies a program P , denoted
by Y |= P , iff it is a model of all rules under the standard
definition for propositional logic such that each rule rep-
resents a standard conditional and default negation is tran-
scribed to classic negation. An answer set of a program P is
any subset-minimal interpretation Y that satisfies the reduct
PY of P with respect to Y , defined as: PY = {H+(r) ←
B+(r) | r ∈ P,H−(r) ⊆ Y, and B−(r) ∩ Y = ∅ }.

An SE-interpretation is a tuple (X,Y ) of interpretations
with X ⊆ Y ⊆ A. We usually write, e.g., (ab, ab) instead
of ({a, b}, {a, b}) for legibility. Let SE be the set of all SE-
interpretations over A. For any set S of SE-interpretations,
by S we denote the complement of S with respect to SE , that
is, S = SE \S. An SE-interpretation (X,Y ) is an SE-model
of a program P iff Y |= P and X |= PY . The set of all SE-
models of P is denoted by SE(P ) and P is satisfiable iff
SE(P ) 6= ∅. For any rule r ∈ P , we obtain the SE-models
of r by setting SE(r) = SE(P ′) for P ′ = {r}. Note that
SE(P ) =

⋂
r∈P SE(r). Given two programs P,Q, we say

that P is strongly equivalent to Q, denoted by P ≡s Q,
iff SE(P ) = SE(Q), and P implies Q, denoted by P |=s

Q, iff SE(P ) ⊆ SE(Q). Furthermore, we write |=s P to
express SE(P ) = SE .

Belief Change
The AGM framework (Alchourrón, Gärdenfors, and Makin-
son 1985; Gärdenfors 1988) defines expansion, revision, and
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contraction as the belief change operations on a knowledge
base in light of some new information. In an expansion or re-
vision, the new information is added to the knowledge base,
and in the case of revision, existing information that conflicts
with the new information is removed. Contraction refers to
the process of removing some information from the knowl-
edge base without adding any new information.

We call the information expressed by a knowledge base a
belief state. In the AGM framework, a belief state is mod-
elled as a belief set, defined as a set of sentences from
some logic-based language that is closed under logical con-
sequence. Here, we list the formula-based versions (Katsuno
and Mendelzon 1991) of the AGM revision postulates, as
they are more amenable to an adaptation for logic programs.
They are as follows, where ⊕ denotes a revision operator
and φ, χ, ψ are propositional formulas.

(⊕1) φ⊕ χ implies χ
(⊕2) If φ ∧ χ is satisfiable, then φ⊕ χ ≡ φ ∧ χ
(⊕3) If χ is satisfiable, then φ⊕ χ is satisfiable
(⊕4) If φ1 ≡ φ2 and χ1 ≡ χ2, then φ1 ⊕ χ1 ≡ φ2 ⊕ χ2

The AGM postulates for contraction are given below,
where 	 represents a contraction operator, K is a belief set,
φ is a formula, and Cn(·) stands for a logical consequence
function.

(	1) K 	 φ = Cn(K 	 φ)
(	2) K 	 φ ⊆ K
(	3) If φ 6∈ K, then K 	 φ = K

(	4) If 6` φ, then φ 6∈ K 	 φ
(	5) K ⊆ Cn ((K 	 φ) ∪ {φ})
(	6) If φ1 ≡ φ2, then K 	 φ1 = K 	 φ2

A New Approach to Belief Change under
SE-Models

Before we develop the construction of partial meet revision
and contraction in the next two sections, we start by defining
the expansion of a logic program. In the following sections,
we use P and Q to denote two arbitrary logic programs.
Definition 1. Let P be a logic program. An operator + is an
expansion operator forP such that, for any logic programQ,

P +Q = P ∪Q.

This definition is a direct adaptation of the original formu-
lation of expansion (Alchourrón, Gärdenfors, and Makinson
1985): to obtain the expansion of P by Q, all rules of Q are
added to those of P , even if the outcome will be an incon-
sistent program.

Partial Meet Revision
The adaptation of the AGM revision postulates to logic pro-
grams is straightforward and given below, where ∗ is a func-
tion from LP × LP to LP:
(∗1) P ∗Q |=s Q

(∗2) If P +Q is satisfiable, then P ∗Q ≡s P +Q

(∗3) If Q is satisfiable, then P ∗Q is satisfiable
(∗4) If P1 ≡s P2 and Q1 ≡s Q2, then P1 ∗Q1 ≡s P2 ∗Q2

We now generate a partial meet construction of logic pro-
gram revision. As the basis for our construction, we define a
compatible set of some program with respect to another pro-
gram as the dual of a remainder set (Alchourrón, Gärdenfors,
and Makinson 1985).
Definition 2. Let P,Q be logic programs. The set of com-
patible sets of P with respect to Q is

PQ = {R |R ⊆ P, SE(R) ∩ SE(Q) 6= ∅, and for all R′

with R ⊂ R′ ⊆ P : SE(R′) ∩ SE(Q) = ∅ }.

Each compatible set is a maximal subset of P that is con-
sistent with Q under SE semantics. Each is thus a candidate
to be returned together with Q as the outcome of a revision.
To determine exactly which candidate(s) to choose, we em-
ploy a selection function.
Definition 3. A selection function γ for a setM is a function
such that:

1. γ(M) ⊆M ;
2. if M 6= ∅, then γ(M) 6= ∅.

We can now define partial meet revision for logic pro-
grams as the intersection of the selected compatible sets
added to Q.
Definition 4. Let P be a logic program. For any logic pro-
gram Q, we define an operator ∗ as a partial meet revision
operator for P such that

P ∗Q =
⋂
γ(PQ) +Q.

Example 1. Let P = { a., b ← a. } and Q = {⊥ ← a. }.
We have PQ = { { b ← a. } } = γ(PQ), for any selection
function γ, and thus P ∗Q = { b← a., ⊥ ← a. }.

The following theorem states that the revision operator
satisfies all major postulates from above.
Theorem 1. The revision operator ∗ satisfies (∗1), (∗2), and
(∗3).

Proof. (∗1): Since Q ⊆ P ∗Q, it holds that P ∗Q |=s Q.
(∗2): If P + Q is satisfiable, then PQ = {P} = γ(PQ), for
any selection function γ, and thus P ∗Q = P +Q.
(∗3): Let Q be satisfiable. For any R ∈ PQ, R +Q is satis-
fiable, which implies P ∗Q is satisfiable.

Postulate (∗4) is called Syntax-Independence and requires
that the SE-models of a revision outcome remain the same
if we substitute the initial and the revising program each
by strongly equivalent programs. However, as pointed out
above, the information content of a logic program is cap-
tured not only by its set of SE-models, but also by its rules
that encode the relationships between atoms in the program.
Therefore, postulate (∗4) is too strict a requirement for any
logic program revision operator that respects semantic as
well as syntactic information. The operator ∗ is such an op-
erator and thus does not satisfy (∗4), as shown in the next
example.
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Example 2. Let P ′ = { a., b. } and Q = {⊥ ← a. }. We
have P′Q = { { b. } } = γ(PQ), for any selection function γ,
and thus P ∗Q = { b., ⊥ ← a. }.

Although P from Example 1 and P ′ from Example 2
are strongly equivalent, we can see that P ∗ Q and P ′ ∗ Q
are not, because SE(P ∗ Q) = {(∅, ∅), (∅, b), (b, b)} 6=
{(b, b)} = SE(P ′∗Q). Alternatively, we consider the weak-
ening of (∗4), also known as Weak Independence of Syntax
(Osorio and Cuevas 2007):

(∗4w) If Q1 ≡s Q2, then P ∗Q1 ≡s P ∗Q2.

The next proposition then follows directly from Defini-
tion 4.

Proposition 1. The revision operator ∗ satisfies (∗4w).

Returning to our motivation, we can see that partial meet
revision addresses the shortcomings of the distance-based
revision method. For the examples in the introduction we
obtain:

1) SE(P ∗Q) = {(∅, ∅), (∅, b), (b, b)}
P ∗Q = {⊥ ← a., b← a. }

2) SE(P ∗Q) = {(a, a), (a, ab), (ab, ab)}
P ∗Q = { a., b← not a. }

3) SE(P ∗Q) = {(ab, ab)}
P ∗Q = { a., b← not c., ⊥ ← c. }

4) SE(P ∗Q) = {(b, b)}
P ∗Q = {⊥ ← a., b← not a. }

5) SE(P ∗Q) = {(ab, ab)} P ∗Q = { a., b← a. }
In Examples 1) and 2), the partial meet revision operator

preserves the dependency of b on a and not a, respectively.
This is expressed on the syntactic level by the revised pro-
gram P ∗Q and on the semantic level by SE(P ∗Q). Regard-
ing Examples 3) and 4), the partial meet revision operator
treats the dependency of b on not c and not a, respectively,
in the same manner and adds b to the belief state uniformly
in both examples. Finally, the partial meet revision opera-
tor takes into account all rules in a program, even those that
may be “invisible” from a purely model-based perspective,
as shown by the outcomes for Examples 4) and 5).

Partial Meet Contraction
Having defined a revision operator, we now turn to the case
of belief contraction. The following is an adaptation of the
AGM contraction postulates, where .− is a function from
LP × LP to LP:

( .−1) P .−Q is a logic program

( .−2) P .−Q ⊆ P
( .−3) If P 6|=s Q, then P .−Q = P

( .−4) If 6|=s Q, then P .−Q 6|=s Q

( .−5) (P .−Q) +Q |=s P

( .−6) If P1 ≡s P2 and Q1 ≡s Q2, then P .−Q1 ≡s P
.−Q2

Again, we focus on individual rules of a program and
their models as the basis of our construction. In line with
classic belief change, the contraction of a program P by a

program Q should eliminate from P all those beliefs from
whichQ can be derived. We use the complement of SE(Q),
SE(Q), to determine all subsets of P that do not imply Q,
denoted as

P−Q = {R |R ⊆ P, SE(R) ∩ SE(Q) 6= ∅, and for all R′

with R ⊂ R′ ⊆ P : SE(R′) ∩ SE(Q) = ∅ }.
Definition 5. Let P be a logic program. For any logic pro-
gram Q, we define an operator ∗ as a partial meet contrac-
tion operator for P such that

P .−Q =
⋂
γ(P−Q).

Example 3. Let P = { a., b ← a. } and Q = { a ← b. }.
Since SE({ a. }) = {(a, a), (a, ab), (ab, ab)}, SE({ b ←
a. }) = {(∅, ∅), (∅, b), (b, b), (∅, ab), (b, ab), (ab, ab)}, and
SE(Q) = {(∅, b), (b, b), (b, ab)}, we have P−Q = { { b ←
a. } } = γ(P−Q), for any selection function γ, and thus P .−
Q = { b← a. }.

The contraction operator complies with all major postu-
lates given above.
Theorem 2. The contraction operator .− satisfies ( .−1),
( .−2), ( .−3), and ( .−4).

Proof. ( .−1) and ( .−2): Follow directly from Definition 5.
( .−3): If P 6|=s Q, then P−Q = {P} = γ(P−Q), for any selec-
tion function γ, and thus P .−Q = P .
( .−4): Let 6|=s Q. For any R ∈ P−Q, R 6|=s Q, which implies
P .−Q 6|=s Q.

The Recovery postulate ( .−5) states that a contraction op-
erator should not retract information unduly from the orig-
inal belief state. The operator .− does not satisfy ( .−5) be-
cause a contracted program P .− Q may share SE-models
with Q that are not part of the set of SE-models of the initial
program P . In fact, the adequacy of postulate (	5) for belief
sets under classical logic has been disputed intensively, and
several alternative postulates exist that capture the minimal
change property in its place. Here, we adapt the Relevance
postulate (Hansson 1989) and show that .− complies with it:

( .−5r) If r ∈ P and r 6∈ P .−Q, then there exists a program
P ′ such that P .− Q ⊆ P ′ ⊆ P and P ′ 6|=s Q but
P ′ ∪ {r} |=s Q.

Proposition 2. The contraction operator .− satisfies ( .−5r).

Proof. Let r ∈ P . Assume that for all P ′ with P .− Q ⊆
P ′ ⊆ P and P ′ 6|=s Q, it holds that P ′ ∪ {r} 6|=s Q. In
particular, for each R′ ∈ P−Q with P .−Q ⊆ R′, this implies
R′ ∪ {r} 6|=s Q. As each R′ is subset-maximal, it follows
that r ∈ R′ and thus r ∈ P .−Q.

As in the case of revision, the Syntax-Independence pos-
tulate ( .−6) is too strong and instead we consider its weak-
ened version:
( .−6w) If Q1 ≡s Q2, then P .−Q1 ≡s P

.−Q2.
The next proposition follows directly from Definition 5.

Proposition 3. The contraction operator .− satisfies ( .−6w).
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Localised Belief Change
The formation of a set of compatible sets requires that all
possible combinations of all rules in a program are evaluated
with respect to their sets of SE-models. When dealing with
logic programs that contain a large number of rules, where
only a small number of them are actually affected by the
change operation, this procedure entails unreasonable costs.
In this section, we present an algorithm to minimise these
costs. We begin by identifying the subsets of a program,
called modules, relevant to another program.
Definition 6. Let P be a logic program and a ∈ A. For
any rule r ∈ P with a ∈ At(r), we recursively construct
M(P )ri |a as

r∪{ r′ ∈ P | At(r′)∩
(
At(r) ∪At(M(P )ri−1|a)

)
\a 6= ∅ }

for i > 0 and M(P )r0|a = ∅.
Since P is finite and M(P )ri |a is monotonic with respect

to i, the sequence
⋃∞

i=0M(P )ri |a will reach a fixpoint. We
denote the fixpoint by M(P )r|a and call it the module of P
related to r including a (or the r-module including a, if P is
clear from the context).
Example 4. Let r1: a., r2: b ← a., r3: c ← not b.,
and P = {r1, r2, r3}. The modules that can be con-
structed from P are: M(P )r1 |a = {r1},M(P )r2 |a =
{r2, r3},M(P )r2 |b = {r1, r2},M(P )r3 |b = {r3}, and
M(P )r3 |c = {r1, r2, r3}.

Starting with a given atom a and a given rule r from P ,
the recursive definition first finds all rules in P that share
atoms with r except for a. Then it finds all rules in P that
share atoms with r or any of the rules found in the first step
except for a, and so on. It does not matter whether atoms
appear in the head or the body of a rule, or whether they
occur with or without default negation. The resulting module
is the collection of rules in P that are related to r through
shared atoms. The reason for excluding a will become clear
after the following definition of a set of modules.
Definition 7. Let P be a logic program. Given an atom a ∈
A, we define the set of all modules of P including a as:

M(P )|a = {M(P )r|a | r ∈ P and a ∈ At(r) }.

Given a logic programQ, we define the set of all modules of
P relevant to Q as:

M(P )|Q = {M(P )r|a | r ∈ P and a ∈ At(r) ∩At(Q) }.

Essentially, the definition of a set of modules extracts
those rules from a program that may be affected during a
revision or contraction by another program. It thus aims for
the same goal as the language-splitting technique in propo-
sitional logic (Parikh 1999), which splits a knowledge base
into several partitions either relevant or irrelevant to a belief
change. However, a distinct feature in the previous defini-
tions is the construction of a module based on each rule in
which a certain atom occurs. This feature allows us to get
a closer look at which rules may conflict with some given
information. Consider the program { a ← b., ⊥ ← b. }. If
we were to add the information that “b holds” to this pro-
gram, it would conflict with the latter rule but not with the

first one. By creating a module for each occurrence of b, we
split the program into two modules (one for each rule) and
can assess the compatibility of each module with the new in-
formation separately. Furthermore, by constructing modules
for each individual atom occurring inQ, this ensures that we
are dealing with minimal units of P in a change operation.
Obviously, a module may not be unique to a certain rule or a
certain given atom so that modules may overlap or coincide.

We say that a set of rules R conflicts with a program Q if
SE(R)∩SE(Q) = ∅. All rules of P that conflict withQ are
included in some module or combination of modules from
M(P )|Q.

Proposition 4. Let P,Q be satisfiable logic programs. For
any R ⊆ P , if SE(R) ∩ SE(Q) = ∅ and ∀R′ ⊂ R :
SE(R′) ∩ SE(Q) 6= ∅, then ∃M ∈ 2M(P )|Q such that R ⊆⋃

M.

Proof. Let P,Q be satisfiable logic programs and R ⊆ P
such that SE(R) ∩ SE(Q) = ∅ and for each R′ ⊂ R :
SE(R′)∩SE(Q) 6= ∅. Then there exists some aj ∈ A such
that aj ∈ At(Q) and there exist one or more rules ri ∈ R
for each aj such that aj ∈ At(ri). For each ri, there exists
a corresponding ri-module M(P )ri |aj including aj , such
that ri ∈ M(P )ri |aj

. It follows from Definition 6 that for
all remaining rules r′ ∈ R \ ri : r′ ∈

⋃
i,j M(P )ri |aj

.

Corollary 1. Let P,Q be logic programs and P be sat-
isfiable. Then SE(P ) ∩ SE(Q) = ∅ if and only if
SE (

⋃
M(P )|Q) ∩ SE(Q) = ∅.

Proof. “If”: Since SE(P ) ⊆ SE (
⋃
M(P )|Q), if

SE (
⋃
M(P )|Q) ∩ SE(Q) = ∅, then also SE(P ) ∩

SE(Q) = ∅.
“Only if”: Follows from Proposition 4 if Q is satisfiable.
Trivial if Q is not satisfiable.

Algorithm 1: MODCHANGE

Input: a setM of modules, an operator ◦, a program Q
Output: the setM of changed modules

1 n← 1;
2 while n ≤ |M| do
3 foreach M ⊆M such that |M| = n do
4 if

⋃
M ◦Q 6=

⋃
M then

5 foreach M ∈M do
6 replace M with

⋃
M ◦Q inM;

7 end
8 end
9 end

10 n← n+ 1;
11 end
12 returnM;

Algorithm 1 resolves potential conflicts for all possible
combinations of modules by employing the partial meet re-
vision and contraction operators defined above. It performs
a bottom-up construction by first taking all 1-combinations

1443



(singleton sets of modules) of M and substituting a mod-
ule with its changed version if they are not the same. It
then takes all 2-combinations of M, which may now con-
tain some changed modules, and replaces each module of
the combination with the changed version of the combina-
tion if required. Replacing each module of a combination
with the outcome guarantees that the algorithm considers all
possible combinations. The algorithm terminates after han-
dling the combination of all modules inM.

The next theorem states that, given any selection func-
tion γ, the algorithm MODCHANGE reduces a partial meet
revision or contraction operation on a logic program to the
revision or contraction operation on the relevant subsets of
that program.
Theorem 3. For any two logic programs P,Q, let P \
M(P )|Q = { r ∈ P | ∀M ∈ M(P )|Q : r 6∈ M } and
M(P )|◦Q denote the output of Algorithm 1 for the inputs
M(P )|Q, ◦ ∈ {∗, .−}, andQ. Then P ∗Q = P \M(P )|Q+⋃
M(P )|∗Q +Q (or P .−Q = P \M(P )|Q +

⋃
M(P )|

.−
Q,

respectively) for some selection function γ over PQ (P−Q, re-
spectively).

Proof. To prove the equation for revision, we need to show
that P \ M(P )|Q +

⋃
M(P )|∗Q =

⋂
γ(PQ) for some γ.

Let Z ⊆ P be the set of rules that are eliminated during the
revision operation, i.e., P ∗Q =

⋂
γ(PQ)+Q = P \Z+Q,

and let Z ′ ⊆ P be the set of rules that are eliminated by
MODCHANGE.

We first show that Z ⊆ Z ′. Assume that Z ′ = ∅ un-
til the last iteration of the while-loop. In the last itera-
tion, we have n = |M(P )|Q| and MODCHANGE computes⋃
M(P )|Q ∗ Q =

⋃
M(P )|∗Q. Since At(P \M(P )|Q) ∩

At(
⋃
M(P )|Q) = ∅, it holds that P \ M(P )|Q +⋃

M(P )|∗Q = P \M(P )|Q + (
⋃
M(P )|Q ∗ Q) = ((P \

M(P )|Q)∪
⋃
M(P )|Q) ∗Q = P ∗Q for some γ over PQ.

We now show that Z ′ ⊆ Z. Assume that each revision
operation in the following is the most restrictive type, that
is, for any set M , γ(M) = M . Thus, if r ∈

⋂
γ(PQ), then

r ∈ R for all R ∈ PQ. For each M as specified in Line 3
of MODCHANGE, let z′ be the set of rules eliminated during
the revision of

⋃
M by Q: z′ =

⋃
M \ (

⋃
M ∗ Q). From

SE(P ) ⊆ SE(
⋃
M) it then follows that z′ ∩

⋂
γ(PQ) = ∅.

Consequently, Z ′ ∩
⋂
γ(PQ) = ∅.

Analogous for contraction.

Discussion
In this paper, we have presented expansion, revision, and
contraction operators to execute belief change actions on
logic programs. By using the monotonic SE-model seman-
tics and the notion of a compatible set, we were able to di-
rectly adapt a partial meet construction from classical logic.
The advantage of our approach is that it performs belief
change on the semantic level with respect to the SE-models
of programs, while at the same time preserving the syn-
tactic information represented by their rules. Furthermore,
we showed that the operators exhibit desirable properties.
They satisfy nearly the entire set of adapted postulates. As
intended, the Syntax-Independence postulate does not hold

but its weakened version does. In the case of the highly-
disputed Recovery postulate, we adapted a well-established
alternative and showed compliance. Finally, we developed a
module-based algorithm that prunes a partial meet revision
or contraction operation to performing the change only on
the relevant subsets of a program.

Our work was motivated by identifying some shortcom-
ings of the distance-based approach to logic program re-
vision (Delgrande et al. 2013). We showed that our partial
meet revision operator addresses these drawbacks and pos-
sesses similar properties regarding the AGM rationality pos-
tulates. Additionally, the choice of a partial meet construc-
tion based on compatible sets facilitated a natural definition
of model-based contraction for logic programs, the first in
this field to the best of our knowledge.

Following the distance-based construction of logic pro-
gram revision reviewed above, representation theorems have
been given (Delgrande, Peppas, and Woltran 2013; Schwind
and Inoue 2013), which state that any logic program revi-
sion operator satisfying the adapted set of AGM postulates
can be suitably characterised by some preorder over a set of
SE-interpretations. It is left for future work to show that the
partial meet revision operator defined here can be charac-
terised in terms of such a preorder.

A more syntax-oriented proposal is the belief base ap-
proach to logic program revision (Krümpelmann and Kern-
Isberner 2012), which understands a belief state as a set of
rules. Its revision operation first finds all subsets of a pro-
gram that are consistent with the revising program under an-
swer set semantics, and then employs a selection function
over these subsets, similar to our revision method. However,
to guarantee satisfiability of the revision outcome, the se-
lection function is restricted to choosing exactly one subset.
The program-level approach to revision (Delgrande 2010) is
also based on answer set semantics and as such faces similar
obstacles. It makes use of three-valued answer sets during
the revision operation to satisfy a core subset of the AGM
postulates.

The landscape of logic program “update” operators has
been reviewed exhaustively, for a detailed overview see
(Slota 2012). Of interest here is the exception-based update
approach (Slota and Leite 2012), which regards a program
as the collection of the sets of RE-models of its rules, an ex-
tension of SE-models. In the update operation, exceptions in
the form of RE-models are added to all sets of RE-models
of the initial program that are incompatible with respect to
the RE-models of the updating program. In contrast to our
method, this approach is a purely semantic one and deter-
mines incompatibilities between two sets of RE-models by
finding differences in the truth values of atoms occurring in
both sets.

Regarding classical logics, Nebel (1991) introduced base
revision which takes syntactic information into considera-
tion as a measure for revising beliefs in a minimal way.
As it is a fully syntax-based operation, however, revis-
ing two knowledge bases that represent the same belief
state with the same information may lead to different re-
sulting belief states. Partial meet constructions have so far
been adapted predominantly to monotonic non-classical for-
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malisms (Wassermann 2011), such as the Horn fragment
of propositional logic (Delgrande and Wassermann 2013;
Zhuang and Pagnucco 2011) or Description Logics (Ribeiro
and Wassermann 2009). It would thus be of interest to inves-
tigate the adaptation to extensions of logic programs, such as
hybrid knowledge bases (Binnewies et al. 2013), as well as
to other nonmonotonic formalisms.

Given that for logic programs under answer set seman-
tics revision can be characterised by forgetting (Eiter and
Wang 2008), we plan to look at the relationship between our
revision operation and SE forgetting (Delgrande and Wang
2015) in future work. Additionally, a comparison with fur-
ther constructions for logic program revision and contrac-
tion, e.g., epistemic entrenchment, may provide useful in-
sights.
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