
From Classical to Consistent Query Answering under Existential Rules
Thomas Lukasiewicz1 Maria Vanina Martinez2 Andreas Pieris3 Gerardo I. Simari2

1Department of Computer Science, University of Oxford, UK
2Departamento de Ciencias e Ingenierı́a de la Computación, Universidad Nacional del Sur and CONICET, Argentina

3Institute of Information Systems, Vienna University of Technology, Austria

thomas.lukasiewicz@cs.ox.ac.uk, {mvm,gis}@cs.uns.edu.ar,
pieris@dbai.tuwien.ac.at

Abstract

Querying inconsistent ontologies is an intriguing new
problem that gave rise to a flourishing research activity
in the description logic (DL) community. The computa-
tional complexity of consistent query answering under
the main DLs is rather well understood; however, little
is known about existential rules. The goal of the cur-
rent work is to perform an in-depth analysis of the com-
plexity of consistent query answering under the main
decidable classes of existential rules enriched with neg-
ative constraints. Our investigation focuses on one of
the most prominent inconsistency-tolerant semantics,
namely, the AR semantics. We establish a generic com-
plexity result, which demonstrates the tight connection
between classical and consistent query answering. This
result allows us to obtain in a uniform way a relatively
complete picture of the complexity of our problem.

Introduction
An ontology is an explicit specification of a conceptualiza-
tion of an area of interest. One of the main applications of
ontologies is in ontology-based data access (OBDA) (Poggi
et al. 2008), where they are used to enrich the extensional
data with intensional knowledge. In this setting, descrip-
tion logics (DLs) and rule-based formalisms such as exis-
tential rules are popular ontology languages, while conjunc-
tive queries (CQs) form the central querying tool. In real-life
applications, involving large amounts of data, it is possible
that the data are inconsistent with the ontology. Inconsisten-
cies of this kind may result from automated procedures such
as data integration and ontology matching. Since standard
ontology languages adhere to the classical FOL semantics,
inconsistencies are nothing else than logical contradictions.
Thus, the classical inference semantics fails terribly when
faced with an inconsistency, since everything follows from
a contradiction. This demonstrates the need for developing
inconsistency-tolerant semantics for ontological reasoning.

There has been a recent and increasing focus on the de-
velopment of such semantics for query answering purposes.
Consistent query answering, first developed for relational
databases (Arenas, Bertossi, and Chomicki 1999) and then
generalized as the AR semantics for several DLs (Lembo et

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

al. 2010), is the most widely accepted semantics for query-
ing inconsistent ontologies. The AR semantics is based on
the idea that an answer is considered to be valid if it can
be inferred from each of the repairs of the extensional data
set D, i.e., the ⊆-maximal consistent subsets of D. Obtain-
ing the set of consistent answers under the AR semantics
is known to be a hard problem, even for very simple lan-
guages (Lembo et al. 2010). For this reason, several other
semantics have been recently developed with the aim of
approximating the set of consistent answers (Lembo et al.
2010; Bienvenu 2012; Lukasiewicz, Martinez, and Simari
2012; Bienvenu and Rosati 2013).

It is widely accepted that the variety of ontologies under-
lying practical applications requires a good understanding of
the computational complexity of inconsistency-tolerant se-
mantics. In this work, we are interested in the AR semantics.
The complexity of query answering under the AR seman-
tics (and also under several other semantics) when the ontol-
ogy is described using one of the central DLs is rather well
understood. The data and combined complexity were stud-
ied in (Rosati 2011) for a wide spectrum of DLs, while the
work (Bienvenu 2012) identifies cases for simple ontologies
(within the DL-Lite family) for which tractable data com-
plexity results can be obtained.

Although the AR semantics has been thoroughly studied
for several key DLs, little is known when the ontology is de-
scribed using existential rules, that is, formulas of the form
∀Xϕ(X) → ∃Y p(X,Y), and negative constraints of the
form ∀Xϕ(X) → ⊥, where ⊥ denotes the truth constant
false. An exception are the works (Lukasiewicz, Martinez,
and Simari 2012; 2013), where the data complexity of the
AR semantics is studied for several classes of existential
rules enriched with negative constraints. Notice that existen-
tial rules are also known as tuple-generating dependencies
(TGDs) and Datalog± rules (Calı̀ et al. 2010); henceforth,
for brevity, we adopt the term TGDs.

Our main goal in this work is to perform an in-depth anal-
ysis of the combined complexity of query answering under
the main decidable classes of TGDs, enriched with negative
constraints, focusing on the AR semantics. Let us recall that
the main (syntactic) conditions on TGDs that guarantee the
decidability of CQ answering are guardedness (Calı̀, Got-
tlob, and Kifer 2013), stickiness (Calı̀, Gottlob, and Pieris
2012) and acyclicity. Another important fragment of TGDs,

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

1546

which deserves our attention, is the class of full TGDs, i.e.,
existential-free TGDs (Abiteboul, Hull, and Vianu 1995).
Our second goal is to understand whether the combined
complexity of consistent query answering under full TGDs,
enriched with negative constraints, is affected or not if we
further assume that the given set of TGDs enjoys guard-
edness, stickiness or acyclicity. Apart from the combined
complexity, we would also like to understand how the com-
plexity of our problem is affected when some key parame-
ters are fixed. In particular, we consider the following two
variants of the combined complexity: (1) the bounded-arity
combined complexity (or simply ba-combined complexity),
which is calculated by assuming that the arity of the underly-
ing schema is bounded; and (2) the fixed-program combined
complexity (or simply fp-combined complexity), which is
calculated by considering the set of TGDs and negative con-
straints as fixed (the set of constraints is usually called pro-
gram, and hence the term “fixed program”). Notice that, in
practice, the arity of the schema is usually small and can
be productively assumed to be fixed. Moreover, the compo-
nents which change quite often over time are the database
and the query, while the program remains the same. Hence,
the preceding types of complexity are meaningful metrics
that deserve to be investigated.

Interestingly, our complexity analysis shows that a sys-
tematic and uniform way for transferring complexity results
from classical to consistent query answering can be formally
established. To briefly summarize the main contributions:

• We present a generic complexity result, which demon-
strates the tight connection between classical and consis-
tent query answering (Theorem 3).

• By exploiting our generic theorem, we obtain a (nearly)
complete picture of the (ba-/fp-)combined complexity of
consistent query answering (Table 1).

• Finally, as we transition from classical to consistent query
answering, several novel complexity results on classical
query answering are established (Tables 2 and 3).

Preliminaries
General. Consider the following sets: a set C of constants,
a set N of labeled nulls, and a set V of regular variables. A
term t is a constant, null, or variable. An atom has the form
p(t1, . . . , tn), where p is an n-ary predicate, and t1, . . . , tn
are terms. Conjunctions of atoms are often identified with
the sets of their atoms. An instance I is a (possibly infinite)
set of atoms p(t), where t is a tuple of constants and nulls. A
database D is a finite instance that contains only constants.
A homomorphism is a substitution h : C∪N∪V→ C∪N∪
V that is the identity on C. We assume the reader is familiar
with conjunctive queries (CQs). The answer to a CQ q over
an instance I is denoted q(I). A Boolean CQ (BCQ) q has a
positive answer over I , denoted I |= q, if q(I) 6= ∅.

Dependencies. A tuple-generating dependency (TGD) σ
is a first-order formula ∀Xϕ(X) → ∃Y p(X,Y), where
X ∪Y ⊂ V, ϕ(X) is a conjunction of atoms, and p(X,Y)
is an atom; ϕ(X) is the body of σ, denoted body(σ), while
p(X,Y) is the head of σ, denoted head(σ). For clarity, we
consider single-atom-head TGDs; however, our results can

be extended to TGDs with a conjunction of atoms in the
head. An instance I satisfies σ, written I |= σ, if the follow-
ing holds: whenever there exists a homomorphism h such
that h(ϕ(X)) ⊆ I , then there exists h′ ⊇ h|X, where h|X is
the restriction of h on X, such that h′(p(X,Y)) ∈ I . A neg-
ative constraint (NC) ν is a first-order formula of the form
∀Xϕ(X) → ⊥, where X ⊂ V, ϕ(X) is a conjunction of
atoms and is called the body of ν, denoted body(ν), and ⊥
denotes the truth constant false. An instance I satisfies ν,
written I |= ν, if there is no homomorphism h such that
h(ϕ(X)) ⊆ I . Given a set Σ of TGDs and NCs, I satisfies
Σ, written I |= Σ, if I satisfies each TGD and NC of Σ. For
brevity, we omit the universal quantifiers in front of TGDs
and NCs, and use the comma (instead of ∧) for conjoining
body atoms. Given a class of TGDs C, we denote by C⊥ the
formalism obtained by combining C with arbitrary NCs.

Conjunctive Query Answering. Given a databaseD and
a set Σ of TGDs and NCs, the answers we consider are
those that are true in all models of D and Σ. Formally, the
models of D and Σ, denoted mods(D,Σ), is the set of in-
stances {I | I ⊇ D and I |= Σ}. The answer to a CQ q
w.r.t. D and Σ is defined as the set of tuples ans(q,D,Σ) =⋂
I∈mods(D,Σ){t | t ∈ q(I)}. The answer to a BCQ q is pos-

itive, denotedD∪Σ |= q, if ans(q,D,Σ) 6= ∅. The problem
of CQ answering is defined as follows: given a database D,
a set Σ of TGDs and NCs, a CQ q, and a tuple of constants t,
decide whether t ∈ ans(q,D,Σ). It is well-known that CQ
answering can be reduced in LOGSPACE to BCQ answering,
and we thus focus on BCQs. Henceforth, by CQ, we refer to
a BCQ. Following Vardi’s taxonomy (1982), the combined
complexity of CQ answering is calculated by considering all
the components, i.e., the database, the set of dependencies,
and the query, as part of the input. The bounded-arity com-
bined complexity (or simply ba-combined complexity) is cal-
culated by assuming that the arity of the underlying schema
is bounded by an integer constant. Notice that in the context
of description logics, whenever we refer to the combined
complexity in fact we refer to the ba-combined complexity
since, by definition, the arity of the underlying schema is at
most two. The fixed-program combined complexity (or sim-
ply fp-combined complexity) is calculated by considering the
set of TGDs and NCs as fixed.

Consistent Query Answering. In the classical setting of
CQ answering, given a database D and a set Σ of TGDs and
NCs, if mods(D,Σ) = ∅, then every query is entailed since
everything is inferred from a contradiction.

Example 1 Consider the database D defined as

{Prof (p),Postdoc(p),Researcher(p), leaderOf (p, g)},

asserting that p is both a professor and a postdoc, and also a
researcher, and that p is the leader of the research group g.
Consider also the set Σ of TGDs and NCs consisting of

Prof (X) → Researcher(X)
Postdoc(X) → Researcher(X)

Prof (X),Postdoc(X) → ⊥
leaderOf (X,Y) → Prof (X)
leaderOf (X,Y) → Group(Y),

1547

expressing that professors and postdocs are researchers, pro-
fessors and postdocs form disjoint sets, and leaderOf has
Prof as domain and Group as range. It is easy to see that
mods(D,Σ) = ∅, since p violates the disjointness con-
straint; therefore, for every CQ q, D ∪ Σ |= q.

Clearly, the answers that we obtain from databases that
are inconsistent with the given set of TGDs and NCs are not
meaningful for practical applications. For this reason, sev-
eral inconsistency-tolerant semantics have been proposed in
the literature. In this work, we focus on one of the central and
well-accepted inconsistency-tolerant semantics, that is, the
AR semantics. A key notion, which is necessary for defin-
ing the AR semantics, is that of repair, which is ⊆-maximal
consistent subset of the given database. Fix a database D, a
set Σ of TGDs and NCs, and a CQ q.

Definition 1 A repair ofD and Σ is someD′ ⊆ D such that
(i) mods(D′,Σ) 6= ∅; and (ii) there is no a ∈ D \ D′ for
which mods(D′ ∪ {a},Σ) 6= ∅. We denote by drep(D,Σ)
the set of repairs of D and Σ.

Example 2 Consider the databaseD and the set Σ of TGDs
and NCs given in Example 1. The set of repairs of D and Σ
consists of the following subsets of D:

D1 = {Prof (p),Researcher(p), leaderOf (p, g)}
D2 = {Postdoc(p),Researcher(p)}.

To obtainD1 it suffices to remove the atom Postdoc(p) from
D. However, to obtain D2, apart from eliminating Prof (p),
we also need to remove the atom leaderOf (p, g), which, to-
gether with the TGD leaderOf (X,Y)→ Prof (X), implies
the atom Prof (p).

The AR semantics (Lembo et al. 2010) is based on the
idea that a query can be considered to hold if it can be in-
ferred from each of the repairs.

Definition 2 The query q is entailed by D and Σ under the
AR semantics, written D ∪ Σ |=AR q, if D′ ∪ Σ |= q, for
every D′ ∈ drep(D,Σ).

Example 3 Consider the databaseD and the set Σ of TGDs
and NCs given in Example 1, and also the CQs

q1 = ∃X Researcher(X)
q2 = ∃X∃Y Researcher(X) ∧ leaderOf (X,Y).

The former asks whether a researcher exists, while the latter
asks whether a researcher, who is also the leader of a group,
exists. Assume that D1 and D2 are the repairs of D and Σ,
as given in Example 2. It easy to verify that Di ∪ Σ |= q1,
for each i ∈ {1, 2}, and thus D ∪ Σ |=AR q1. On the other
hand, although D1 ∪ Σ |= q2, D2 ∪ Σ 6|= q2, which implies
that D ∪ Σ 6|=AR q2.

We refer to consistent CQ answering under the AR se-
mantics as AR-CQ answering.

Complexity Classes. In our later complexity analysis, be-
side the standard complexity classes NP, PSPACE, EXPTIME,
NEXPTIME and 2EXPTIME, we will also mention the follow-
ing classes of the polynomial hierarchy: (i) Σp2, the class

of problems that can be solved in non-deterministic poly-
nomial time using an NP-oracle; and (ii) Πp

2, the comple-
ment of Σp2. Another hierarchy of classes, which is rele-
vant for our complexity analysis, is the strong exponential
hierarchy (SEH) (Hemachandra 1989). A key class is PNE,
that is, the class of problems that can be solved in polyno-
mial time using an NE-oracle, which is the ∆2 level of the
SEH. Recall that NE =

⋃
k∈N NTIME(2kn), i.e., the class of

problems that can be solved in non-deterministic exponen-
tial time with linear exponent.

AR-CQ Answering: An Overview
As said, the main objective of the current work is to inves-
tigate the (ba-/fp-)combined complexity of AR-CQ answer-
ing under the main decidable classes of TGDs, enriched with
arbitrary NCs. But let us first briefly recall those classes.

Decidability Paradigms. The main (syntactic) conditions
on TGDs that guarantee the decidability of CQ answer-
ing are guardedness (Calı̀, Gottlob, and Kifer 2013), sticki-
ness (Calı̀, Gottlob, and Pieris 2012) and acyclicity. Interest-
ingly, each one of those conditions has its “weakly” coun-
terpart: weak-guardedness (Calı̀, Gottlob, and Kifer 2013),
weak-stickiness (Calı̀, Gottlob, and Pieris 2012) and weak-
acyclicity (Fagin et al. 2005), respectively.

A TGD σ is called guarded if there exists an atom a ∈
body(σ) which contains (or “guards”) all the body variables
of σ. The class of guarded TGDs, denoted G, is defined as
the family of all possible sets of guarded TGDs. A key sub-
class of guarded TGDs are the so-called linear TGDs with
just one body atom (which is automatically a guard), and the
corresponding class is denoted L. Weakly-guarded TGDs ex-
tend guarded TGDs by requiring only “harmful” body vari-
ables to appear in the guard, and the associated class is de-
noted WG. It is easy to verify that L ⊂ G ⊂WG.

Stickiness is inherently different from guardedness, and
its central property can be described as follows: variables
that appear more than once in a body (i.e., join variables) are
always propagated (or “stick”) to the inferred atoms. A set of
TGDs that enjoys the above property is called sticky, and the
corresponding class is denoted S. Weak-stickiness is a relax-
ation of stickiness where only “harmful” variables are taken
into account. A set of TGDs which enjoys weak-stickiness is
weakly-sticky, and the associated class is denoted WS. Ob-
serve that S ⊂WS.

A set Σ of TGDs is called acyclic if its predicate graph
is acyclic, and the underlying class is denoted A. In fact, an
acyclic set of TGDs can be seen as a nonrecursive set of
TGDs. Σ is called weakly-acyclic if its dependency graph
enjoys a certain acyclicity condition, which actually guaran-
tees the existence of a finite canonical model; the associated
class is denoted WA. Clearly, A ⊂WA.

Another key fragment of TGDs, which deserves our at-
tention, are the so-called full TGDs, i.e., TGDs without ex-
istentially quantified variables, and the corresponding class
is denoted F. If we further assume that full TGDs enjoy lin-
earity, guardedness, stickiness, or acyclicity, then we obtain
the classes LF, GF, SF, and AF, respectively.

1548

Comb. ba-comb. fp-comb.
L(F)⊥, AF⊥ PSPACE Πp

2 Πp
2

G⊥ 2EXP EXP Πp
2

WG⊥ 2EXP EXP EXP
F⊥, GF⊥, S(F)⊥ EXP Πp

2 Πp
2

A⊥ NEXP - PNE NEXP - PNE Πp
2

WS⊥, WA⊥ 2EXP 2EXP Πp
2

Table 1: Complexity of AR-CQ answering. A single com-
plexity class in a cell refers to a completeness result, while
two classes C1-C2 refer to C1-hardness and C2-membership.

Complexity Results. The (ba-/fp-)combined complexity
of AR-CQ answering under the classes of TGDs introduced
above, enriched with NCs, is given in Table 1. Observe that
for the cases where classical CQ answering is already very
complex, namely, PSPACE and above, dealing with incon-
sistency comes for free; for the complexity of classical CQ
answering see Tables 2 and 3. Of course, this is not true for
the class of acyclic TGDs for which we have a complexity
gap; let us briefly comment on this gap.

It is well known that PNE and NEXPTIMENP are strongly re-
lated complexity classes. As shown in (Hemachandra 1989),
NEXPTIMENP is a delicate class, and if we restrict its oracle
access too much, it is weakened to the point of collapsing to
PNE. For example, following the notation of (Hemachandra
1989), PNE coincides with NEXPTIMENP[poly]tree , where only
polynomially many NP-oracle calls are allowed throughout
the computation tree of the Turing machine. It is evident
that the current complexity gap for AR-CQ answering un-
der acyclic TGDs and NCs is not so wide. Nevertheless, the
task of bridging this gap is apparently very challenging.

Now, for the cases where the complexity of CQ answer-
ing is in NP, dealing with inconsistency comes at a price; it
increases to Πp

2. Interestingly, the transition from CQ to AR-
CQ answering follows a certain pattern. In particular, the
cases where CQ answering is C-complete, with C ⊇ PSPACE
being a deterministic complexity class, AR-CQ answering
remains C-complete, while for the cases where CQ answer-
ing is in NP, AR-CQ answering becomes Πp

2-complete. No-
tably, a systematic way for transferring results from CQ to
AR-CQ answering under arbitrary TGDs and NCs can be
established. This will be the subject of the next section.

Before we proceed further, we would like to say that the
same (ba-)combined complexity for AR-CQ answering un-
der linear TGDs with negative constraints, have been estab-
lished independently by (Bienvenu and Rosati 2014).

A Generic Complexity Result
We present a generic complexity result which demonstrates
the tight connection between classical and consistent CQ
answering. This result will automatically provide us with
a (nearly) complete picture of the (ba-/fp-)combined com-
plexity of AR-CQ answering under the main classes of
TGDs, enriched with NCs, assuming that the complexity of
CQ answering is already known.

Theorem 3 Assume that CQ answering under a class C
of TGDs is C-complete in (X-)combined complexity, where

ALGORITHM 1: The algorithm ARCQAns

Input: database D, set Σ ∈ C⊥, CQ q
Output: accept if D ∪ Σ 6|=AR q; otherwise, reject
Guess an instance D′ ⊆ D;
if there exists ν ∈ ΣN such that D′ ∪ ΣT |= qν then

return reject
end
foreach a ∈ D \D′ do

if there is no ν ∈ ΣN such that D′ ∪ {a} ∪ ΣT |= qν
then

return reject
end

end
if D′ ∪ Σ 6|= q then

return accept
else

return reject
end

X ∈ {ba, fp}. Then, the (X-)combined complexity of AR-
CQ answering under C⊥ is

1. C-complete, if C ⊇ PSPACE is a deterministic class;
2. in PNE and NEXPTIME-hard, if C = NEXPTIME; and
3. Πp

2-complete, if C = NP.

In what follows, we establish the above key result.

Upper Bounds. Fix a database D, a set Σ ∈ C⊥ of TGDs
and NCs, and a CQ q. It is easy to see that the problem of
deciding whether D ∪Σ 6|=AR q can be solved via the algo-
rithm ARCQAns. In the definition of ARCQAns, ΣT (resp.,
ΣN) denotes the set of TGDs (resp., NCs) occurring in Σ.
Moreover, given a NC ν of the form ϕ(X) → ⊥, by qν
we refer to the CQ ∃Xϕ(X). The first if-then statement
of ARCQAns checks whether mods(D′,Σ) 6= ∅, while the
foreach-do statement verifies thatD′ is a⊆-maximal consis-
tent subset of D. In other words, the above two statements
verify that D′ ∈ drep(D,Σ). Finally, the last if-then-else
statement checks whether D′ is a counterexample for the
given query q. The next technical lemma is established by
analyzing the complexity of ARCQAns.

Lemma 4 The complement of AR-CQ answering under C⊥
is in NPC in (X-)combined complexity, where X ∈ {ba, fp}.

Having the above lemma in place, we can show the up-
per bounds in Theorem 3: (1) If C ⊇ PSPACE is a deter-
ministic class, then, by Lemma 4, AR-CQ answering under
C⊥ is in C since NPC coincides with C and coC = C; (2) If
C = NEXPTIME, then Lemma 4 implies a coNPNEXPTIME up-
per bound. The complexity class NPNEXPTIME lies at a higher
level of the strong exponential hierarchy. However, we know
by the work (Hemachandra 1989) that the strong exponen-
tial hierarchy collapses to its ∆2 level, which implies that
NPNEXPTIME = PNE, and thus we obtain a coPNE upper bound.
Observe that the class PNE is a deterministic one, since the
oracle machines in terms of which it is defined are deter-
ministic, and therefore coPNE = PNE. Consequently, AR-CQ
answering under C⊥ is in PNE; (3) Finally, if C = NP, then
we get a Πp

2 upper bound, since NPNP = Σp2 and coΣp2 = Πp
2.

1549

Lower Bounds. We now proceed with the lower bounds.
Clearly, the C-hardness results when C is NEXPTIME, or a
deterministic class above PSPACE, follow immediately, since
CQ answering under C is a special case of AR-CQ answer-
ing under C⊥. The non-trivial result is the Πp

2-hardness. In-
terestingly, a strong lower bound, which implies all the nec-
essary Πp

2-hardness results, can be established by a reduction
from the validity problem of 2QBF formulas:

Proposition 5 AR-CQ answering under a single negative
constraint ϕ(X)→ ⊥, where ϕ consists of two atoms and it
uses a single ternary predicate, while the database and the
CQ use only binary and ternary predicates, is Πp

2-hard.

Proof. We proceed by a reduction from the validity problem
of 2QBF formulas. Let ϕ be a 2QBF formula of the form
∀X1 . . . ∀Xn∃Y1 . . . ∃Ym ψ, where ψ = C1 ∧ . . . ∧ Ck is
a 3CNF formula such that Ci is a clause of the form (`1i ∨
`2i ∨ `3i). Let var(`ji) be the variable of `ji . In the sequel,
let T = {X1, . . . , Xn, Y1, . . . , Ym}, i.e., the variables in ϕ.
We proceed with the construction of D, Σ and q such that
D ∪ Σ |=AR q iff ϕ is satisfiable.

The Database D. Intuitively speaking, in D we store, for
each clause Ci, all the valuations which make Ci true. A
valuation for T is a function f : T → {0, 1}. Given a lit-
eral ` = Z (resp., ` = ¬Z), f(`) = f(Z) (resp., f(`) =
¬f(Z)). A valuation f satisfies a clauseC = (`1∨`2∨`3) if
(f(`1)∨f(`2)∨f(`3)) = 1. For a clauseC, let FC be the set
of all valuations for T which make C true. The database D
is defined as follows: {pji (ci, f(var(`ji)))}i∈[k],f∈FCi

,j∈[3]∪
{s(0, 1, di), s(1, 0, di)}i∈[n]; the purpose of the auxiliary s-
atoms will be clarified soon.

The Set Σ. This set contains the single negative constraint

s(X,Y, Z), s(W,X,Z) → ⊥.
Note that the above constraint uses only one 3-ary predicate.

The CQ q. Finally, the conjunctive query q is defined as
follows: ∧ki=1 ∧3

j=1 p
j
i (Zi, var(`ji)) ∧ ∧ni=1s(Xi,Wi, di),

where all the variables are existentially quantified variables.
This completes our construction.

It is not difficult to show that indeedD∪Σ |=AR q iff ϕ is
satisfiable. Roughly speaking, the single negative constraint
forces us to consider all the possible subsets of D which can
be obtained by removing either the atom s(0, 1, di) or the
atom s(1, 0, di), for each i ∈ [n]; this holds since there are
no TGDs in Σ. Each such subset D′ of D corresponds to
a possible assignment µ of values to the universally quanti-
fied variables of ϕ. Finally, by evaluating the query q over
D′ in fact we ask whether there exists a valuation which is
compatible with µ that makes ϕ true.

By Proposition 5, for every class C of TGDs, AR-CQ an-
swering under C⊥ is Πp

2-hard in fp-combined complexity,
which in turn implies the Πp

2-hardness results in Theorem 3.

From Classical to AR-CQ Answering
In this section, we focus on the non-full classes of TGDs in-
troduced above, and we show that the complexity of AR-CQ
answering can be obtained in a uniform way by exploiting
our generic complexity theorem. To this aim, it suffices to

Comb. ba-comb. fp-comb.
L PSPACE NP NP
G 2EXP EXP NP
WG 2EXP EXP EXP
S EXP NP? NP
A NEXP? NEXP? NP

WS, WA 2EXP 2EXP NP

Table 2: Complexity of CQ answering. All results are com-
pleteness results. The symbol ? refers to novel results.

identify the complexity of (classical) CQ answering, which
is summarized in Table 2. Clearly, by combining Table 2
with Theorem 3, we get that:
Theorem 6 The (X-)combined complexity of AR-CQ an-
swering under C⊥, whereX ∈ {ba, fp} and C ∈ {L, (W)G,
(W)S, (W)A}, is as shown in Table 1.

Let us now focus on classical query answering.

Classical CQ Answering
Although for several cases the complexity of CQ answer-
ing is already known, there are some interesting cases that
are still open. Surprisingly, the (ba-)combined complexity
of CQ answering under acyclic TGDs has to our knowledge
never been explicitly studied. Furthermore, the ba-combined
complexity for sticky sets of TGDs is not known. In what
follows, we close the above open problems.

Our main tool is the chase procedure, which works on an
instance through the chase rule. Answering a CQ against a
database D and a set Σ of TGDs is equivalent to evaluating
the same query over the chase-expansion of D according to
Σ, denoted chase(D,Σ); this expansion can be obtained via
the chase procedure. Informally, the chase adds new atoms
to D (possibly involving null values) until the final result
satisfies Σ; for the details, see, e.g., (Calı̀, Gottlob, and Pieris
2012). We now proceed with our open questions.

Stickiness. We start with the ba-combined complexity for
sticky sets of TGDs, and show that it is NP-complete. The
key property of stickiness that we are going to exploit is the
so-called polynomial witness property (PWP) (Gottlob and
Schwentick 2012). Roughly, a class of TGDs C enjoys the
PWP if, whenever a CQ q is entailed by a database D and
a set Σ ∈ C, then q is already satisfied by a finite part of
chase(D,Σ), the witness, of polynomial size in q and Σ. In
fact, there exists a polynomial f such that the witness can be
constructed after f(q,Σ) applications of the chase rule.

It is not difficult to show that the PWP implies an NP upper
bound for CQ answering. One can apply chase steps non-
deterministically until the CQ q is entailed, in which case
the algorithm accepts; if after f(q,Σ) chase steps q is not
entailed, then our algorithm rejects. Clearly, the above pro-
cedure runs in polynomial time, and the claim follows. It
has been recently shown that sticky sets of TGDs enjoy the
PWP when the arity is bounded by an integer constant (Got-
tlob, Manna, and Pieris 2014), and the desired upper bound
follows. The NP-hardness is inherited from CQ containment
(which is LOGSPACE-equivalent to CQ answering) without
constraints (Chandra and Merlin 1977). Thus, we get that:

1550

Comb. ba-comb. fp-comb.
F EXPTIME NP NP
LF PSPACE? NP NP
GF EXPTIME? NP NP

SF EXPTIME♦ NP NP
AF PSPACE NP NP

Table 3: Complexity of CQ answering. All results are com-
pleteness results. The symbol ? refers to novel results, while
the symbol♦ to results that are derivable from existing ones.

Theorem 7 CQ answering under S is NP-complete in ba-
combined complexity.

Acyclicity. Let us now proceed with acyclic TGDs. Since
acyclicity guarantees the termination of the chase procedure,
an obvious query answering algorithm is to explicitly con-
struct the chase, and then evaluate the given query over the
obtained (finite) instance. However, this naive approach does
not provide us with an optimal upper bound, since the chase
procedure under acyclic TGDs, in general, terminates after
double-exponentially many steps. Luckily, the desired NEX-
PTIME upper bound can be obtained by exploiting a result
in (Dantsin and Voronkov 1997), where the complexity of
nonrecursive logic programs with complex values is inves-
tigated. The problem of deciding whether a fact is entailed
by a (positive) nonrecursive logic program is in NEXPTIME.
Our problem can be effectively reduced, via skolemization,
to the above problem. For the lower bound, we use a classi-
cal NEXPTIME-hard problem, namely TILING (Fürer 1983),
and we show that CQ answering under acyclic TGDs is
NEXPTIME-hard, even for atomic queries and predicates of
arity at most six. From the above discussion, we get that:

Theorem 8 CQ answering under A is NEXPTIME-complete
in (ba-)combined complexity.

Full Dependencies: A Closer Look
We now focus on the key class of full TGDs. Notice that
important database dependencies, e.g., join and multival-
ued dependencies, are expressible via full TGDs (Abiteboul,
Hull, and Vianu 1995), and also a plain Datalog program can
be seen as a set of full TGDs. It is evident that full TGDs are
of great importance and they deserve further investigation.
We would like to better understand whether the complexity
of AR-CQ answering under full TGDs, enriched with NCs,
is affected or not if we further assume that the given set of
TGDs enjoys linearity, guardedness, stickiness, or acyclic-
ity. Observe that the existential-free version of the “weakly”
classes of TGDs considered in this work coincide with full
TGDs; this is why we consider only the classes LF, GF, SF
and AF. We show that:

Theorem 9 The (X-)combined complexity of AR-CQ an-
swering under C⊥, where X ∈ {ba, fp} and C ∈ {F, LF,
GF,SF,AF}, is as shown in Table 1.

In the sequel, we establish the above theorem. To this aim,
it suffices to pinpoint the complexity of classical CQ answer-
ing under the relevant classes of TGDs, which is shown in
Table 3, and then apply our generic complexity result.

Classical CQ Answering
It is easy to show that CQ answering under full TGDs is EX-
PTIME-complete in combined complexity and NP-complete
in ba-/fp-combined complexity. The upper bounds follow
from the fact that a universal model can be constructed in ex-
ponential (resp., nondeterministic polynomial) time via the
chase procedure. The EXPTIME-hardness is inherited from
plain Datalog (Dantsin et al. 2001), while the NP-hardness is
inherited from CQ containment without constraints.

It is straightforward to see that the ba-/fp-combined com-
plexity of CQ answering under the relevant fragments of full
TGDs remain NP-complete. In what follows, more details
about the combined complexity of our problem are given.

Linearity. A PSPACE upper bound for linear full TGDs is
obtained from the fact that CQ answering under linear TGDs
is feasible in polynomial space. Regarding the lower bound,
we can easily simulate the behavior of a deterministic poly-
nomial space machine, and get the following result.

Proposition 10 CQ answering under LF is PSPACE-hard in
combined complexity, even for atomic CQs.

Notice that the above result is implicit in (Gottlob and Pa-
padimitriou 2003; Calı̀, Gottlob, and Pieris 2012). However,
the existing proofs heavily use constants in the set of TGDs
and the query, while our construction employs constant-free
TGDs and a query consisting of a single propositional atom.

Guardedness. Unfortunately, guardedness has no positive
impact on our problem. In fact, we show a stronger result,
i.e., even if the TGDs are strongly-guarded, i.e., each body-
atom contains all the body-variables, our problem remains
EXPTIME-hard. This is a surprising result as one expects that
such a strong condition would force the TGDs to behave like
linear TGDs, and thus reduce the complexity to PSPACE. The
key idea underlying our proof is to simulate a Datalog pro-
gram, over the domain {0, 1} (Dantsin et al. 2001), using a
strongly-guarded full set of TGDs. Notice that the fact infer-
ence problem for Datalog programs over the domain {0, 1}
is already EXPTIME-hard (Dantsin et al. 2001).

Proposition 11 CQ answering under GF is EXPTIME-hard
in combined complexity, even for strongly-guarded TGDs
and atomic CQs.

Proof. Consider a database D, where dom(D) = {0, 1}, a
Datalog program P , and a ground atom a. We are going to
construct a database D̂, a set Σ of strongly-guarded TGDs,
and an atomic CQ q such that a ∈ P (D) iff D̂ ∪ Σ |= q.

The Database D̂. The database D̂ is obtained from D by
simply extending the arity of each predicate occurring in D
by two, and adding to the first two positions the constants 0

and 1. Formally, D̂ = {p̄(0, 1, t) | p(t) ∈ D}.
The Set Σ. First, we transform the program P into a set

Σ1 of strongly-guarded TGDs: for each ρ ∈ P of the form
p1(X1), . . . , pn(Xn)→ p0(X0), we add in Σ1 the strongly-
guarded TGD p̄ρ1(Z,O,X1, Y1, . . . , Ym), . . . , p̄ρn(Z,O,Xn,
Y1, . . . , Ym) → p̄0(Z,O,X0), where Y1, . . . , Ym are the
variables occurring in ρ. Let us say that the variables Z and
O are auxiliary variables that will allow us to have access to

1551

the constants 0 and 1, respectively, without explicitly men-
tioning them in the body of the TGDs.

Now, we have to guarantee that all the necessary atoms
with a predicate of the form p̄ρ will eventually be inferred.
To this aim, we are going to construct a set Σ2 of linear
TGDs of polynomial size. For each n-ary predicate p occur-
ring in P , and for each rule ρ ∈ P such that p occurs in the
body of ρ, assuming that ρ contains m variables, we add in
Σ2 the linear TGD p̄(Z,O,X) → p̄ρ(Z,O,X, Z, . . . , Z),
where we have m occurrences of Z, and the linear TGDs

{p̄ρ(Z,O,X,Ym−i, Z,Oi−1) →
p̄ρ(Z,O,X,Ym−i, O, Zi−1)}i∈[m],

where X is the tuple of variables X1, . . . , Xn, Yk is the
tuple of variables Y1, . . . , Yk and V k is the k-tuple V, . . . , V ,
with k > 1 and V ∈ {Z,O}. Let Σ = Σ1 ∪ Σ2.

The Query q. Assuming that a = p(t), the atomic CQ q is
simply defined as p̄(0, 1, t).

Stickiness. Unluckily, also stickiness has no positive im-
pact on the combined complexity of CQ answering under
full TGDs. This fact is easily derivable from (Calı̀, Gottlob,
and Pieris 2012), where it is shown that every Datalog pro-
gram over the domain {0, 1} can be converted in polynomial
time into a set of full TGDs which enjoy the following prop-
erty: each variable in the body occurs also in the head atom,
which in turn implies that stickiness is trivially satisfied.

Acyclicity. Finally, acyclicity reduces the combined com-
plexity of our problem to PSPACE. This follows from the fact
that nonrecursive Datalog is PSPACE-complete (Vorobyov
and Voronkov 1998).

Having the above complexity results in place for classical
CQ answering, it is easy to verify that our generic theorem
implies the results for AR-CQ answering shown in Table 1.

Conclusions
In this work, we performed an in-depth complexity analysis
of the problem of consistent query answering under the main
decidable classes of TGDs, focussing on the AR semantics.
Notably, a generic complexity result has been established,
which allowed us to obtain a (nearly) complete picture of
the complexity of our problem in a systematic and uniform
way. Regarding future work, apart from bridging the com-
plexity gap for acyclic TGDs, we intend to perform a sim-
ilar complexity analysis for other important semantics such
as the IAR semantics, that is, a sound approximation of the
AR semantics (Lembo et al. 2010).

Acknowledgements. This work has received funding from
the EPSRC grant EP/J008346/1. M.V. Martinez and G.I.
Simari are partially supported by Proyecto PIP-CONICET
112-201101-01000. A. Pieris is also supported by the Aus-
trian Science Fund (FWF): P25207-N23 and Y698.

References
Abiteboul, S.; Hull, R.; and Vianu, V. 1995. Foundations of
Databases. Addison-Wesley.

Arenas, M.; Bertossi, L. E.; and Chomicki, J. 1999. Con-
sistent query answers in inconsistent databases. In PODS,
68–79.
Bienvenu, M., and Rosati, R. 2013. Tractable approximations
of consistent query answering for robust ontology-based data
access. In IJCAI.
Bienvenu, M., and Rosati, R. 2014. Personal communication.
Bienvenu, M. 2012. On the complexity of consistent query
answering in the presence of simple ontologies. In AAAI.
Calı̀, A.; Gottlob, G.; Lukasiewicz, T.; Marnette, B.; and
Pieris, A. 2010. Datalog+/-: A family of logical knowledge
representation and query languages for new applications. In
LICS, 228–242.
Calı̀, A.; Gottlob, G.; and Kifer, M. 2013. Taming the infi-
nite chase: Query answering under expressive relational con-
straints. J. Artif. Intell. Res. 48:115–174.
Calı̀, A.; Gottlob, G.; and Pieris, A. 2012. Towards more ex-
pressive ontology languages: The query answering problem.
Artif. Intell. 193:87–128.
Chandra, A. K., and Merlin, P. M. 1977. Optimal imple-
mentation of conjunctive queries in relational data bases. In
STOC, 77–90.
Dantsin, E., and Voronkov, A. 1997. Complexity of query
answering in logic databases with complex values. In LFCS,
56–66.
Dantsin, E.; Eiter, T.; Gottlob, G.; and Voronkov, A. 2001.
Complexity and expressive power of logic programming.
ACM Comput. Surv. 33(3):374–425.
Fagin, R.; Kolaitis, P. G.; Miller, R. J.; and Popa, L. 2005.
Data exchange: Semantics and query answering. Theor. Com-
put. Sci. 336(1):89–124.
Fürer, M. 1983. The computational complexity of the uncon-
strained limited domino problem (with implications for logi-
cal decision problems). In Logic and Machines, 312–319.
Gottlob, G., and Papadimitriou, C. H. 2003. On the complex-
ity of single-rule Datalog queries. Inf. Comput. 183(1):104–
122.
Gottlob, G., and Schwentick, T. 2012. Rewriting ontological
queries into small nonrecursive Datalog programs. In KR.
Gottlob, G.; Manna, M.; and Pieris, A. 2014. Polynomial
combined rewritings for existential rules. In KR.
Hemachandra, L. A. 1989. The strong exponential hierarchy
collapses. J. Comput. Syst. Sci. 39(3):299–322.
Lembo, D.; Lenzerini, M.; Rosati, R.; Ruzzi, M.; and Savo,
D. F. 2010. Inconsistency-tolerant semantics for description
logics. In RR, 103–117.
Lukasiewicz, T.; Martinez, M. V.; and Simari, G. I. 2012.
Inconsistency handling in Datalog+/- ontologies. In ECAI,
558–563.
Lukasiewicz, T.; Martinez, M. V.; and Simari, G. I. 2013.
Complexity of inconsistency-tolerant query answering in
Datalog+/-. In ODBASE, 488–500.
Poggi, A.; Lembo, D.; Calvanese, D.; De Giacomo, G.; Lenz-
erini, M.; and Rosati, R. 2008. Linking data to ontologies. J.
Data Semantics 10:133–173.
Rosati, R. 2011. On the complexity of dealing with inconsis-
tency in description logic ontologies. In IJCAI, 1057–1062.
Vardi, M. Y. 1982. The complexity of relational query lan-
guages (extended abstract). In STOC, 137–146.
Vorobyov, S. G., and Voronkov, A. 1998. Complexity of
nonrecursive logic programs with complex values. In PODS,
244–253.

1552

