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Abstract

Teams of mobile robots often need to divide up subtasks ef-
ficiently. In spatial domains, a key criterion for doing so may
depend on distances between robots and the subtasks’ loca-
tions. This paper considers a specific such criterion, namely
how to assign interchangeable robots, represented as point
masses, to a set of target goal locations within an open two di-
mensional space such that the makespan (time for all robots
to reach their target locations) is minimized while also pre-
venting collisions among robots. We present scaleable (com-
putable in polynomial time) role assignment algorithms that
we classify as being SCRAM (Scalable Collision-avoiding
Role Assignment with Minimal-makespan). SCRAM role
assignment algorithms use a graph theoretic approach to
map agents to target goal locations such that our objectives
for both minimizing the makespan and avoiding agent col-
lisions are met. A system using SCRAM role assignment
was originally designed to allow for decentralized coordina-
tion among physically realistic simulated humanoid soccer
playing robots in the partially observable, non-deterministic,
noisy, dynamic, and limited communication setting of the
RoboCup 3D simulation league. In its current form, SCRAM
role assignment generalizes well to many realistic and real-
world multiagent systems, and scales to thousands of agents.

1 Introduction
Coordinated movement among mobile agents is an impor-
tant research area with many applications such as search and
rescue and warehouse operations. Research within this space
spans multiple topics including role assignment (deciding
which agent moves to which position or role) (Chaimowicz,
Campos, and Kumar 2002; Michael et al. 2008; Ji, Azuma,
and Egerstedt 2006), path planning (paths agents take to as-
signed positions) (Mellinger, Kushleyev, and Kumar 2012;
Sharon et al. 2012), and collision avoidance (Hokayem,
Spong, and Siljak 2007; Richards and How 2002).

The work in this paper focuses on role assign-
ment—specifically tackling the problem of assigning homo-
geneous mobile agents to move to a set of fixed target posi-
tions such that an agent is present at every target position in
as little time as possible. Path planning and collision avoid-
ance issues are addressed during role assignment, as map-
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pings of agents to target positions operate under the con-
straint that no agents collide.

Previous work on assigning agents to target positions has
focused on minimizing the sum of distances all agents must
travel which is the well known assignment problem (Pentico
2007). Our work differs as we minimize the makespan (time
for all agents to reach goal positions) instead of the sum of
distances traveled. Minimizing the makespan is a decisive
factor in performance when agents are moving to target po-
sitions to complete a shared task where all agents must be in
place before the task can be completed and/or started. Such
tasks include those requiring agents be synchronized when
they start jobs at their target positions (e.g. mobile robots
assuming necessary positions on an assembly line) and sce-
narios for which the bottleneck is the time it takes for the last
agent to get to its target position (e.g. warehouse robots de-
livering items for an order to be shipped and mobile robots
used as pixels to display images (Alonso-Mora et al. 2012)).

We refer to our role assignment as SCRAM (Scal-
able Collision-avoiding Role Assignment with Minimal-
makespan). It provides a collision free mapping of agents
to target positions, minimizes the makespan, and scales to
thousands of agents. Primary contributions of this paper in-
clude a complete specification of SCRAM, the presentation
of role assignment functions for assigning agents to target
positions, algorithms (both new and existing) for computing
the role assignment functions,1 as well as a thorough theoret-
ical and empirical analysis of the role assignment problem,
with application to the RoboCup robot soccer domain and
potentially far beyond.

The remainder of the paper is organized as follows. Sec-
tion 2 provides a formulation of the role assignment problem
we are solving. Two role assignment functions, as well as
algorithms implementing them, are presented in Section 3,
with an empirical evaluation of them given in Section 4. Sec-
tion 5 provides case studies of positioning systems incorpo-
rating SCRAM role assignment used within the RoboCup
2D and 3D simulation domains, Section 6 discusses related
work and extensions, and Section 7 concludes.

1Videos of SCRAM role assignment in action, as well as
C++ implementations of the role assignment algorithms, can be
found at http://www.cs.utexas.edu/∼AustinVilla/sim/3dsimulation/
AustinVilla3DSimulationFiles/2013/html/scram.html
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Figure 1: Role assignment problem where we want to as-
sign agents (circles) {a1,...,a6} to target positions (crosses)
{p1,...,p6}. Dashed arrows show solution.

2 Role Assignment Problem
Let there be n homogeneous mobile agents with current po-
sitions A := {a1, ..., an}, and we want to assign the agents
to move to n specified target goal positions or roles P :=
{p1, ..., pn} such that the time for agents to have reached
every goal position is minimized under the constraint that
no agents collide with each other. Figure 1 illustrates an
example problem with six agents and target positions. This
problem can be thought of as finding a perfect matching M∗

within the set of perfect matchings M of a weighted bipar-
tite graph G := (A,P,E) that meets the above criteria with
the weight for each edge in E being the Euclidean distance
between associated agent and target positions.

Similar to path planning work by Broucke (2003), we
model agents as point masses with zero width. Additionally,
we make two more assumptions. First, no two agents and
no two target positions occupy the same position. Second,
we assume that all agents move toward fixed target positions
along a straight line at the same constant speed. While the
assumptions may not hold in practice, they are necessary for
theoretical analysis of the role assignment problem and are
often often good enough approximations, as corroborated by
our successful empirical results in RoboCup domains pre-
sented in Section 5. We mention a potential extension of
our work in Section 6 that includes allowing for non-point
masses as well as obstacles in the environment.

We call a role assignment CM valid (Collision-avoiding
with Minimal-makespan) if it satisfies two properties:

1. Minimizing longest distance - M∗ minimizes the longest
distance from an agent to target, with respect to all possi-
ble mappings. A valid mapping for the problem shown in
Figure 1 would not include a2 → p5 as that is the longest
distance between an agent and target. Instead a valid as-
signment includes a1 → p3 which is the minimal longest
distance any agent travels across all possible assignments.

2. Avoiding collisions - agents do not collide with each other
as they move to their assigned positions. In Figure 1 a
mapping including both a1 → p1 and a2 → p2 would be
invalid as it would cause agents a1 and a2 to collide.

A third desirable property, although not necessary for a
role assignment function f to be CM valid, is the following:

3. Dynamically consistent - Given a fixed set of target po-
sitions, if f outputs a mapping M of agents to targets
at time T , then f continues to output M for every time
t > T as the agents move to the targets specified by M .

Figure 2: Lowest lexicographical cost (shown with ar-
rows) to highest cost ordering of mappings from agents
(A1,A2,A3) to role positions (P1,P2,P3). Each row repre-
sents the cost of a single mapping.

1:
√
2 (A2→P2),

√
2 (A3→P3), 1 (A1→P1)

2: 2 (A1→P2),
√
2 (A3→P3), 1 (A2→P1)

3:
√
5 (A2→P3), 1 (A1→P1), 1 (A3→P2)

4:
√
5 (A2→P3), 2 (A1→P2),

√
2 (A3→P1)

5: 3 (A1→P3), 1 (A2→P1), 1 (A3→P2)
6: 3 (A1→P3),

√
2 (A2→P2),

√
2 (A3→P1)

The first two properties come directly from the definition
of the role assignment problem. The third property guaran-
tees that once a role assignment function f outputs a map-
ping, f will always output that same mapping as long as
there is no change in the target positions. This guarantee is
desirable as otherwise agents might unduly thrash between
roles thus impeding progress. In the following section we
construct CM valid role assignment functions.

3 Role Assignment Functions
The following subsections present two CM valid role assign-
ment functions for the role assignment problem detailed in
Section 2. Algorithmic implementations of the functions and
analysis of their time and space complexities are also given.

3.1 Minimum Maximal Distance Recursive
(MMDR) Function
One potential role assignment function is to find a map-
ping of agents to target positions which recursively mini-
mizes the maximum distance that any agent travels. We re-
fer to this as this the Minimum Maximal Distance Recur-
sive (MMDR) function. It is also known as the lexicographic
bottleneck assignment problem (Pentico 2007). In previous
work we presented an exponential time dynamic program-
ming implementation of MMDR (MacAlpine, Barrera, and
Stone 2013). In this section we first analyze properties of
MMDR, and then identify efficient polynomial time algo-
rithms to compute MMDR.

Let M be the set of all one-to-one mappings between
agents and roles. If there are n agents and n target role posi-
tions, then there are n! possible mappings M ∈ M. Let the
cost of a mapping M be the n-tuple of distances from each
agent to its target, sorted in decreasing order. We can then
sort all the n! possible mappings based on their costs, where
comparing two costs is done lexicographically. Sorted costs
of mappings for a small example are shown in Figure 2.

Denote the role assignment function that always out-
puts the lexicographically smallest cost mapping as MMDR.
Here we provide an informal proof sketch that MMDR is
CM valid and is also dynamically consistent; we provide a
longer, more thorough derivation in an online appendix.2

2http://www.cs.utexas.edu/∼AustinVilla/sim/3dsimulation/
AustinVilla3DSimulationFiles/2013/files/scram/scram-
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Theorem 1. MMDR is CM valid & dynamically consistent.
MMDR minimizes the longest distance (Property 1) as

the lexicographical ordering of distance tuples sorted in de-
scending order ensures this. If two agents in a mapping are
to collide (Property 2) it can be shown, through the trian-
gle inequality, that MMDR will find a lower cost mapping
as switching the two agents’ targets reduces the maximum
distance either must travel. Finally, as we assume all agents
move toward their targets at the same constant rate, the dis-
tance between an agent and any target will not decrease any
faster than the distance between any agent and the target that
agent is assigned to. This observation provides dynamic con-
sistency (Property 3) by preserving the lowest lexicographi-
cal cost ordering of a MMDR mapping across all timesteps.

O(n5) Polynomial Time Algorithm for MMDR We can
compute the MMDR role assignment function in polynomial
time by transforming MMDR into the assignment problem
(finding a perfect matching in a bipartite graph that mini-
mizes the sum of edge weights) which is solvable by the
Hungarian algorithm (Kuhn 1955) in O(n3) time.
Lemma 1. Denote Wn := {w0, ..., wn} where wi := 2i.
Then ∀W ∈ P (Wn−1) : wn >

∑
W .

In order to transform MMDR into the assignment problem
we modify the weights of the edges of our bipartite graph to
be a set of values such that the weight of any edge e is greater
than the sum of weights of all edges with weight values less
than that of e. A key insight into this transformation is ex-
pressed in Lemma 1. By sorting all edges in ascending order
by distance, and then relabeling edge weights to be the value
2i where i is the index of an edge in this sorted list, the sum
of all edge weights of shorter distance edges will be less than
any sum of edge weights with a longer edge. Solutions to the
assignment problem return lowest cost MMDR mappings as
the sum of modified weights of any mapping with a higher
cost is greater than that of a lower cost mapping.

Algorithm 1 gives a polynomial time solution for com-
puting MMDR. First, weights are sorted in ascending order
of distance (line 1). Next, edge weights are transformed into
appropriate values for the assignment problem as expressed
in Lemma 1 (line 8). Finally, the re-weighted edges are
given as input into the Hungarian algorithm which returns
the lowest cost MMDR mapping (line 10). Time complex-
ity is dominated by the O(n3) Hungarian algorithm. Note
that our transformed edge weights, represented as bit vectors
with the ith bit of a 2i value turned on, are of size n2. The
Hungarian algorithm must do comparisons of these weights
and thus the time complexity of Algorithm 1 is O(n5). As
our implementation of the Hungarian algorithm requires us
to store length n lists of size n2 transformed weights, Algo-
rithm 1 has a space complexity of O(n3).

There exists previous work in modifying edge weights to
transform the lexicographic bottleneck assignment problem
into the assignment problem. For cases in which there are
n2 edges, with each having a unique cost, a higher complex-
ity O(n5logn) algorithm exists (Burkard and Rendl 1991).
Work by Croce et al. (1999) changes edge weights into

appendix.pdf

Algorithm 1 MMDR O(n5) Polynomial Time Impl.
Input:

Agents := {a1, ..., an}; Positions := {p1, ..., pn}
Edges := {a1p1, a1p2, ..., anpn}; |aipj | := euclideanDist(ai,pj )

1: edgesSorted := sortAscendingDist(Edges)
2: lastDistance := −1
3: rank, currentIndex := 0
4: for each e ∈ edgesSorted do
5: if |e| > lastDistance then
6: rank := currentIndex
7: lastDistance := |e|
8: |e| := 2rank

9: currentIndex := currentIndex + 1
10: return hungarianAlg(edgesSorted)

weight vectors of length n before solving the assignment
problem and has the same time complexity as our method of
O(n5). However, on modern computer architectures Algo-
rithm 1 is more efficient as we represent edge weights as bit
vectors instead of vectors of integers. The compact format of
bit vectors allows for integer operations to be performed on
w bits in parallel where w is the size of a processor’s maxi-
mum word length. This parallelism reduces the running time
by a factor of w (e.g. a factor of 64 on a 64-bit architecture).

O(n4) Polynomial Time Algorithm for MMDR Another
approach to compute MMDR, presented by Sokkalingam
and Aneja (1998), and detailed in Algorithm 2, alternates
between solving the bottleneck assignment problem (Pen-
tico 2007) (finding the smallest maximum edge in a perfect
matching) and a 0-1 cost version of the assignment problem.

Algorithm 2 MMDR O(n4) Polynomial Time Impl.
Input:

Agents := {a1, ..., an}; Positions := {p1, ..., pn}
Edges := {−−→a1p1,

−−→a1p2, ...,
−−−→anpn}; |−−→aipj | := euclideanDist(ai,pj )

1: function GETTIGHTEDGES(poten)
2: return ea,p ∈ Edges, s.t. poten(a) + poten(p) = cost(ea,p)

3: numEdgesLeft := n
4: loop
5: minLongestEdge := getMinimalMaxEdgeInPerfectMatching(Edges)

6: ∀e ∈ Edges

{|e| < |minLongestEdge| : cost(e) := 0
|e| = |minLongestEdge| : cost(e) := 1
|e| > |minLongestEdge| : cost(e) :=∞

7: {matching, poten} := hungarianAlgWithEdgeCosts(Edges)
8: numLongestEdges :=

∑
e∈matching

cost(e)

9: numEdgesLeft := numEdgesLeft− numLongestEdges
10: if numEdgesLeft = 0 then
11: return matching
12: Edges := getTightEdges(poten)
13: ∀e ∈ Edges, s.t. |e| = |minLongestEdge| : |e| := −1

At every iteration of Algorithm 2 solving the bottleneck
assignment problem (line 5 which is implemented by Al-
gorithm 3 discussed later in this section) returns the cur-
rent largest edge weight value in the MMDR mapping. Next
solving the assignment problem using the Hungarian algo-
rithm (line 7), with 0-1 edge costs as specified in line 6,
returns a mapping whose sum of costs (line 8) reveals the
number of edges of this weight in the MMDR mapping.

At the same time the Hungarian algorithm naturally
computes a potential function poten over the set of ver-
tices in the bipartite graph such that ∀ea,p ∈ Edges :
poten(a) + poten(p) <= cost(ea,p). It is revealed by
Sokkalingam and Aneja (1998) that all perfect matchings
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of the subset of tight edges (defined as edges for which
poten(a) + poten(p) = cost(ea,p)) contain exactly num-
LongestEdges edges of length |minLongestEdge|. Given this
knowledge we remove all non-tight edges from consider-
ation in the MMDR mapping (line 12). The reduction to
tight edges, and reducing the weight of edges of length
|minLongestEdge| (line 13), results in subsequent solutions
of the bottleneck assignment problem revealing the next
largest edge weight value in the MMDR mapping as every
perfect matching will have exactly numLongestEdges edges
of length |minLongestEdge|. We learn the weight of num-
LongestEdges edges in the MMDR mapping during every
iteration of Algorithm 2, and after determining the weights
for n edges, the solution returned by the Hungarian algo-
rithm is the MMDR mapping (line 11).

Algorithm 3 Minimal-maximum Edge Perfect Matching
Input:

Agents := {a1, ..., an}; Positions := {p1, ..., pn}
Edges := {−−→a1p1,

−−→a1p2, ...,
−−−→anpn}; |−−→aipj | := euclideanDist(ai,pj )

1: matchedAgents, allowedEdges := {}

2: function FLOOD(curNode, prevNode)
3: curNode.visited := true
4: curNode.previous := prevNode
5: if curNode ∈ Positions and

6 ∃ e ∈ allowedEdges, s.t. e.start = curNode then
6: return currentNode
7: for each e ∈ allowedEdges, s.t. (e.start = curNode and

not e.end.visited) do
8: val := flood(e.end, e.start)
9: if val 6= ∅ then
10: return val
11: return ∅

12: function RESETFLOOD
13: for each node ∈ {Agents ∪ Positions} do
14: node.visited := false
15: node.previous := ∅
16: for each a ∈ {Agents \ matchedAgents} do
17: flood(a,∅)

18: function REVERSEPATH(node)
19: while node.previous 6= ∅ do
20: reverseEdgeDirection(

−−−−−−−−−−−→
node, node.previous)

21: node := node.previous
22: return node

23: edgeQ := sortAscendingDist(Edges)
24: longestEdge := ∅
25: for match := 1 to n do
26: resetFlood()
27: matchedPosition := ∅
28: while matchedPosition = ∅ do
29: longestEdge := edgeQ.pop()
30: allowedEdges← longestEdge
31: matchedPosition := flood(longestEdge.end,

longestEdge.start)
32: matchedAgent := reversePath(matchedPosition)
33: matchedAgents← matchedAgent
34: return longestEdge

Algorithm 3 finds the minimal maximum edge in a perfect
matching by incrementally adding edges to the graph in or-
der of increasing distance from the list of edges sorted in as-
cending order of weight (line 23). It interleaves adding edges
(line 30) with running the Ford-Fulkerson algorithm (Ford
and Fulkerson 2010) for finding a maximum cardinality
(number of edges) matching. Ford-Fulkerson (implemented
with the flood, resetFlood, and reversePath func-
tions) works by using a breath-first search to find augment-

ing paths from an agent to a target.
Algorithm 3 starts with a graph with the empty set of

edges allowedEdges (line 1), and whenever the breadth-first
search of the Ford-Fulkerson algorithm is unable to find a
path from an agent to a target, we add an edge to the graph
(line 30) and continue the breadth-first search. At the point
when we find n paths from agents to target, the last edge we
added is the minimal maximum edge for a perfect matching.

An important factor for performance in Algorithm 3 is
that we can pick up the Ford-Fulkerson breadth-first search
where it left off after adding an edge as any nodes previ-
ously reachable in the graph remain reachable. Because we
do not lose state in each breadth-first search, each breadth-
first search takes O(E) time. Thus the total time for running
Algorithm 3 to find a perfect matching with the minimum
maximal edge length is O(nE) which is less than the O(n3)
time complexity of the Hungarian algorithm.

We determine at least one new minimal maximum edge
in a perfect matching during every iteration of the loop in
Algorithm 2. Thus no more than n instances of both the
Hungarian algorithm and Algorithm 3 need to be computed.
As the O(n3) time complexity of the Hungarian algorithm
dominates Algorithm 2’s loop, the time complexity of Algo-
rithm 2 is O(n4). The breadth-first search of Ford-Fulkerson
in Algorithm 3 gives a space complexity of O(n2).

3.2 Minimum Maximal Distance + Minimum
Sum Distance2 (MMD+MSD2) Function

Another role assignment function to map agents to target
goal positions is one which minimizes the maximum dis-
tance any agent has to travel (but not recursively as done by
MMDR in Section 3.1), after which it minimizes the sum
of distances squared that all agents travel. We call this the
Minimum Maximal Distance + Minimum Sum Distance2
(MMD+MSD2) role assignment function. Specifically we
want to find a perfect matching M∗ such that

M′′ := {X ∈M | ‖X‖∞ = min
M∈M

(‖M‖∞)} (1)

M∗ := argmin
M∈M′′

(‖M‖22) (2)

Here we provide an informal proof sketch that
MMD+MSD2 is a CM valid role assignment; we provide
a longer, more thorough derivation in an online appendix.2

Theorem 2. MMD+MSD2 is CM valid.
By only considering the set of perfect matchings M′′ with

minimal longest edges (equation 1) we are minimizing the
longest distance any agent must travel (Property 1). If two
agents in a mapping are to collide (Property 2), it can be
shown, through the triangle inequality, that MMD+MSD2

will find a lower cost mapping as switching the two agents’
targets reduces, but never increases, the distance that one
or both must travel thereby reducing the sum of distances
squared (equation 2) and the longest distance (equation 1).

Unlike MMDR, MMD+MSD2 is not dynamically consis-
tent because distances squared do not decrease at a constant
rate, but in fact decrease at faster rates for larger distances,
as agents move toward targets (e.g. the difference in distance
squared as an agent moves from 5 meters to 4 meters from
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Table 1: Time and space complexities of algorithms.
SCRAM algorithms are show in bold.

Algorithm Time Complexity Space Complexity
MMD+MSD2 O(n3) O(n2)
MMDR O(n4) O(n4) O(n2)
MMDR O(n5) O(n5) O(n3)
MMDR dyna O(n22(n−1)) O(n

( n
n/2

)
)

brute force O(n!n) O(n)

Table 2: Average running time (ms) of algorithms for val-
ues of n on an Intel(R) Xeon(R) CPU E31270 @ 3.40GHz.
SCRAM algorithms are show in bold.

Algorithm n = 10 n = 20 n = 100 n = 300 n = 103 n = 104

MMD+MSD2 0.016 0.062 1.82 21.2 351.3 115006
MMDR O(n4) 0.049 0.262 17.95 403.0 14483 —
MMDR O(n5) 0.022 0.214 306.4 40502 — —
MMDR dyn. 0.555 2040 — — — —
brute force 317.5 — — — — —

a target (52 − 42 = 9) is greater than the difference mov-
ing from 4 meters to 3 meters (42 − 32 = 5)). This lack of
a constant rate of decrease for distances squared allows for
squared distances between an agent and targets it is not as-
signed to travel toward to decrease faster than the squared
distance between an agent and the target it is assigned to.
The sum of distances squared for non-MMD+MSD2 map-
pings can thus become less than the current MMD+MSD2

mapping as agents travel to their targets. An example of
where MMD+MSD2 is shown to not be dynamically con-
sistent is provided in an online appendix.2

Polynomial Time Algorithm for MMD+MSD2 Algo-
rithm 4 implements MMD+MSD2 by first finding a perfect
matching with the smallest maximum edge (line 1) which is
computed by Algorithm 3 presented earlier in Section 3.1.
We then create a set of minimalEdges consisting of all edges
with length less than or equal to the longest edge in our
perfect matching (line 2) and use it as input to the Hungar-
ian algorithm (line 3). Note that edge weights are their dis-
tances squared and thus the Hungarian algorithm minimizes
the sum of distances squared. As all edges greater in length
than the minimal maximum edge in a perfect matching are
removed before running the Hungarian algorithm, the maxi-
mum distance any agent travels is also minimized.

Algorithm 4 MMD+MSD2 O(n3) Polynomial Time Impl.
Input:

Agents := {a1, ..., an}; Positions := {p1, ..., pn}
Edges := {−−→a1p1,

−−→a1p2, ...,
−−−→anpn}; |−−→aipj | := euclideanDist(ai,pj )2

1: longestEdge := getMinimalMaxEdgeInPerfectMatching(Edges)
2: minimalEdges := e ∈ Edges, s.t. |e| ≤ |longestEdge|
3: return hungarianAlg(minimalEdges)

The O(n3) time complexity of the Hungarian algorithm
dominates Algorithm 3 and thus the time complexity of
Algorithm 4 is O(n3). The breadth-first search of Ford-
Fulkerson in Algorithm 3 gives a space complexity of O(n2).

4 Assign. Function & Algorithm Analysis
To evaluate role assignment algorithms, we generated map-
ping scenarios for n agents and targets. Both agents and tar-
gets were assigned random integer value positions on a two
dimensional square grid with sides of length n2. Table 2

Table 3: Role assignment function properties from Section 2.
CM valid functions are shown in bold.

Function Min. Makespan No Collisions Dyn. Consistent
MMD+MSD2 Yes Yes No

MMDR Yes Yes Yes
MSD2 No Yes No
MSD No No No

Random No No No
Greedy No No No

Table 4: Avg. makespan, avg. distance, and distance std. dev.
over 106 assignments of 10 agents to targets on a 1002 grid.
CM valid role assignment functions are shown in bold.

Function Avg. Makespan Avg. Distance Distance StdDev
MMD+MSD2 45.79 27.38 10.00

MMDR 45.79 28.02 9.30
MSD2 48.42 26.33 10.38
MSD 55.63 25.86 12.67

Random 90.78 52.14 19.38
Greedy 81.73 28.66 18.95

shows the average run-time of the algorithms for different
values of n. The slowest was the brute force method evaluat-
ing all n! possible mappings. The fastest was MMD+MSD2

which has the lowest time complexity and a relatively low
space complexity as shown in Table 1. MMD+MSD2 took
less than half a second for 1000 agents and less than two
minutes for 10,000 agents. The polynomial time implemen-
tations of MMDR scale well to 100s of agents and are
much faster than the dynamic programming implementation
of MMDR. The O(n4) implementation of MMDR scales
to 1000 agents and is faster than the O(n5) implementa-
tion except for smaller (n <= 20) inputs (our use case for
RoboCup) where it takes longer due to the extra computa-
tions needed in its main loop.

In Table 4 we compare MMDR and MMD+MSD2 against
the following role assignment functions when assigning 10
agents to targets on a 100 X 100 grid.

MSD Minimize sum of distances between agents and targets.
MSD2 Minimize sum of distances2 between agents and targets.
Greedy Assign agents to targets in order of shortest distances.
Random Random assignment of agents to targets.

Both MMDR and MMD+MSD2 have the same lowest av-
erage makespan for they are defined so as to minimize the
makespan. As can be seen in Table 3 none of the other func-
tions are CM valid as they fail to minimize the makespan
(further analysis of how other functions fail to hold proper-
ties is provided in an online appendix2). MMDR is the only
dynamically consistent function of the ones we compare.

Average distance is not something CM valid role assign-
ment functions explicitly attempt to minimize. However, this
metric can be useful if agents exhaust a shared resource such
as fuel when moving. MSD by definition minimizes the av-
erage distance and thus represents the best possible value for
this metric. MMDR and MMD+MSD2 both have average
distance values close to that of MSD. A third metric is dis-
tance standard deviation which is useful if there is a prefer-
ence for having agents travel similar distances (e.g. wanting
to have equal wear and tear across robots). MMDR has the
best value for this with MMD+MSD2 being second. MMDR
and MMD+MSD2 do well across all metrics in Table 4.
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Table 5: Avg. goal difference (std. error) over 1000 games
when playing against the top three teams at RoboCup 2013.
CM valid role assignment functions are shown in bold.

Function 1. Apollo3D 2. AustinVilla 3. FCPortugal
MMDR 0.710 (0.027) 0.007 (0.013) 0.469 (0.024)

MMD+MSD2 0.698 (0.027) 0 (self) 0.499 (0.024)
Static 0.604 (0.027) -0.012 (0.016) 0.356 (0.024)

Greedy 0.530 (0.028) -0.044 (0.016) 0.315 (0.024)
Greedy Offense 0.670 (0.027) -0.039 (0.016) 0.435 (0.024)

5 RoboCup Case Studies
RoboCup robot soccer has served as an excellent research
domain for autonomous agents and multiagent systems over
the past decade and a half. In this domain, teams of au-
tonomous robots compete with each other in complex, real-
time, noisy and dynamic environments. As RoboCup ne-
cessitates that agents coordinate movement as a team to be
successful, it provides an ideal testbed for SCRAM. In the
following sections, we provide case studies and analysis of
SCRAM employed in two different RoboCup leagues.

5.1 RoboCup 3D Simulation
The RoboCup 3D simulation environment is based on
SimSpark, a generic physical multiagent system simulator.
SimSpark uses the Open Dynamics Engine (ODE) library
for its realistic simulation of rigid body dynamics. Agents in
the simulation are modeled after the Aldebaran Nao robot.
Visual information about the environment is given to agents
through noisy measurements of the distance and angle to ob-
jects within a restricted view cone (120◦). Games consist of
two five minute halves of 11vs11 teams playing soccer.

In UT Austin Villa’s positioning system players’ positions
are determined in three steps. First, a full team formation is
computed using Delaunay triangulation (Akiyama and Noda
2008) based on set offset positions from the ball (formations
used are provided in (MacAlpine et al. 2013)). Second, each
player computes an assignment of players to positions in this
formation according to its own view of the world using the
MMD+MSD2 role assignment function. An important fac-
tor in any SCRAM-based system is that agents have reason-
ably accurate knowledge of where all agents are currently
located. We use agent communication to share and synchro-
nize agent world models as discussed in (MacAlpine, Bar-
rera, and Stone 2013). For the third and final step a vot-
ing coordination mechanism detailed in (MacAlpine, Bar-
rera, and Stone 2013) synchronizes players’ computed as-
signments.

A SCRAM positioning system using MMDR was a
key component in winning the RoboCup 3D simulation
world championship in 2011 (MacAlpine et al. 2012),
2012 (MacAlpine et al. 2013), and 2014 (MacAlpine et al.
2015). SCRAM using MMD+MSD2 was also an important
factor in achieving 2nd place in 2013. In Table 5 we show
our team’s performance against the top three teams at the
2013 RoboCup competition using both SCRAM and the fol-
lowing alternative assignment functions.
Static Role assignments fixed based on player’s uniform number.
Greedy Assign agents to targets in order of shortest distances.
Greedy Offense Similar to previously reported work in the

RoboCup 3D simulation domain (Chen and Chen 2011), assign
closest agents to roles in order of most offensive positions.

The CM valid role assignment functions are superior to the
other functions as they perform better against all opponents.

5.2 RoboCup 2D Simulation
As one of the oldest RoboCup leagues, 2D simulation soccer
has been well explored, both in competition and in research.
The domain consists of two teams of eleven autonomous
agents playing soccer on a simulated 2D soccer field. Agents
receive sensory information, including the position of the
ball and other agents, from a central game server. After pro-
cessing this information, agents then tell the server what ac-
tions they want to take such as dashing, kicking, and turning.

To test SCRAM in the RoboCup 2D simulation league
we used the Agent2D (Akiyama 2010) base code release
which provides a fully functional soccer playing agent team.
Agent2D includes default formation files using Delaunay tri-
angulation (Akiyama and Noda 2008) to specify agent role
positions. In the Agent2D base code, agents are statically
assigned to roles based on their uniform numbers. Agent2D
teams only modified to use the MMDR and MMD+MSD2

role assignment functions beat the default Agent2D team by
an average goal difference of 0.118 (+/- 0.025) and 0.105
(+/- 0.024) respectively across 10,000 games.

New at RoboCup 2013 was the addition of a drop-in
player challenge where agent teams consisting of different
players randomly chosen from participants in the competi-
tion play against each other. An important aspect of the chal-
lenge is for an agent to be able to adapt to the behaviors of its
teammates: for instance if most of an agent’s teammates are
assuming offensive roles, that agent might better serve the
team by taking on a defensive role. SCRAM implicitly al-
lows for this adaptation to occur as it naturally chooses roles
for an agent that do not currently have another agent nearby.

Using agents from the drop-in player challenge, we
played 2800 drop-in player matches with both the default
version of Agent2D and a version of Agent2D with SCRAM
(MMD+MSD2). Empirically we found most agents used
static role assignment thus underscoring the need for adapt-
ing to teammates’ fixed roles. Adding SCRAM to Agent2D
improved performance in the challenge from an average goal
difference of 1.473 (+/-0.157) with static role assignments to
1.659 (+/-0.153) with SCRAM. This result shows promise
for SCRAM adapting to unknown teammates’ behaviors.

6 Related Work and Extensions
While there exists previous work on role assignment in
RoboCup simulated soccer domains (Lau et al. 2009; Stone
and Veloso 1999; Chen and Chen 2011), it has not focused
on collision avoidance or formation completion time.

Work very related to ours (Turpin, Michael, and Kumar
2014) assigns interchangeable robots to goal positions where
robots have non-point masses and exist in environments con-
taining obstacles. Additional work by Turpin et al. (2014)
suggests using the Hungarian algorithm to minimize the
sum of distances raised to large powers as a proxy for
MMDR, however such an approach is not guaranteed to re-
turn the same result as MMDR and minimize the makespan.
We believe the above work could be augmented with the

2101



MMD+MSD2 role assignment algorithm to allow for min-
imizing the makespan of robots traveling in cluttered envi-
ronments in O(n3) time.

Another possible extension to SCRAM includes role as-
signment problems where there are unequal numbers of
agents and targets. To extend SCRAM to the case when there
are m agents and n target locations, and m > n, is trivial.
All that must done is to add m − n dummy target locations
with all agents being assigned a distance of 0 to each of the
dummy locations. As the Hungarian algorithm minimizes
the sum of edge weights, the excess m − n agents (those
not in a minimum makespan matching to real targets) are
assigned to dummy locations. Conversely, if there are more
target locations than agents (n > m), and we desire agents
to travel from one target to another such that every target
location is eventually visited by an agent, role assignment
becomes a vehicle routing problem (Toth and Vigo 2001).

7 Summary and Discussion
This paper introduces SCRAM role assignment algorithms
for formational positioning of mobile agents, and provides
theoretical and empirical analysis of the role assignment
problem. SCRAM minimizes the makespan for agents to
reach target goal positions while also avoiding collisions
among agents. As role assignment algorithms run in poly-
nomial time SCRAM scales to thousands of agents.

Our ongoing research agenda includes extending SCRAM
to heterogeneous agents for cases such as agent task special-
ization, where agents are restricted to only certain subsets of
role positions, as well as agents moving at varying speeds.
Additional work includes looking into decentralized ways of
computing SCRAM role assignment algorithms.
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