
Distributed Multiplicative Weights Methods for DCOP

Daisuke Hatano
National Institute of Informatics

JST, ERATO, Kawarabayashi Large Graph Project
hatano@nii.ac.jp

Yuichi Yoshida
National Institute of Informatics, and

Preferred Infrastructure, Inc.
yyoshida@nii.ac.jp

Abstract

We introduce a new framework for solving distributed con-
straint optimization problems that extend the domain of each
variable into a simplex. We propose two methods for search-
ing the extended domain for good assignments. The first one
relaxes the problem using linear programming, finds the op-
timum LP solution, and rounds it to an assignment. The sec-
ond one plays a cost-minimization game, finds a certain kind
of equilibrium, and rounds it to an assignment. Both methods
are realized by performing the multiplicative weights method
in a distributed manner. We experimentally demonstrate that
our methods have good scalability, and in particular, the sec-
ond method outperforms existing algorithms in terms of so-
lution quality and efficiency.

Introduction
In the wake of the computational sustainability project, the
importance of distributed cooperative problem solving to
deal with enormous sizes such as a smart grid is rapidly in-
creasing in AI communities. The distributed constraint op-
timization problem (DCOP for short) is arguably the most
studied problem in this setting, where the goal is to find an
assignment that minimizes the total sum of costs incurred
by (local) cost functions. Since it takes a prohibitively long
time to exactly solve DCOP, we need to resort to incom-
plete algorithms, and a plethora of incomplete algorithms
have been proposed in the literature, such as local search
based algorithms (Maheswaran, Pearce, and Tambe 2004;
Zhang et al. 2005), inference based algorithms (Farinelli
et al. 2008), graph based algorithms (Bowring et al. 2008;
Kiekintveld et al. 2010), divide-and-coordinate based algo-
rithms (Vinyals, Rodriguez-Aguilar, and Cerquides 2010;
Hatano and Hirayama 2013), and sampling based algorithms
(Ottens, Dimitrakakis, and Faltings 2012; Nguyen, Yeoh,
and Lau 2013).

In this paper, we present a novel approach for DCOP,
in which the finite domain of a variable is extended to
the d-dimensional simplex, where d is the size of the do-
main. We propose two methods that search the extended do-
main for good assignments, both based on the multiplica-
tive weights method, which is a versatile algorithm that can

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

be used in machine learning, optimization, and game the-
ory (see (Arora, Hazan, and Kale 2012; Schapire 2003) for
surveys).

The first method, called DMW-LP (distributed multiplica-
tive weights method for solving linear programming) uti-
lizes linear programming (LP for short) relaxations. In this
method, the agents cooperatively solve the LP relaxation of
the given DCOP instance, and round the obtained LP solu-
tion to integer values. Though LPs are convex optimization
problems and they are known to be solvable using the multi-
plicative weights method, we need to modify the algorithm
so that it runs in a distributed manner. We prove that our
method converges to an optimal LP solution. As DMW-LP
computes the LP value, we can use this value as a lower
bound on the (integer) optimal value.

The second method, called DMW-Game (distributed mul-
tiplicative weights method for solving games) plays a cost-
minimization game to solve DCOP. In this game, each player
associated with a variable keeps providing probability dis-
tributions over its domain, and tries to minimize the regret,
which is the average additional cost incurred by the proba-
bility distributions against the strategy of outputting a best
single value all the time. We can make the regret of each
agent arbitrarily small by utilizing the multiplicative weights
method. Finally, we round the obtained probability distribu-
tions to integer values. We prove that our method converges
to a certain kind of equilibrium, called a coarse correlated
equilibrium.

We empirically compare our methods with previous state-
of-the-art methods. We demonstrate that our methods are
scalable, and that DMW-Game outperforms other methods
in terms of solution quality and efficiency.

Preliminaries

For a positive integer t, [t] denotes the set {1, 2, . . . , t}.
We use bold symbols to denote vectors. Let 4k be the k-
dimensional simplex, i.e.,4k = {(x1, . . . , xk) | x1 + · · ·+
xk = 1}. Let Nk denote the interior of4k. For two vectors
x and y, 〈x,y〉 denotes their inner product. For a probabil-
ity distribution P over a domain D, a ∼ P means that we
sample a value a ∈ D from the distribution P .

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

2074

Algorithm 1 The multiplicative weights method
Input: A decision list D and a parameter T
Output: p0, ...,pt satisfying Theorem 1.

Fix η ≤ 1/2. For each decision a, set w1
a := 1.

for t = 1, 2, ..., T do
Choose decision a with probability pta :=

wt
a

‖wt‖1 .
Observe the costs of the decisions ct1, . . . , c

t
d.

For every decision a, set wt+1
a ← wta(1− ηcta).

Distributed Constraint Optimization Problems
In the constraint optimization problem (COP for short), an
instance is defined as φ = (X,E, F,D), where a set X =
{x1, x2, . . . , xn} of variables, a set of edges E over vari-
ables, and a set F = {fi,j}(i,j)∈E of binary cost functions,
where each variable xi ∈ X has a finite domain Di from
which it takes its value, and each function fi,j : Di×Dj →
R+ returns a non-negative cost. The goal of COP is to find
an assignment x ∈ D := D1 × D2 × · · · × Dn that min-
imizes the total cost f(x) :=

∑
(i,j)∈E fi,j(xi, xj). Let

di = |Di| for each i ∈ [n]. We define dmax = maxi∈[n] di
and d = |D| = d1d2 · · · dn.

For each i, let us define fi : D → R+ as fi(x) =∑
j∈[n]:(i,j)∈E fi,j(xi, xj), which is the sum of the cost

functions involving the variable xi. Note that f(x) =
1
2

∑
i fi(x) holds. In this paper, we assume that fi(x) ∈

[0, 1] for every i ∈ [n] and x ∈ D. Otherwise, we can nor-
malize cost functions by dividing the maximum number of
cost functions involving a variable times the maximum cost
incurred by a cost function.

The distributed constraint optimization problem (DCOP
for short) is a COP such that each variable is controlled by
the unique agent associated with it. An agent can commu-
nicate with other agents through an edge: for i ∈ [n], let
N(i) = {j ∈ [n] : (i, j) ∈ E} denote the set of (indices
of) variables adjacent to xi. In one round, the agent i, who
controls the variable xi, can send information to or receive
information from agents in N(i). The goal of DCOP is to
find an assignment that minimizes the total cost.

The Multiplicative Weights Method
Consider the following setting. We have a set D of d de-
cisions, and we are required to select one decision from
the set in each round. More specifically, in round t, we se-
lect a vector pt = (pt1, . . . , p

t
d) with

∑
a∈D p

t
a = 1. Let

Pt be the probability distribution corresponding to pt. That
is, Pt(a) = pta for each a ∈ D. Then we sample a de-
cision a from Pt. Each decision incurs a certain cost, de-
termined by nature or an adversary. After making our de-
cision, all the costs are revealed in the form of the vector
ct = (ct1, . . . , c

t
d). The expected cost to the algorithm us-

ing the vector pt is Ea∼Pt [cta] = 〈pt, ct〉. Hence after T
rounds, the total expected cost is

∑T
t=1〈pt, ct〉.

We wish to have an algorithm that achieves a total ex-
pected cost not too much more than the cost of the best sin-
gle decision in hindsight, that is, mina∈D

∑T
t=1 c

t
a. Algo-

rithm 1, called the multiplicative weights method (the MW
method for short), is known to have this property. More
specifically, we have the following.

Theorem 1 ((Arora, Hazan, and Kale 2012)). Assume that
all costs cta ∈ [−1, 1]. By choosing T = O(log |D|

ε2) and η =√
log d
T , the MW method guarantees that, after T rounds, for

any decision a, we have

1

T

(
T∑
t=1

〈ct,pt〉 −
T∑
t=1

cta

)
≤ ε.

The left hand side is called the regret of the method. If
the limit of the regret as T → ∞ is at most zero, then the
method is called a no-regret method. The MW method is an
example of a no-regret method.

The idea of our methods for DCOP is that each agent
individually performs the multiplicative weights method to
guess the best decision, that is, the best value in its do-
main. Although the cost cti for an agent should reflect the
loss caused by choosing the value i, we have many choices
for how to define cti. In the following two sections, we pro-
pose two methods, an LP-based method and a game-based
method.

DMW-LP: An LP-Based Method

In this section, we explain our method based on LP relax-
ations, called DMW-LP.

LP Formulation

We now show our LP relaxation for the given COP in-
stance. For each variable xi ∈ X , we introduce LP vari-
ables pi,1, . . . , pi,di with the constraint

∑
a∈Di

pi,a = 1.
Here, pi,a is supposed to indicate the probability that the
variable xi takes the value a. Hence, we can regard the
set of LP variables pi := {pi,a}a∈Di

as a probability dis-
tribution Pi over the domain Di. For each cost function
fi,j ∈ F over variables xi and xj , we introduce LP variables
{µi,j,a,b}a∈Di,b∈Dj

with the constraint
∑
a∈Di

µi,j,a,b =
pj,b for every b ∈ Dj , and

∑
b∈Dj

µi,j,a,b = pi,a for
every a ∈ Di. Here, µi,j,a,b is supposed to indicate the
probability that xi and xj take the values a and b, respec-
tively. Hence, we can regard the set of LP variables µi,j :=
{µi,j,a,b}a∈Di,b∈Dj

as a probability distribution Pi,j over
the domain Di ×Dj . The marginal distributions of Pi,j on
xi and xj should be equal to the distributions Pi and Pj ,
respectively. Then, we minimize the sum of cost functions
fi,j(a, b), where (a, b) is sampled from the distribution as-
sociated with µi,j .

2075

Formally, our LP formulation is expressed as follows:

min
∑
fi,j∈F

µi,j,a,bfi,j(a, b),

subject to
∑
a∈Di

pi,a = 1 ∀xi ∈ X,∑
a∈Di

µi,j,a,b = pj,b ∀fi,j ∈ F, b ∈ Dj , (1)

∑
b∈Dj

µi,j,a,b = pi,a ∀fi,j ∈ F, a ∈ Di,

pi,a ≥ 0 ∀xi ∈ X, a ∈ Di,

µi,j,a,b ≥ 0 ∀fi,j ∈ F, a ∈ Di, b ∈ Dj .

This LP is called the basic LP in the theory commu-
nity (Kun et al. 2012; Thapper and Živný 2012).

We note that once we have determined the values of p :=
{pi,a}i∈[n],a∈Di

, we can locally optimize the values of µ :=
{µi,j,a,b}i,j∈[n],a∈Di,b∈Dj

. Indeed, µi,j can be optimized
just by looking at pi, pj , and fi,j . We also note that the do-
main of x is the convex set4 := 4d1 ×4d2 × · · · × 4dn ,
and hence its dimensions can be indexed by a pair (i, a),
where i ∈ [n] and a ∈ Di.

We extend the domain of f from D to 4 as follows.
We define f(p) =

∑
(i,j)∈E

∑
a∈Di,b∈Dj

µi,j,a,bfi,j(a, b),
where µ is locally optimized by using p as above. When all
values of p are restricted to be integral, f(p) coincides with
the original cost function. The function f(·) is convex and
continuous because it is determined by optimizing an LP.

Computing Subgradients
We want to use the MW method by setting cti,a to the (i, a)-
th coordinate of a (sub)gradient of f at the current LP so-
lution pt (note that domain 4 is indexed by a pair (i, a)).
The first issue we need to overcome is how to compute the
(sub)gradient locally. Before going into the detail, we need
to introduce definitions related to subgradients.

Let f : D → R be a convex function, where D is a con-
vex open set. For a vector x ∈ D, a vector v is called a
subgradient of f at x if for any vector y ∈ D, we have

f(y)− f(x) ≥ 〈y − x,v〉.
The set of all subgradients of f at x is called the subdiffer-
ential at x and is denoted by ∂f(x). It is known that, if f
is continuous, then the subdifferential at any vector in D is
non-empty. Furthermore, if f is differentiable, then the sub-
differential at x consists of a unique element, namely, the
gradient of f at x. Subdifferentials admit additivity, that is,
for two convex functions f, g : D → R and x ∈ D, we have

∂(f + g)(x) = ∂f(x) + ∂g(x),

where, on the right hand side, the addition of sets of vectors
X and Y is defined as X + Y = {x+ y | x ∈ X,y ∈ Y }.

Let f : ∆→ R be the objective function given by LP (1).
Since f is convex and continuous, the subdifferential at any
x ∈ N is non-empty, where N is the interior of4.

In our method, the agent i is in charge of the set of LP vari-
ables xi, and it computes a subgradient vi of fi at x. This is

Algorithm 2 Computing subgradients
Input: An agent i and {µi,j}j∈N(i),a∈Di,b∈Dj

.
Output: The subgradient of fi.

for a+ ∈ Di do
for a− ∈ Di do

slopea+,a− ← 0

for j ∈ N(i) do
for b ∈ Dj do

if µi,j,a+,b = 1 then continue
if µi,j,a−,b = 0 then continue
slopej,b ← fi,j(a+, b)− fi,j(a−, b).

slopej ← maxb∈Dj
slopej,b.

slopea+,a− ← slopea+,a− + slopej .
(a∗+, a

∗
−)← arg maxa+,a−∈Di

slopea+,a− .
return 1√

2
(ei,a∗+ − ei,a∗−) · slopea∗+,a∗− .

possible since fi only depends on xi and {xj}j∈N(i). More
specifically, the agent i does the following: since the func-
tion fi is determined by an LP, we can assume that there is a
subgradient of fi in the direction

(
ei,a+ − ei,a−

)
for some

a+, a− ∈ Di, where ei,a is the unit vector corresponding
to the dimension (i, a). Hence, we can compute a subgra-
dient as shown in Algorithm 2, which calculates the slopes
along all directions of the form ei,a − ei,a′ for a, a′ ∈ Di

and takes the maximum of them. When calculating the slope
of fi,j in the direction ei,a+ − ei,a− , for each b ∈ Dj , we
consider the slope obtained by increasing µi,j,a+,b and de-
creasing µi,j,a−,b, that is, fi,j(a+, b)− fi,j(a−, b).

We note that the sum v =
∑
i∈[n] vi is actually a subgra-

dient of the cost function f . This is because f = 1
2

∑
i∈[n] fi

and subdifferentials admit additivity.

DMW-LP
DMW-LP basically follows the MW method. The difference
is that it is performed in a distributed manner and the domain
is 4 instead of a single simplex. In DMW-LP, each agent i
maintains a weight vector wi = (wi,1, . . . ,wi,di). In each
round t, it provides a vector pti = wt

i/‖wt
i‖1. The cost vec-

tor given here is the i-th part of the subgradient, which can
be computed as in the previous section. The update rule is
the same as the original MW method. Algorithm 3 summa-
rizes our method. We note that we always have pt ∈ N and
hence a subgradient at pt exists.

At the end of the algorithm, we round the vector p′ =
1
T

∑T
t=1 p

t to an assignment. We consider the following two
strategies.

• Majority strategy: we simply set xi = arg maxa∈Di
p′i,a

for each i ∈ [n]. Note that this rounding method does not
involve any communication.

• DSA strategy: In order to exploit joint distributions µi,j ,
we consider the following rounding strategy using the
idea of DSA (Fitzpatrick and Meertens 2003). We re-
peat the following process for a constant number of steps
(100 steps in our experiments). At each step, we fix each
variable with a certain probability (30% in our experi-

2076

Algorithm 3 DMW-LP (with the majority strategy)
Input: A DCOP instance φ and a parameter T
Output: An assignment x1, ..., xn.

Set η ←
√

log d
nT

for each agent i do
Set w1

i ← (1, 1, . . . , 1) and p1i ← (1
di
, 1
di
, . . . , 1

di
).

send p1i to each agent j ∈ N(i).
for t = 1 to T do

for each agent i do
receive ptj from each agent j ∈ N(i).
Compute a subgradient vti of fi at pt.
wt+1
i,a ← wti,a(1− ηvti,a) for each a ∈ Di.

pt+1
i,a ←

wt+1
i,a

‖wt
i‖1

for each a ∈ Di.

send pt+1
i to each agent j ∈ N(i).

for each agent i do
Assign xi the value arg maxa∈Di p

′
i,a, where p′i =

1
T

∑T
t=1 p

t.

ments). Suppose that we are going to fix a variable xi.
Let µt be determined by pt and µ′ = 1

T

∑T
t=1 µ

t. Let
FN(i) = {j | fi,j ∈ F and xj is already fixed } be the
set of neighbors of i whose values have been fixed. For
j ∈ FN(i), let bj be the value of xj . Then, the probability
that we set xi = a should be

Pr[xi = a |
∧

j∈FN(i)

xj = bj]

=
Pr[xi = a ∧

∧
j∈FN(i) xj = bj]

Pr[
∧
j∈FN(i) xj = bj]

Though we cannot compute this probability from µ′ and
p′, in order to obtain a rounding method, we assume that
{p′j}j∈FN(i) are independent. Then, the probability above
is equal to

Pr[xi = a]
∏

j∈FN(i)

Pr[xj = bj | xi = a]

Pr[xj = b]

= Pr[xi = a]
∏

j∈FN(i)

Pr[xi = a ∧ xj = bj]

Pr[xi = a] Pr[xj = b]

= p′i,a
∏

j∈FN(i)

µ′i,j,a,b
p′i,ap

′
j,b

.

With this probability we assign a to i.

A Proof of Convergence
Now we prove that Algorithm 3 converges to an optimal LP
solution. Let x∗ be the optimal LP solution. Then, we have
the following.
Theorem 2. Algorithm 3 achieves the following guarantee
for all T ≥ 1,

1

T

(T∑
t=1

f(pt)−
T∑
t=1

f(p∗)
)

= O
(√n log d

T

)
.

Due to space limitations, we omit the proof for Theo-
rem 2. Note that the only difference from Theorem 1 is that
the domain is now 4 instead of a single simplex, and the
modification to the proof is complicated but not too hard.

Corollary 3. The vector p′ is a feasible LP solution and

f(p′)− f(p∗) = O(
√

n log d
T).

Proof. Note that p1, . . . ,pT are feasible LP solutions, and
hence their convex combination p′ is also a feasible LP so-
lution. The second claim is immediate from Theorem 2 and
the convexity of f(·).

Corollary 4. By choosing T = O(log dmax

ε2), we have
f(p′)− f(p∗) = O(εn).

Proof. Since log d ≤ n log dmax, we have the desired result
from Corollary 3.

DMW-Game: A Game-Based Method
In this section, we explain our second method, called DMW-
Game. In this method, the agents play a cost-minimization
game, and find a coarse correlated equilibrium using the
MW method. The details are given below.

Cost-Minimization Games
We introduce several notions from game theory. A cost-
minimization game has the following components:

• a finite number of players denoted by n;
• a finite decision set Di for each player i
• a cost function fi : D → [0, 1] for each player i, where
D = D1 × · · · ×Dn.

We consider the following way of playing cost-
minimization games, called no-regret dynamics. In each
round t = 1, 2, ..., T , we do the following.

• Each player i simultaneously and independently chooses
a distribution Pti over Di using a no-regret method.

• Each player i receives a cost vector (cti,1, . . . , c
t
i,1), where

cti,a is the expected cost of the decision a when the other
players play according to their chosen distributions. That
is, cti,a = Ex∼Pt [fi(x1, . . . , xi−1, a, xi+1, . . . , xn)],
where Pt =

∏
i∈[n] Pti .

The no-regret dynamics converges to an equilibrium in the
following sense.

Theorem 5 (Folklore). Suppose after T rounds of no-regret
dynamics, every player of a cost-minimization game has
a regret of at most ε for each of its decisions. Let Pt =∏n
i=1 Pti denote the distribution at time t and P = 1

T

∑
Pt

denote the time-averaged history of these distributions. Then
P is an ε-approximate coarse correlated equilibrium, in the
sense that

E
x∼P

[fi(x)] ≤ E
x∼P

[fi(x1, . . . , xi−1, ai, xi+1, . . . , xn)] + ε.

for every player i and unilateral deviation ai.

2077

A coarse correlated equilibrium protects against unilateral
deviations. In contrast, a Nash equilibrium even prevents any
agent from using another distribution in place of the cur-
rent distribution to make the expected cost smaller. In this
sense, any Nash equilibrium is a coarse correlated equilib-
rium. Though Nash equilibriums always exist (John F. Nash
1950), it is open to debate whether we can obtain any of
them even approximately in polynomial time in n.

We want to assign a single decision to each player in the
setting of DCOP, and we just want to guarantee that the cur-
rent probability distribution of decisions of each player is not
worse than any single decision of the player. In this way, we
could justify using coarse correlated equilibriums instead of
Nash equilibriums.

DMW-Game
DCOP can be seen as a cost-minimization game by observ-
ing that Di is the domain of the i-th variable and the cost
function fi : Di → [0, 1] is the cost function involving the
i-th variable xi.

Using the MW method as the no-regret method in the no-
regret dynamics, we obtain Algorithm 4. Combining Theo-
rems 1 and 5, we obtain the following.

Theorem 6. By choosing T = O(log dmax

ε2), the vector p′ is
an ε-approximate coarse correlated equilibrium.

At the end of the algorithm, we need to round the vector p′
to an assignment. We consider the following two strategies.

• Majority strategy: This is exactly the same as the majority
strategy for DMW-LP.

• Restart strategy: we empirically found that, in DMW-
Game, almost all variables are quickly fixed, that is,
maxa pi,a becomes close to one for almost all i ∈ V .
To restart DMW-Game again with this configuration, for
every certain number of steps (100 steps in our experi-
ments), the restart strategy resets variables i (set pi,a = 1

di
for all a ∈ Di) if maxa pi,a is smaller than a threshold
(0.99 in our experiments), and does not touch (almost)
fixed variables. At the end of the process, we use the ma-
jority strategy to obtain an assignment.

Experiments
In this section, we experimentally confirm the solution qual-
ity and scalability of DMW, and the lower bound qual-
ity of DMW-LP. In this section, LP+Maj and LP+DSA
mean DMW-LP with the majority strategy and the DSA
strategy, respectively, and Game+Maj and Game+Res mean
DMW-Game with the majority strategy and the restart strat-
egy, respectively. We compare DMW with previous incom-
plete DCOP algorithms, MaxSum (Farinelli et al. 2008),
DeQED (Hatano and Hirayama 2013), DSA (Zhang et al.
2005), and MGM (Maheswaran, Pearce, and Tambe 2004).

We conducted experiments on an Ubuntu server with In-
tel Core-i7 3770@3.4GHz and 4GB of memory. DMW and
DeQED were written in Java. For DMW-LP and DMW-
Game, we set η to be 0.04 and 0.5, respectively. For Max-
Sum, DSA and MGM, we used the code in FRODO version

Algorithm 4 DMW-Game (with the majority strategy)
Input: A DCOP instance φ and a parameter T
Output: An assignment x1, ..., xn.

Set η =
√

log dmax

T .
for each agent i do

Set w1
i ← (1, 1, . . . , 1) and p1i ← (1

di
, 1
di
, . . . , 1

di
).

send p1i to each agent j ∈ N(i).
for t = 1 to T do

for each agent i do
receive ptj from each agent j ∈ N(i).
wt+1
i,a ← wti,a(1− ηfi(a)) for each a ∈ Di.

pt+1
i,a ←

wt+1
i,a

‖wt+1
i ‖1

for each a ∈ Di.

send pt+1
i to each agent j ∈ N(i).

for each agent i do
Assign xi the value arg maxa∈Di p

′
i,a, where p′i =

1
T

∑T
i=1 p

t.

2.11 (Léauté, Ottens, and Szymanek 2009) with the default
setting.

DCOP Instances
We made three kinds of DCOP instances, random binary
constraint networks, scale-free binary constraint networks,
and meeting scheduling problems as real-world problems.
For the first two kinds of instances, we created the underly-
ing networks as follows.
Random We created an n-vertex network whose density is
δ, resulting in bδ

(
n
2

)
c edges.

Scale-free We created an n-vertex network using the
Barabasi-Albert (BA) model (Barabási and Albert 1999),
where each newly added vertex is connected to the two
existing vertices, resulting in 2(n− 2) + 1 edges.

We made sure of the connectivity of each network. Then, we
created 20 COP instances for each topology in such a way
that the domain size of each variable (nodes) is three, and
costs of each cost function (edges) are randomly selected
from {1, 2, ..., 105}.

For the third kind of instance, we made 20 instances
of the meeting scheduling problem, which are created by
the instance generator of FRODO version 2.11 (Léauté, Ot-
tens, and Szymanek 2009) under the parameter of ”-PEAV
-infinity 105 -maxCost 102 40 25 4 4”.

Solution Quality and Running Time
We first show that our methods efficiently output high-
quality solutions compared to existing methods. To see this,
we consider the following three measures: the solution qual-
ity, which is the cost of the output divided by the best lower
bound given by DeQEDa and DeQEDm, the number of cy-
cles, and the simulated runtime, which is the sum of simu-
lated runtime of all cycles, where the simulated runtime of a
cycle is the longest running time of an agent in the cycle.

The results are shown in Table 1. On binary constraint
networks, DMW-Game (especially with the fixing strategy)

2078

Table 1: Average solution quality and simulated runtime (in msec) for (a) 100-node random networks with density 0.1, (b)
100-node scale-free networks, and (c) 100-node meeting scheduling problems.

Prob. Cyc. LP+Maj LP+DSA Game+Maj Game+Res MaxSum DeQEDa DeQEDm DSA MGM
sol. time sol. time sol. time sol. time sol. time sol. time sol. time sol. time sol. time

100 1.339 12.4 1.304 13.5 1.199 0.5 1.184 0.3 1.331 208.1 1.233 4.6 1.409 0.5 1.196 22.5 1.208 26.2
200 1.330 24.5 1.301 27.4 1.188 1.2 1.182 0.5 1.331 272.3 1.217 9.3 1.363 1.0 1.198 29.9 1.197 33.7

(a) 300 1.326 37.9 1.305 41.8 1.185 1.6 1.182 0.7 1.327 368.8 1.214 14.0 1.340 1.4 1.207 43.0 1.207 43.0
400 1.328 49.8 1.305 56.2 1.183 1.9 1.181 0.9 1.317 454.8 1.214 18.7 1.327 1.9 1.203 42.7 1.201 51.5
500 1.325 62.3 1.311 70.4 1.183 2.3 1.181 1.1 1.329 588.6 1.214 23.4 1.322 2.4 1.198 46.3 1.202 63.6
100 1.319 12.1 1.209 16.8 1.113 0.4 1.094 0.3 1.266 120.9 1.135 8.7 1.189 0.6 1.158 26.6 1.153 38.7
200 1.286 24.4 1.185 32.4 1.099 0.8 1.090 0.5 1.296 213.4 1.128 17.7 1.156 1.2 1.156 33.7 1.153 51.3

(b) 300 1.257 38.2 1.168 48.5 1.097 1.2 1.089 0.8 1.248 268.3 1.126 26.4 1.133 1.8 1.168 42.0 1.161 62.2
400 1.251 49.8 1.167 64.6 1.095 1.6 1.089 1.1 1.217 309.7 1.126 35.3 1.138 2.4 1.157 48.7 1.153 76.3
500 1.234 61.4 1.149 80.3 1.092 2.0 1.089 1.3 1.220 396.5 1.126 44.1 1.131 3.0 1.149 58.1 1.142 86.6
100 2001 12.7 1983 12.9 970 0.4 914 0.2 3081 138.1 2402 2.2 5278 0.7 1011 43.1 1135 54.7
200 1706 23.4 1838 24.5 925 0.8 914 0.4 2829 288.5 1591 5.1 1970 1.4 1143 58.8 1065 81.0

(c) 300 1589 33.3 1793 36.0 925 1.3 914 0.6 2520 364.3 1499 7.7 1652 2.1 1107 74.7 1099 105.3
400 1614 43.8 1702 48.2 925 1.7 914 0.8 2648 450.7 1469 10.3 1583 2.8 996 89.8 1096 128.0
500 1678 54.2 1810 60.4 940 2.1 914 0.9 2516 551.2 1469 13.4 1548 3.6 1094 106.0 1144 152.5

Table 2: Average solution quality and simulated runtime (in msec) when changing the domain size d, the density δ, and the
number of variables n. MLE means that the memory limit is exceeded.

LP+Maj LP+DSA Game+Maj Game+Res MaxSum DeQEDa DeQEDm DSA MGM
d sol. time sol. time sol. time sol. time sol. time sol. time sol. time sol. time sol. time
5 1.900 187.2 1.900 197.1 1.497 2.9 1.488 2.0 1.901 815.7 1.646 25.9 1.958 3.5 1.541 59.5 1.554 75.6
10 3.742 1085.7 3.739 1063.0 2.418 6.6 2.381 4.6 3.752 995.0 3.162 28.6 3.747 5.9 2.464 72.9 2.500 92.6
15 5.884 3089.2 5.880 2936.3 3.415 10.2 3.338 8.8 5.683 1343.7 5.103 30.9 5.842 9.3 3.480 99.4 3.500 115.8
20 8.451 6310.7 8.440 6432.8 4.600 15.6 4.463 14.7 8.040 3857.1 7.651 33.8 8.366 12.6 4.642 124.7 4.753 133.6
δ sol. time sol. time sol. time sol. time sol. time sol. time sol. time sol. time sol. time

0.2 1.477 127.2 1.477 116.3 1.282 2.8 1.278 1.8 1.411 1267.9 1.325 38.9 1.589 3.6 1.289 69.0 1.295 219.4
0.4 1.549 256.0 1.549 208.4 1.369 4.4 1.365 3.0 MLE 1.432 62.0 1.602 5.6 1.372 115.3 1.378 360.4
0.6 1.574 343.7 1.576 312.7 1.419 6.2 1.412 4.4 MLE 1.487 89.7 1.605 7.8 1.415 141.2 1.422 337.4
0.8 1.582 498.0 1.583 388.7 1.440 8.1 1.435 6.0 MLE 1.514 113.4 1.608 9.4 1.439 189.1 1.440 474.3
1.0 1.588 481.6 1.589 478.1 1.456 10.0 1.450 7.1 MLE 1.541 140.2 1.604 11.0 1.455 465.1 1.455 655.1
n sol. time sol. time sol. time sol. time sol. time sol. time sol. time sol. time sol. time

1000 1.327 260.6 1.307 303.9 1.182 2.7 1.180 2.8 MLE 1.242 209.9 1.338 5.6 1.203 297.7 1.209 152.1
2000 1.319 566.3 1.298 596.7 1.182 5.5 1.181 5.6 MLE 1.238 359243.3 1.332 7.8 1.201 518.8 1.206 360.0
5000 1.323 2074.4 1.303 1933.7 1.183 13.4 1.181 12.8 MLE MLE 1.335 10.2 1.203 1087.4 MLE
10000 1.324 5516.7 1.303 5440.9 1.182 18.3 1.181 18.7 MLE MLE 1.335 12.0 1.202 2372.2 MLE

outperforms other algorithms in terms of solution quality.
On meeting scheduling problems, however, DMW families
are only competitive against DeQEDm. The reason is that
the cost functions in these problems act as hard constraints,
and DMW may fail to satisfy them when rounding.

We can observe that DMW-Game obtained a better so-
lution quality than DMW-LP for every kind of DCOP in-
stance, which empirically shows that the convergent solu-
tion of DMW-Game is almost an integer solution. DMW-
Game is more efficient than DMW-LP since the agents in
DMW-Game only need a simple calculation whereas those
in DMW-LP need to solve LPs. With the restart strategy,
DMW-Game outputs a better solution and runs even faster.

Scalability
Next, we evaluate the scalability of DMW by changing the
domain size, the density, and the number of variables of
the random binary constraint networks. When changing the
number of variables, we set the density so that the average

number of cost functions per agent is preserved.
The results are shown in Table 2, where the average solu-

tion quality and simulated runtime are measured in the 500th
cycle. As we can observe, Game+Res achieves the best so-
lution quality for all the settings, and is the fastest method in
most cases. We were unable to run MaxSum, DeQEDa, and
MGM on large-scale instances since the computational cost
and the memory used by an agent increases along with the
number of variables.

Lower bounds

Table 3 summarizes the average lower bound qualities of
DMW-LP and other methods that can compute lower bounds
using the datasets as in Table 1. The lower bound is mea-
sured on the 50,000th cycle, and is enough to be converged.
DMW-LP computed better lower bounds than other methods
for binary constraint networks, and can only output a trivial
lower bound of zero for the meeting scheduling problems.

2079

Table 3: Average lower bound quality

Prob. LP+Maj DeQEDa DeQEDm
(a) 0.835 0.779 0.780
(b) 0.901 0.842 0.849
(c) 0.000 0.002 0.002

Conclusions
We proposed new incomplete methods for DCOP based on
the multiplicative weights (MW) method. The first method,
DMW-LP, solves an LP relaxation in a distributed man-
ner. We proved that it outputs a solution arbitrarily close to
the optimal LP solution. The second method, DMW-Game,
plays a cost-minimization game, and outputs a solution ar-
bitrarily close to a coarse correlated equilibrium.

We experimentally demonstrated the scalability of both
methods using DCOP instances of several kinds of topolo-
gies and cost functions, and confirmed that DMW-Game in
particular outperforms existing methods in terms of solution
quality and efficiency.

Acknowledgments
Yuichi Yoshida is supported by JSPS Grant-in-Aid for
Young Scientists (B) (No. 26730009), MEXT Grant-in-Aid
for Scientific Research on Innovative Areas (No. 24106003),
and JST, ERATO, Kawarabayashi Large Graph Project.

References
Arora, S.; Hazan, E.; and Kale, S. 2012. The multiplicative
weights update method: A meta-algorithm and applications.
Theory of Computing 8(1):121–164.
Barabási, A.-L., and Albert, R. 1999. Emergence of scaling
in random networks. Science 286(5439):509–512.
Bowring, E.; Pearce, J. P.; Portway, C.; Jain, M.; and Tambe,
M. 2008. On k-optimal distributed constraint optimization
algorithms: new bounds and algorithms. In Proceedings
of the 7th International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS), 607–614.
Farinelli, A.; Rogers, A.; Petcu, A.; and Jennings, N. R.
2008. Decentralised coordination of low-power embedded
devices using the max-sum algorithm. In Proceedings of the
7th International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS), 639–646.
Fitzpatrick, S., and Meertens, L. 2003. Distributed coordina-
tion through anarchic optimization. In Multiagent Systems,
Artificial Societies, and Simulated Organizations. Springer.
257–295.
Hatano, D., and Hirayama, K. 2013. DeQED: An efficient
divide-and-coordinate algorithm for DCOP. In Proceedings
of the 23rd International Joint Conference on Artificial In-
telligence (IJCAI), 566–572.
John F. Nash, J. 1950. Equilibrium points in n-person
games. Proceedings of the National Academy of Science
36(1):48.

Kiekintveld, C.; Yin, Z.; Kumar, A.; and Tambe, M. 2010.
Asynchronous algorithms for approximate distributed con-
straint optimization with quality bounds. In Proceedings of
the 9th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), 133–140.
Kun, G.; O’Donnell, R.; Tamaki, S.; Yoshida, Y.; and Zhou,
Y. 2012. Linear programming, width-1 CSPs, and robust
satisfaction. In Proceedings of the 3rd Innovations in Theo-
retical Computer Science Conference (ITCS), 484–495.
Léauté, T.; Ottens, B.; and Szymanek, R. 2009.
FRODO 2.0: An open-source framework for distributed
constraint optimization. In Proceedings of the IJCAI-
09 Distributed Constraint Reasoning Workshop, 160–164.
http://liawww.epfl.ch/frodo/.
Maheswaran, R. T.; Pearce, J. P.; and Tambe, M. 2004.
Distributed algorithms for DCOP: A graphical-game-based
approach. In Proceedings of the ISCA 17th International
Conference on Parallel and Distributed Computing Systems
(PDCS), 432–439.
Nguyen, D. T.; Yeoh, W.; and Lau, H. C. 2013. Dis-
tributed Gibbs: A memory-bounded sampling-based DCOP
algorithm. In Proceedings of the International Joint Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS), 167–174.
Ottens, B.; Dimitrakakis, C.; and Faltings, B. 2012. DUCT:
An upper confidence bound approach to distributed con-
straint optimization problems. In Proceedings of the Twenty-
Sixth AAAI Conference on Artificial Intelligence (AAAI).
Schapire, R. E. 2003. The boosting approach to machine
learning: An overview. In Denison, D. D.; Hansen, M. H.;
Holmes, C.; Mallick, B.; and Yu, B., eds., Nonlinear Esti-
mation and Classification. Springer.
Thapper, J., and Živný, S. 2012. The power of linear pro-
gramming for valued CSPs. In Proceedings of the 53rd An-
nual IEEE Symposium on Foundations of Computer Science
(FOCS), 669–678.
Vinyals, M.; Rodriguez-Aguilar, J. A.; and Cerquides, J.
2010. Divide-and-coordinate by egalitarian utilities: Turn-
ing DCOPs into egalitarian worlds. In Proceedings of the
3rd International Workshop on Optimisation in Multi-Agent
Systems (OPTMAS).
Zhang, W.; Wang, G.; Xing, Z.; and Wittenburg, L. 2005.
Distributed stochastic search and distributed breakout: prop-
erties, comparison and applications to constraint optimiza-
tion problems in sensor networks. Artificial Intelligence
161(1-2):55–87.

2080

