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Abstract

Knowledge compilation is a powerful reasoning
paradigm with many applications across AI and com-
puter science more broadly. We consider the problem
of bottom-up compilation of knowledge bases, which is
usually predicated on the existence of a polytime func-
tion for combining compilations using Boolean opera-
tors (usually called an Apply function). While such a
polytime Apply function is known to exist for certain
languages (e.g., OBDDs) and not exist for others (e.g.,
DNNFs), its existence for certain languages remains un-
known. Among the latter is the recently introduced lan-
guage of Sentential Decision Diagrams (SDDs): while
a polytime Apply function exists for SDDs, it was un-
known whether such a function exists for the important
subset of compressed SDDs which are canonical. We re-
solve this open question in this paper and consider some
of its theoretical and practical implications. Some of the
findings we report question the common wisdom on the
relationship between bottom-up compilation, language
canonicity and the complexity of the Apply function.

Introduction
Knowledge compilation is an area of research that has
a long tradition in AI; see Cadoli and Donini (1997).
Initially, work in this area took the form of searching
for tractable languages based on CNFs (e.g. Selman and
Kautz; del Val; Marquis (1991; 1994; 1995)). However,
the area took a different turn a decade ago with the pub-
lication of the “Knowledge Compilation Map” (Darwiche
and Marquis 2002). Since then, the work on knowledge
compilation became structured across three major dimen-
sions; see Darwiche (2014) for a recent survey: (1) iden-
tifying new tractable languages and placing them on the
map by characterizing their succinctness and the polytime
operations they support; (2) building compilers that map
propositional knowledge bases into tractable languages; and
(3) using these languages in various applications, such
as diagnosis (Elliott and Williams 2006; Huang and Dar-
wiche 2005; Barrett 2005; Siddiqi and Huang 2007), plan-
ning (Palacios et al. 2005; Huang 2006), probabilistic rea-
soning (Chavira, Darwiche, and Jaeger 2006; Chavira and

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Darwiche 2008; Fierens et al. 2011), and statistical rela-
tional learning (Fierens et al. 2013). More recently, knowl-
edge compilation has greatly influenced the area of proba-
bilistic databases (Suciu et al. 2011; Jha and Suciu 2011;
Rekatsinas, Deshpande, and Getoor 2012; Beame et al.
2013) and became also increasingly influential in first-
order probabilistic inference (Van den Broeck et al. 2011;
Van den Broeck 2011; Van den Broeck 2013). Another area
of influence is in the learning of tractable probabilistic mod-
els (Lowd and Rooshenas 2013; Gens and Domingos 2013;
Kisa et al. 2014a), as knowledge compilation has formed
the basis of a number of recent approaches in this area of
research (ICML hosted the First International Workshop on
Learning Tractable Probabilistic Models (LTPM) in 2014).

One of the more recent introductions to the knowl-
edge compilation map is the Sentential Decision Diagram
(SDD) (Darwiche 2011). The SDD is a target language for
knowledge compilation. That is, once a propositional knowl-
edge base is compiled into an SDD, the SDD can be reused
to answer multiple hard queries efficiently (e.g., clausal en-
tailment or model counting). SDDs subsume Ordered Bi-
nary Decision Diagrams (OBDDs) (Bryant 1986) and come
with tighter size bounds (Darwiche 2011; Razgon 2013;
Oztok and Darwiche 2014), while still being equally power-
ful as far as their polytime support for classical queries (e.g.,
the ones in Darwiche and Marquis (2002)). Moreover, SDDs
are a specialization of d-DNNFs (Darwiche 2001), which
received much attention over the last decade. Even though
SDDs are less succinct than d-DNNFs, they can be compiled
bottom-up, just like OBDDs. For example, a clause can be
compiled by disjoining the SDDs corresponding to its liter-
als, and a CNF can be compiled by conjoining the SDDs cor-
responding to its clauses. This bottom-up compilation is im-
plemented using the Apply function, which combines two
SDDs using Boolean operators.1 Bottom-up compilation
makes SDDs attractive for several AI applications, in partic-
ular for reasoning in probabilistic graphical models (Choi,
Kisa, and Darwiche 2013) and probabilistic programs, both
exact (Vlasselaer et al. 2014) and approximate (Renkens et
al. 2014), as well as tractable learning (Kisa et al. 2014a;
2014b). Bottom-up compilation can be critical when the
knowledge base to be compiled is constructed incrementally

1Apply originated in the OBDD literature (Bryant 1986).
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Figure 1: An SDD and vtree for (A∧B)∨(B∧C)∨(C∧D).

(see the discussion in Pipatsrisawat and Darwiche (2008)).

An Open Problem and its Implications
According to common wisdom, a language supports bottom-
up compilation only if it supports a polytime Apply func-
tion. For example, OBDDs are known to support bottom-
up compilation and have traditionally been compiled this
way. In fact, the discovery of SDDs was mostly driven by
the need for bottom-up compilation, which was preceded by
the discovery of structured decomposability (Pipatsrisawat
and Darwiche 2008): a property that enables some Boolean
operations to be applied in polytime. SDDs satisfy this prop-
erty and stronger ones, leading to a polytime Apply func-
tion (Darwiche 2011). It was unknown, however, whether
this function existed for the important subset of compressed
SDDs which are canonical. This has been an open question
since SDDs were first introduced in (Darwiche 2011).

We resolve this open question in this paper, showing that
such an Apply function does not exist in general. We also
pursue some theoretical and practical implications of this re-
sult, on bottom-up compilation in particular. On the practical
side, we reveal an empirical finding that seems quite surpris-
ing: bottom-up compilation with compressed SDDs is much
more feasible practically than with uncompressed ones, even
though the latter supports a polytime Apply function while
the former does not. This finding questions common con-
victions on the relative importance of a polytime Apply in
contrast to canonicity as desirable properties for a language
that supports efficient bottom-up compilation. On the theo-
retical side, we show that some transformations (e.g., con-
ditioning) can blow up the size of compressed SDDs, while
they do not for uncompressed SDDs.

Technical Background
We will use the following notation for propositional logic.
Upper-case letters (e.g., X) denote propositional variables
and bold letters represent sets of variables (e.g., X). A literal
is a variable or its negation. A Boolean function f(X) maps
each instantiation x of variables X into> (true) or⊥ (false).

The SDD Representation The SDD can be thought of
as a “data structure” for representing Boolean functions
since SDDs can be canonical and support a number of effi-
cient operations for constructing and manipulating Boolean

functions (Darwiche 2011; Xue, Choi, and Darwiche 2012;
Choi and Darwiche 2013).

Partitions SDDs are based on a new type of Boolean func-
tion decomposition, called partitions. Consider a Boolean
function f and suppose that we split its variables into two
disjoint sets, X and Y. We can always decompose the func-
tion f as

f =
[
p1(X) ∧ s1(Y)

]
∨ · · · ∨

[
pn(X) ∧ sn(Y)

]
,

where we require that the sub-functions pi(X) are mutually
exclusive, exhaustive, and consistent (non-false). This kind
of decomposition is called an (X,Y)-partition, and it al-
ways exists. The sub-functions pi(X) are called primes and
the sub-functions si(Y) are called subs (Darwiche 2011).
For an example, consider the function: f = (A ∧ B) ∨
(B ∧C) ∨ (C ∧D). By splitting the function variables into
X = {A,B} and Y = {C,D}, we get the following de-
composition:

(A ∧B︸ ︷︷ ︸
prime

∧ >︸︷︷︸
sub

)∨(¬A ∧B︸ ︷︷ ︸
prime

∧ C︸︷︷︸
sub

)∨(¬B︸︷︷︸
prime

∧ C ∧D︸ ︷︷ ︸
sub

). (1)

The primes are mutually exclusive, exhaustive and non-
false. This decomposition is represented by a decision SDD
node, which is depicted by a circle © as in Figure 1. The
above decomposition corresponds to the root decision node
in this figure. The children of a decision SDD node are de-
picted by paired boxes p s , called elements. The left box
of an element corresponds to a prime p, while the right box
corresponds to its sub s. In the graphical depiction of SDDs,
a prime p or sub s are either a constant, literal or pointer to a
decision SDD node. Constants and literals are called termi-
nal SDD nodes.

Compression An (X,Y)-partition is compressed when
its subs si(Y) are distinct. Without the compression prop-
erty, a function can have many different (X,Y)-partitions.
However, for a function f and a particular split of the func-
tion variables into X and Y, there exists a unique com-
pressed (X,Y)-partition of function f . The (AB,CD)-
partition in (1) is compressed. Its function has another
(AB,CD)-partition, which is not compressed:

{(A ∧B,>), (¬A ∧B,C),

(A ∧ ¬B,D ∧ C), (¬A ∧ ¬B,D ∧ C)}. (2)

An uncompressed (X,Y)-partition can be compressed by
merging all elements (p1, s), . . . , (pn, s) that share the same
sub into one element (p1∨· · ·∨pn, s). Compressing (2) com-
bines the two last elements into ([A∧¬B]∨ [¬A∧¬B], D∧
C) = (¬B,D∧C), resulting in (1). This is the unique com-
pressed (AB,CD)-partition of f . A compressed SDD is one
which contains only compressed partitions.

Vtree An SDD can be defined using a sequence of recur-
sive (X,Y)-partitions. To build an SDD, we need to deter-
mine which X and Y are used in every partition in the SDD.
This process is governed by a vtree: a full, binary tree, whose
leaves are labeled with the function variables; see Figures 1b
and 2. The root v of the vtree partitions variables into those
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Figure 2: Different vtrees over the variablesA,B,C, andD.
The vtree on the left is right-linear.

appearing in the left subtree (X) and those appearing in the
right subtree (Y). This implies an (X,Y)-partition β of the
Boolean function, leading to the root SDD node (we say in
this case that partition β is normalized for vtree node v). The
primes and subs of this partition are turned into SDDs, re-
cursively, using vtree nodes from the left and right subtrees.
The process continues until we reach variables or constants
(i.e., terminal SDD nodes). The vtree used to construct an
SDD can have a dramatic impact on the SDD, sometimes
leading to an exponential difference in the SDD size.

Two Forms of Canonicity Even though compressed
(X,Y)-partitions are unique for a fixed X and Y, we need
one of two additional properties for a compressed SDD to
be unique (i.e., canonical) given a vtree:

– Normalization: If an (X,Y)-partition β is normalized for
vtree node v, then the primes (subs) of β must be normal-
ized for the left (right) child of v—as opposed to a left
(right) descendant of v.

– Trimming: The SDD contains no (X,Y)-partitions of the
form {(>, α)} or {(α,>), (¬α,⊥)}.

For a Boolean function, and a fixed vtree, there is a unique
compressed, normalized SDD. There is also a unique com-
pressed, trimmed SDD (Darwiche 2011). Thus, both repre-
sentations are canonical, although trimmed SDDs tend to be
smaller. One can trim an SDD by replacing (X,Y)-partitions
of the form {(>, α)} or {(α,>), (¬α,⊥)} with α. One can
normalize an SDD by adding intermediate partitions of the
same form. Since these translations are efficient, our theoret-
ical results will apply to both canonical representations. In
what follows, we will restrict our attention to compressed,
trimmed SDDs and refer to them as canonical SDDs.

SDDs and OBDDs OBDDs correspond precisely to SDDs
that are constructed using a special type of vtree, called a
right-linear vtree (Darwiche 2011); see Figure 2. The left
child of each inner node in these vtrees is a variable. With
right-linear vtrees, compressed, trimmed SDDs correspond
to reduced OBDDs, while compressed, normalized SDDs
correspond to oblivious OBDDs (Xue, Choi, and Darwiche
2012) (reduced and oblivious OBDDs are also canonical).
The size of an OBDD depends critically on the underly-
ing variable order. Similarly, the size of an SDD depends
critically on the vtree used (right-linear vtrees correspond
to variable orders). Vtree search algorithms can sometimes

Query Description OBDD SDD d-DNNF
CO consistency

√ √ √

VA validity
√ √ √

CE clausal entailment
√ √ √

IM implicant check
√ √ √

EQ equivalence check
√ √

?
CT model counting

√ √ √

SE sentential entailment
√ √

◦
ME model enumeration

√ √ √

Table 1: Analysis of supported queries, following Darwiche
and Marquis (2002).

√
means that a polytime algorithm ex-

ists for the corresponding language/query, while ◦ means
that no such algorithm exists unless P = NP .

find SDDs that are orders-of-magnitude more succinct than
OBDDs found by searching for variable orders (Choi and
Darwiche 2013). Such algorithms assume canonical SDDs,
allowing one to search the space of SDDs by searching the
space of vtrees instead.

Queries SDDs are a strict subset of deterministic, decom-
posable negation normal form (d-DNNF). They are actually
a strict subset of structured d-DNNF and, hence, support the
same polytime queries supported by structured d-DNNF (Pi-
patsrisawat and Darwiche 2008); see Table 1. We defer the
reader to Darwiche and Marquis (2002) for a detailed de-
scription of the queries typically considered in knowledge
compilation. This makes SDDs as powerful as OBDDs in
terms of their support for certain queries (e.g., clausal en-
tailment, model counting, and equivalence checking).

Bottom-up Construction SDDs are typically constructed
in a bottom-up fashion. For example, to construct an SDD
for the function f = (A ∧ B) ∨ (B ∧ C) ∨ (C ∧ D), we
first retrieve terminal SDDs for the literals A, B, C, and
D. We then conjoin the terminal SDD for literal A with the
one for literal B, to obtain an SDD for the term A ∧ B.
The process is repeated to obtain SDDs for the terms B ∧C
and C ∧D. The resulting SDDs are then disjoined to obtain
an SDD for the whole function. These operations are not
all efficient on structured d-DNNFs. However, SDDs satisfy
stronger properties than structured d-DNNFs, allowing one,
for example, to conjoin or disjoin two SDDs in polytime.

This bottom-up compilation is performed using the
Apply function. Algorithm 1 outlines an Apply function
that takes two SDDs α and β, and a binary Boolean operator
◦ (e.g., ∧, ∨, xor), and returns the SDD for α ◦ β (Darwiche
2011).2 Line 13 optionally compresses each partition, in or-
der to return a compressed SDD. Without compression, this
algorithm has a time and space complexity ofO(nm), where
n and m are the sizes of input SDDs. This comes at the ex-
pense of losing canonicity. Whether a polytime complexity
can be attained under compression was an open question.

There are several implications of this question. For ex-
ample, depending on the answer, one would know whether
certain transformations, such as conditioning and existential

2This code assumes that the SDD is normalized. The Apply for
trimmed SDDs is similar, although a bit more technically involved.
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Algorithm 1 Apply(α, β, ◦)
1: if α and β are constants or literals then
2: return α ◦ β // result is a constant or literal
3: else if Cache(α, β, ◦) 6= nil then
4: return Cache(α, β, ◦) // has been computed before
5: else
6: γ←{}
7: for all elements (pi, si) in α do
8: for all elements (qj , rj) in β do
9: p←Apply(pi, qj ,∧)

10: if p is consistent then
11: s←Apply(si, rj , ◦)
12: add element (p, s) to γ
13: (optionally) γ ← Compress(γ) // compression

// get unique decision node and return it
14: return Cache(α, β, ◦)←UniqueD(γ)

quantification, can be supported in polytime on canonical
SDDs. Moreover, according to common wisdom, a nega-
tive answer may preclude bottom-up compilation from be-
ing feasible on canonical SDDs. We answer this question
and explore its implications next.

Complexity of Apply on Canonical SDDs

The size of a decision node is the number of its elements, and
the size of an SDD is the sum of sizes attained by its decision
nodes. We now show that compression, given a fixed vtree,
may blow up the size of an SDD.

Theorem 1. There exists a class of Boolean functions
fm(X1, . . . , Xm) and corresponding vtrees Tm such that
fm has an SDD of size O(m2) wrt vtree Tm, yet the canon-
ical SDD of function fm wrt vtree Tm has size Ω(2m).

The proof is constructive, identifying a class of functions
fm with the given properties. The functions fam(X,Y, Z) =∨m

i=1

(∧i−1
j=1 ¬Yj

)
∧Yi∧Xi have 2m+1 variables. Of these,

Z is non-essential. Consider a vtree Tm of the form

1

Z2

YX

where the sub-vtrees over variables X and Y are arbitrary.
We will now construct an uncompressed SDD for this func-
tion using vtree Tm and whose size is O(m2). We will then
show that the compressed SDD for this function and vtree
has a size Ω(2m).

The first step is to construct a partition of function fam
that respects the root vtree node, that is, an (XY,Z)-partition.

Consider

(Y1 ∧X1,>),
(¬Y1 ∧ Y2 ∧X2,>),
. . . ,
(¬Y1 ∧ · · · ∧ ¬Ym−1 ∧ Ym ∧Xm,>),
(Y1 ∧ ¬X1,⊥),
(¬Y1 ∧ Y2 ∧ ¬X2,⊥),
. . . ,
(¬Y1 ∧ · · · ∧ ¬Ym−1 ∧ Ym ∧ ¬Xm,⊥),
(¬Y1 ∧ · · · ∧ ¬Ym,⊥)


,

which is equivalently written as

m⋃
i=1


i−1∧

j=1

¬Yj ∧ Yi ∧Xi,>

 ,

i−1∧
j=1

¬Yj ∧ Yi ∧ ¬Xi,⊥

 ∪

 m∧

j=1

¬Yj ,⊥

 .

The size of this partition is 2m + 1, and hence linear in m.
It is uncompressed, because there are m elements that share
sub> andm+1 elements that share sub⊥. The subs already
respect the leaf vtree node labeled with variable Z.

In a second step, each prime above is written as a com-
pressed (X,Y)-partition that respects the left child of the
vtree root. Prime

∧i−1
j=1 ¬Yj ∧ Yi ∧Xi becomes

 Xi,

i−1∧
j=1

¬Yj ∧ Yi

 , (¬Xi,⊥)

 ,

prime
∧i−1

j=1 ¬Yj ∧ Yi ∧ ¬Xi becomes
¬Xi,

i−1∧
j=1

¬Yj ∧ Yi

 , ( Xi,⊥)


and prime

∧m
j=1 ¬Yj becomes

>, m∧
j=1

¬Yj

 .

The sizes of these partitions are bounded by 2.
Finally, we need to represent the above primes as SDDs

over variables X and the subs as SDDs over variables Y.
Since these primes and subs correspond to terms (i.e. con-
junctions of literals), each has a compact SDD represen-
tation, independent of the chosen sub-vtree over variables
X and Y. For example, we can choose a right-linear vtree
over variables X, and similarly for variables Y, leading to
an OBDD representation of each prime and sub, with a size
linear in m for each OBDD. The full SDD for function fam
will then have a size which isO(m2). Recall that this SDD is
uncompressed as some of its decision nodes have elements
with equal subs.

The compressed SDD for this function and vtree is
unique. We now show that its size must be Ω(2m). We
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first observe that the unique, compressed (XY,Z)-partition
of function fam is
 m∨

i=1

i−1∧
j=1

¬Yj

 ∧ Yi ∧Xi,>

 ,

 m∨
i=1

i−1∧
j=1

¬Yj

 ∧ Yi ∧ ¬Xi

 ∨
 m∧
j=1

¬Yj

 ,⊥
 .

Its first prime is the function

f bm(X,Y) =
m∨
i=1

i−1∧
j=1

¬Yj

 ∧ Yi ∧Xi,

which we need to represent as an (X,Y)-partition to respect
left child of the vtree root. However, Xue, Choi, and Dar-
wiche (2012) proved the following.

Lemma 2. The compressed (X,Y)-partition of f bm(X,Y)
has 2m elements.

This becomes clear when looking at the function f bm af-
ter instantiating the X-variables. Each distinct x results in a
unique subfunction f bm(x,Y), and all states x are mutually
exclusive and exhaustive. Therefore,

{(x, f bm(x,Y)) | x instantiates X}

is the unique, compressed (X,Y)-partition of function
f bm(X,Y), and it has 2m elements. Hence, the compressed
SDD must have size Ω(2m).

Theorem 1 has a number of implications, which are sum-
marized in Table 2; see also Darwiche and Marquis (2002).

Theorem 3. The results in Table 2 hold.

First, combining two canonical SDDs (e.g., using the con-
join or disjoin operator) may lead to a canonical SDD whose
size is exponential in the size of inputs. Hence, if we ac-
tivate compression in Algorithm 1, the algorithm may take
exponential time in the worst-case. Second, conditioning a
canonical SDD on a literal may exponentially increase its
size (assuming the result is also canonical). Third, forgetting
a variable (i.e., existentially quantifying it) from a canonical
SDD may exponentially increase its size (again, assuming
that the result is also canonical). The proof of this theorem
is in the full version of this paper.3

Note that these theorems consider the same vtree for both
the compressed and uncompressed SDD. They do not per-
tain to the complexity of compression and Apply when the
vtree is allowed to change. In practice, dynamic vtree search
is performed in between conditioning and Apply, but not
during (vtree search itself calls Apply). Therefore, the set-
ting where the vtree does not change is more accurate to
describe the practical complexity of these operations.

These results may seem discouraging. However, we argue
next that, in practice, working with canonical SDDs is ac-
tually favorable despite the lack of polytime guarantees on
these transformations.

3Available at http://reasoning.cs.ucla.edu/

Notation Transformation SD
D

C
an

on
ic

al
SD

D

CD conditioning
√

•
FO forgetting • •

SFO singleton forgetting
√

•
∧C conjunction • •
∧BC bounded conjunction

√
•

∨C disjunction • •
∨BC bounded disjunction

√
•

¬C negation
√ √

Table 2: Analysis of supported transformations, following
Darwiche and Marquis (2002).

√
means “satisfies”; •means

“does not satisfy”. Satisfaction means the existence of a
polytime algorithm that implements the transformation.

Our proof of Theorem 1 critically depends on the ability
of a vtree to split the variables into arbitrary sets X and Y.
In the full paper, we define a class of bounded vtrees where
such splits are not possible. Moreover, we show that the sub-
set of SDDs for such vtrees do support polytime Apply
even under compression. Right-linear vtrees, which induce
an OBDD, are a special case.

Canonicity or a Polytime Apply?
One has two options when working with SDDs. The first
option is to work with uncompressed SDDs, which are not
canonical, but are supported by a polytime Apply function.
The second option is to work with compressed SDDs, which
are canonical but lose the advantage of a polytime Apply
function. The classical reason for seeking canonicity is that
it leads to a very efficient equivalence test, which takes con-
stant time (both compressed and uncompressed SDDs sup-
port a polytime equivalence test, but the one known for un-
compressed SDDs is not a constant time test). The classical
reason for seeking a polytime Apply function is to enable
bottom-up compilation, that is, compiling a knowledge base
(e.g., CNF or DNF) into an SDD by repeated application of
the Apply function to components of the knowledge base
(e.g., clauses or terms). If our goal is efficient bottom-up
compilation, one may expect that uncompressed SDDs pro-
vide a better alternative. However, our next empirical results
suggest otherwise. Our goal in this section is to shed some
light on this phenomena through some empirical evidence
and then an explanation.

We used the SDD package provided by the Automated
Reasoning Group at UCLA4 in our experiments. The pack-
age works with compressed SDDs, but can be adjusted to
work with uncompressed SDDs as long as dynamic vtree
search is not invoked.5 In our first experiment, we compiled
CNFs from the LGSynth89 benchmarks into the following
(all trimmed):6

4Available at http://reasoning.cs.ucla.edu/sdd/
5Dynamic vtree search requires compressed SDDs as canonic-

ity reduces the search space over SDDs into one over vtrees.
6For a comparison with OBDD, see Choi and Darwiche (2013).
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Name Variables Clauses SDD Size Compilation Time
Compressed Compressed Uncompressed Compressed Compressed Uncompressed

SDDs+s SDDs SDDs SDDs+s SDDs SDDs
C17 17 30 99 171 286 0.00 0.00 0.00

majority 14 35 123 193 384 0.00 0.00 0.00
b1 21 50 166 250 514 0.00 0.00 0.00

cm152a 20 49 149 3,139 18,400 0.01 0.01 0.02
cm82a 25 62 225 363 683 0.01 0.00 0.00
cm151a 44 100 614 1,319 24,360 0.04 0.00 0.04
cm42a 48 110 394 823 276,437 0.03 0.00 0.10
cm138a 50 114 463 890 9,201,336 0.02 0.01 109.05
decod 41 122 471 810 1,212,302 0.04 0.01 1.40
tcon 65 136 596 1,327 618,947 0.05 0.00 0.33

parity 61 135 549 978 2,793 0.02 0.00 0.00
cmb 62 147 980 2,311 81,980 0.12 0.02 0.06

cm163a 68 157 886 1,793 21,202 0.06 0.00 0.02
pcle 66 156 785 1,366 n/a 0.07 0.01 n/a
x2 62 166 785 1,757 12,150,626 0.08 0.02 19.87

cm85a 77 176 1,015 2,098 19,657 0.08 0.01 0.03
cm162a 73 173 907 2,050 153,228 0.08 0.01 0.16
cm150a 84 202 1,603 5,805 17,265,164 0.16 0.06 60.37
pcler8 98 220 1,518 4,335 15,532,667 0.18 0.05 33.32

cu 94 235 1,466 5,789 n/a 0.19 0.10 n/a
pm1 105 245 1,810 3,699 n/a 0.27 0.05 n/a
mux 73 240 1,825 6,517 n/a 0.19 0.09 n/a
cc 115 265 1,451 6,938 n/a 0.22 0.04 n/a

unreg 149 336 3,056 668,531 n/a 0.66 263.06 n/a
ldd 145 414 1,610 2,349 n/a 0.23 0.10 n/a

count 185 425 4,168 51,639 n/a 1.05 0.24 n/a
comp 197 475 2,212 4,500 205,105 0.24 0.01 0.22
f51m 108 511 3,290 6,049 n/a 0.52 0.32 n/a

my adder 212 612 2,793 4,408 35,754 0.24 0.02 0.04
cht 205 650 4,832 13,311 n/a 1.24 0.36 n/a

Table 3: LGSynth89 benchmarks: SDD sizes and compilation times. Compressed SDDs+s refers to compressed SDDs with
dynamic vtree search.

– Compressed SDDs respecting an arbitrary vtree. Dynamic
vtree search is used to minimize the size of the SDD dur-
ing compilation, starting from a balanced vtree.

– Compressed SDDs respecting a fixed balanced vtree.

– Uncompressed SDDs respecting a fixed balanced vtree.

Table 3 shows the corresponding sizes and compilation
times. According to these results, uncompressed SDDs end
up several orders of magnitude larger than the compressed
ones, with or without dynamic vtree search. For the harder
problems, this translates to orders-of-magnitude increase in
compilation times. Often, we cannot even compile the input
without reduction (due to running out of 4GB of memory),
even on relatively easy benchmarks. For the easiest bench-
marks, dynamic vtree search is slower due to the overhead,
but yields smaller compilations. The benefit of vtree search
shows only in harder problems (e.g., “unreg”).

Next, we consider the harder set of ISCAS89 benchmarks.
Of the 17 ISCAS89 benchmarks that compile with com-
pressed SDDs, only one (s27) could be compiled with un-
compressed SDDs (others run out of memory). That bench-
mark has a compressed SDD+s size of 108, a compressed
SDD size of 315, and an uncompressed SDD size of 4,551.

These experiments clearly show the advantage of com-

pressed SDDs over uncompressed ones, even though the lat-
ter supports a polytime Apply function while the former
does not. This begs an explanation and we provide one next
that we back up by additional experimental results.

The benefit of compressed SDDs is canonicity, which
plays a critical role in the performance of the Apply func-
tion. Consider in particular Line 4 of Algorithm 1. The test
Cache(α, β, ◦) 6= nil checks whether SDDs α and β have
been previously combined using the Boolean operator ◦.
Without canonicity, it is possible that we would have com-
bined some α′ and β′ using ◦, where SDD α′ is equivalent
to, but distinct from SDD α (and similarly for β′ and β). In
this case, the cache test would fail, causing Apply to re-
compute the same result again. Worse, the SDD returned by
Apply(α, β, ◦) may be distinct from the SDD returned by
Apply(α′, β′, ◦), even though the two SDDs are equivalent.
This redundancy also happens when α is not equivalent to α′
(and similarly for β and β′), α ◦ β is equivalent to α′ ◦ β′,
but the result returned by Apply(α, β, ◦) is distinct from
the one returned by Apply(α′, β′, ◦).

Two observations are due here. First, this redundancy is
still under control when calling Apply only once: Apply
runs in O(nm) time, where n and m are the sizes of in-
put SDDs. However, this redundancy becomes problematic
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Figure 4: Relative number of recursive Apply calls.

when calling Apply multiple times (as in bottom-up com-
pilation), in which case quadratic performance is no longer
as attractive. For example, if we use Apply to combine k
SDDs of size n each, all we can say is that the output will be
of size O(nk). The second observation is that the previous
redundancy will not occur when working with compressed
SDDs due to canonicity: Two SDDs are equivalent iff they
are represented by the same structure in memory.7

This analysis points to the following conclusion: While
Apply has a quadratic complexity on uncompressed SDDs,
it may have a worse average complexity than Apply on
compressed SDDs. Our next experiment is indeed directed
towards this hypothesis.

For all benchmarks in Table 3 that can be compiled with-
out vtree search, we intercept all non-trivial calls to Apply
(when |α| · |β| > 500) and report the size of the output
|α ◦ β| divided by |α| · |β|. For uncompressed SDDs, we
know that |α ◦ β| = O(|α| · |β|) and that these ratios are
therefore bounded above by some constant. For compressed
SDDs, however, Theorem 3 states that there exists no con-
stant bound.

Figure 3 shows the distribution of these ratios for the two
methods (note the log scale). The number of function calls
is 67,809 for compressed SDDs, vs. 1,626,591 for uncom-
pressed ones. The average ratio is 0.027 for compressed, vs.
0.101 for uncompressed. Contrasting the theoretical bounds,
compressed Apply incurs much smaller blowups than un-
compressed Apply. This is most clear for ratios in the range
[0.48, 0.56], covering 30% of the uncompressed, but only
2% of the compressed calls.

The results are similar when looking at runtime for in-
dividual Apply calls, which we measure by the number

7This is due to the technique of unique nodes from OBDDs; see
UniqueD in Algorithm 1.

of recursive Apply calls r. Figure 4 reports these, again
relative to |α| · |β|. The ratio r/(|α| · |β|) is on average
0.013 for compressed SDDs, vs. 0.034 for uncompressed
ones. These results corroborate our earlier analysis, sug-
gesting that canonicity is quite important for the perfor-
mance of bottom-up compilers as they make repeated calls
to the Apply function. In fact, this can be more important
than a polytime Apply, perhaps contrary to common wis-
dom which seems to emphasize the importance of polytime
Apply in effective bottom-up compilation (e.g., Pipatsri-
sawat and Darwiche (2008)).

Conclusions
We have shown that the Apply function on compressed
SDDs can take exponential time in the worst case, resolv-
ing a question that has been open since SDDs were first in-
troduced. We have also pursued some of the theoretical and
practical implications of this result. On the theoretical side,
we showed that it implies an exponential complexity for var-
ious transformations, such as conditioning and existential
quantification. On the practical side, we argued empirically
that working with compressed SDDs remains favorable, de-
spite the polytime complexity of the Apply function on un-
compressed SDDs. The canonicity of compressed SDDs, we
argued, is more valuable for bottom-up compilation than a
polytime Apply due to its role in facilitating caching and
dynamic vtree search. Our findings appear contrary to some
of the common wisdom on the relationship between bottom-
up compilation, canonicity and the complexity of the Apply
function.
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