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Abstract

This paper proposes a mapping between multi-agent
pathfinding (MAPF) and combinatorial auctions (CAs). In
MAPF, agents need to reach their goal destinations with-
out colliding. Algorithms for solving MAPF aim at assign-
ing agents non-conflicting paths that minimize agents’ travel
costs. In CA problems, agents bid over bundles of items they
desire. Auction mechanisms aim at finding an allocation of
bundles that maximizes social welfare. In the proposed map-
ping of MAPF to CAs, agents bid on paths to their goals and
the auction allocates non-colliding paths to the agents. Using
this formulation, auction mechanisms can be naturally used to
solve a range of MAPF problem variants. In particular, auc-
tion mechanisms can be applied to non-cooperative settings
with self-interested agents while providing optimality guar-
antees and robustness to manipulations by agents. The paper
further shows how to efficiently implement an auction mech-
anism for MAPF, utilizing methods and representations from
both the MAPF and CA literatures.

Introduction
The multi-agent path finding (MAPF) problem is a general-
ization of the single-agent path finding problem to multiple
agents. A common objective in MAPF is to minimize the
sum of path costs of all agents. MAPF has many applica-
tions, including video games, traffic control (Silver 2005;
Dresner and Stone 2008), robotics (Bennewitz, Burgard,
and Thrun 2002; Pallottino et al. 2007; Wagner and Choset
2011), and vehicle routing (Kiesel et al. 2012).

In Combinatorial Auctions (CA), agents bid on bundles
of items allowing them to express complex preferences
over bundles. Auction mechanisms aim to find efficient al-
locations that maximize social welfare, that is, maximiz-
ing the sum of utilities of the agents. They have been ap-
plied in various domains, including airport time slot alloca-
tion (Rassenti, Smith, and Bulfin 1982), distributed query
optimization (Stonebraker et al. 1994) and transportation
service procurement (Song and Regan 2003).

This paper proposes a mapping between MAPF and CA,
where the bundles agents bid on are paths. This mapping
is carefully designed such that maximizing social welfare
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corresponds to minimizing the sum of path costs. The flex-
ibility of existing CA mechanisms enables using the pro-
posed mapping to solve a range of MAPF variants, including
MAPF problems with heterogeneous agents and those with
prioritization over agents. Of particular interest, CA mech-
anisms can be used in non-cooperative settings with self-
interested agents that aim to minimize their own path costs
rather than the sum of path costs for all agents. Using appro-
priate CA mechanisms and the proposed MAPF to CA map-
ping, we provide the first mechanism for non-cooperative
MAPF that is optimal and provably robust to certain types
of manipulations.

While using CA mechanisms to solve MAPF problems
offers benefits, implementing auctions in the MAPF domain
poses computational challenges. Specifically, agents have a
possibly infinite number of paths to consider when bidding
(all possible paths to their goal), and the paths (bundles) can
be long (i.e., include many items). These characteristics re-
quire significant computation from the agents, in their bid-
ding, and from the auctioneer, in its search of the optimal
path allocation. To address these computational problems,
we propose to use an iterative CA mechanism (Parkes 2006)
in conjunction with efficient representations and methods
from the MAPF literature. Iterative CA mechanisms reduce
the computational burden of the agents by gradually elic-
iting their preferences as the auction progresses. Drawing
on techniques used in ICTS, a state-of-the-art MAPF algo-
rithm (Sharon et al. 2012c), we store the revealed prefer-
ences over bundles using a compact representation and uti-
lize pruning rules when searching for possible path alloca-
tions. The resulting MAPF solver is shown empirically to be
competitive with recent MAPF solvers.

Market-based approaches, and auctions in particular, have
been previously used in multi-agent planning domain for
various purposes, including task allocation (Gerkey and
Mataric 2002; Hunsberger and Grosz 2000), computation
of coordinated MDP policies (Bererton, Gordon, and Thrun
2003), robot exploration (Tovey et al. 2005), and resource al-
location (Dolgov and Durfee 2005). In most of these works,
agents bid on the tasks to perform whereas in our setting
the tasks (goals) are fixed and the problem is finding non-
conflicting paths to the pre-specified agents’ goals.

The contributions of the paper are threefold. First, we
provide a mapping between MAPF and CA. Second, we
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show how this mapping can be used to solve variants of the
MAPF problem, including optimal cooperative MAPF, non-
cooperative MAPF and MAPF with heterogeneous agents.
Third, we describe an efficient implementation of an itera-
tive CA for MAPF.

Background
A MAPF problem consists of a graph G(V,E) and a set
of agents K. For each agent ki ∈ K, a unique start ver-
tex si, and a unique goal vertex gi are specified. Each
agent can move along the edges of the graph or wait in
its location. Both move and wait actions incur a prede-
fined cost. Costs of move and wait actions can vary with
the specific edge and vertex. A solution to a MAPF prob-
lem is a set of paths, one for each agent from its start
vertex to its goal, under the constraint that agents cannot
collide. The task is to minimize a cumulative cost func-
tion such as the sum of the time steps required for every
agent to reach its goal. Many algorithms have been devel-
oped for solving MAPF problems optimally (Standley 2010;
Sharon et al. 2012c; 2012b) or suboptimally (Silver 2005;
Dresner and Stone 2008; Luna and Bekris 2011; de Wilde,
ter Mors, and Witteveen 2013; Barrer et al. 2014).

A CA problem is defined by a set of participating agents
K = {1, ..., k}, a set of auctioned items M = {1, ...,m},
and a valuation function vi : 2M 7→ R for each agent i that
quantifies its preference over bundles of items. Agents sub-
mit bids on bundles based on their preferences, declaring the
price they are willing to pay for different bundles. The auc-
tioneer then determines an allocation of bundles to agents
based on these bids such that no item is allocated to more
than one agent. A CA mechanism defines the protocol of
communication between the auctioneer and the agents (e.g.,
how bids are submitted, which bids are allowed), the pro-
cess used to determine the allocation of bundles, and how
the prices agents pay for bundles are computed.

CA mechanisms aim to find an allocation that maximizes
social welfare, which is the sum of utilities for the agents.
The utility for an agent is its valuation of the allocated bun-
dles minus the price it paid to get that bundle. CAs are par-
ticularly useful when agents have non-additive valuations of
items. For example, an agent might have a high valuation for
a bundle that includes a flight to a vacation destination and a
hotel, but will not want to buy the hotel stay if it cannot get
a good price for the flight. In the MAPF domain agents also
have non-additive valuation functions: a path that reaches
the goal will be valued highly by an agent, while a subset
of that path will not have any value for the agent. Many CA
mechanisms have been proposed in the literature, differing
in their auction protocols and theoretical properties (Cram-
ton, Shoham, and Steinberg 2006).

Reducing MAPF to CA
A MAPF problem can be reduced to a CA as follows: The
set of itemsM in the auction includes all possible states that
agents can be at, i.e., all pairs of vertex and time step. The
set of possible bundles in the auction is the set of feasible
paths (i.e., all combinations of {vertex, time step} pairs that

comprise a path). The valuation function of an agent is de-
termined based on path costs. The reduction is summarized
in Table 1.

MAPF CA
Vertex-time pair Item
Path (set of items) Bundle
Derived from the path cost Valuation function
Minimal sum of path costs Maximal social welfare

Table 1: High-level view of the MAPF to CA reduction.

One of the challenges we address in this work is defining
the agents’ valuation function in a way that ensures a corre-
spondence between an allocation that maximizes social wel-
fare and a MAPF solution that minimizes the sum of path
costs. If we simply set the valuation of a path to be the nega-
tive of its cost, the valuations of all paths will be negative and
agents will not bid on any bundles (as their utilities would
also be negative). Thus, we define the valuation function vi
for each agent i for a path p as vi(p) = val(gi) − cost(p),
where val(gi) is some positive value of reaching its goal g
and cost(p) denotes the cost of traversing path p. val(gi)
should be set such that the social welfare is maximized only
when all agents are included in the allocation (i.e., every
agent is assigned with a path to its goal).

Let maxc be an upper bound on the highest path cost
(over all agents) in an optimal solution (we discuss later
how to obtain such a bound). Further assume that if there
are several allocation that maximize social welfare, the one
that includes more agents will be preferred.

Theorem 1. Let π be a MAPF problem for which a solution
exists (i.e., non-conflicting paths can be assigned), and let
R(π) be the corresponding CA problem created by the re-
duction, where val(gi) = maxc × |K|. Any allocation for
R(π) that maximizes social welfare corresponds to a solu-
tion to π that minimizes the sum of path costs.

Proof: First, we show that every allocation that maxi-
mizes the social welfare must allocate a non-conflicting path
to each agent. Then we show that the resulting sum of path
costs is minimal.

Assume that in the allocation that maximizes the social
welfare, denoted Amax, agent i was not included (i.e., not
assigned a path). By construction, the maximal path cost
for agent i cannot exceed maxc. Therefore, adding agent
i to an allocation adds at least maxc × |K| − maxc =
maxc × (|K| − 1) to the utility of that allocation. Since i
was excluded by Amax, the social welfare of all otherK−1
agents must have increased by at least maxc× (|K| − 1) by
not including i. Since the maximal cost path of a single agent
is maxc, the utility of each agent could not have increased
by more than maxc. Thus, the maximal added value for the
other agents by not including agent i is maxc × (|K| − 1),
which is not greater than the added social welfare of adding
i. Therefore, either the allocation that includes i has a higher
social welfare, contradicting the assumption, or it has the
same social welfare, in which case it will be preferred due
to the tie-breaking rule.

Next, we show that this allocation also minimizes the sum
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of path costs. Let pai be the path allocated to agent i in allo-
cation a. The social welfare of a given allocation a is

|K|∑
i=1

val(gi)− cost(pai )

The sum of path costs of the corresponding solution is
|K|∑
i=1

cost(pai )

Since val(gi) = maxc×|K| is a constant, the allocation that
maximizes social welfare also minimizes the sum of path
costs.�

The observant reader may notice that the number of items
in R(π) can be infinite, as every vertex can be visited by an
agent multiple times. In some cases, there is a domain spe-
cific upper bound on the time steps that can be planned for,
which can be used to limit the number of {vertex, time step}
items. More generally, the number of time steps required to
solve any MAPF problem is known to be at most |V |3 (Ko-
rnhauser, Miller, and Spirakis 1984). Thus, there is no need
to consider more than |V |3 time steps and the number of
relevant {vertex, time step} items is at most |V |4. This up-
per bound on the relevant time steps can also be used to set
maxc as |V |3 times the maximum edge cost in the graph.

Using the reduction, and based on Theorem 1, a wide
range of MAPF variants can be solved with appropriate CA
mechanisms, as described in the next sections.

Optimal Cooperative MAPF
A direct implication of Theorem 1 is that any MAPF prob-
lem π can be solved optimally by using an optimal CA
mechanism that maximizes social welfare in R(π). Many
such mechanisms exist (Cramton, Shoham, and Steinberg
2006). As an example of how the reduction is used to solve
MAPF optimally, consider the MAPF problem depicted in
Figure 1. There are two agents, a1 and a2, each with a start-
ing location (si) and a goal location (gi). A {vertex, time
step} item for vertex X and time step t is denoted by Xt

(e.g.,A0 describes being at vertexA in time step 0). The cost
of traversing an edge or staying in a vertex is 1. Each bundle
is denoted by bi,j where i is the agent interested in the bundle
and j is a running index. Agents’ valuations of the bundles
are also listed (calculated using the val(gi) − cost(p) valu-
ation function). For simplicity, assume that maxc is 2 (any
value larger than 2 would result in the same outcome).

We describe a simple sealed-bid auction mechanism
where agents submit bids on each of the paths they are in-
terested in. We further assume that agents are truthful and
their bids reflect their actual valuations of the paths (we later
discuss settings where agents are not inclined to be truth-
ful). The auctioneer chooses a feasible allocation that maxi-
mizes its revenue. In the example problem, the maximal rev-
enue of the auctioneer is 4, and can be obtained only when
all agents are included in the optimal solution. For exam-
ple, the auctioneer can achieve this revenue when assigning
agent 1 with bundle b1,2 = {A0, A1, B2} and agent 2 with
b2,1 = {C0, B1, D2}.

s1 

g2 

g1 s2 

A B C 

D 

Bundles: 
b1,1={A0,B1} 
b1,2={A0,A1,B2} 
b2,1={C0,B1,D2} 
Valuations: 
b1,1=2×2-1=3 
b1,2=2×2-2=2 
b2,1=2×2-2=2 

Figure 1: A MAPF problem and a corresponding CA translation.

Heterogeneous Agents and Priorities
If the agents are not homogeneous, then the cost of travers-
ing a given path can differ between agents. For instance,
a truck consumes more fuel than a motorcycle. Also, for
some agents, finding a short path may be more important
than for others. For example, a police car may have higher
preference over regular cars and an ambulance might have
an even higher preference; a service robot may be preferred
over a maintenance robot. These two MAPF variants are eas-
ily handled when using CA to solve MAPF by modifying
the valuation functions of agents to consider their subjective
path costs. This simply requires replacing cost(p) in the re-
duction above with costi(p), which denotes the cost incurred
by agent i for traversing p.

For example, if a truck consumes twice as much fuel
as a motorcycle consumes, we can set costtruck(p) = 2 ·
costmotorcycle(p) in the corresponding valuation function. If
an ambulance must reach its goal within a time limit, paths
that take longer than the time limit will incur additional cost
and thus have lower valuations. If the performance of a ser-
vice robot is twice as important as that of a maintenance
robot, its cost evaluation can be defined as half the cost eval-
uation of the latter, resulting in higher bids by the service
robot for the same path.

Self-Interested MAPF
In some MAPF settings, agents may be self-interested, seek-
ing to minimize their own costs without considering other
agents’ welfare. For example, traffic agents aim to mini-
mize their own time on the road and typically do not con-
sider the overall social welfare. Self-interested behavior by
agents can lead to suboptimal outcomes and reduced social
welfare (Bnaya et al. 2013). An important property of mech-
anisms for self-interested agents is strategyproofness. When
using a strategyproof mechanism (also referred to as a truth-
ful mechanism), agents obtain the best outcome by bidding
according to their true preferences and cannot individually
manipulate the mechanism by not doing so. In the context of
MAPF, agents’ preferences are derived from the costs they
assign to paths. These costs may not be known to the other
agents or to the mechanism. Without a strategyproof mech-
anism, a manipulative agent may choose to report its path
costs untruthfully to gain a better path allocation for itself.

Strategic Manipulation in MAPF
To illustrate a scenario where manipulation is possible in
MAPF, and agents have an incentive to lie about their pref-
erences, consider the graph shown in Figure 2. si and gi are
the start and goal vertices of the agents. Each edge is la-
beled with its cost. We describe a simple mechanism that
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can be used in order to adapt any centralized optimal MAPF
algorithm to a setting with unknown path costs: First, agents
report their path costs. Then, an optimal MAPF algorithm is
run to find the optimal allocation of paths.

If the agents report their costs truthfully, this mechanism
will result in the following allocation: a1 will get the path
that goes through X (cost of 2.5) and a2 the path that goes
through Y (cost 2). This will result in a sum of path costs
of 4.5. Note, however, that a1 would have preferred the path
that goes through Y as it only costs 2. If a1 is self-interested,
it might try to manipulate the outcome by reporting its costs
untruthfully. Specifically, it could report that its cost for the
edge from s1 to X is 4 instead of 1.5. As a result, a so-
cial welfare maximizing mechanism would allocate to a1
the path that goes through Y and will allocate a2 the path
that goes through Z, believing that these paths, with a to-
tal cost of 4.7, are the optimal allocation. Thus, this simple
mechanism is not strategyproof.

s1 

s2 

g1 

g2 

X 

Y 

Z 

1.5 1 

1 1 

1 1 

1.7 1 

Figure 2: An example MAPF problem where an agent might gain
by reporting its preferences untruthfully.

Strategyproof Mechanisms
The auction literature typically considers self-interested set-
tings and has developed strategyproof mechanisms. An
example of such an auction mechanism that is robust
to the type of manipulation exhibited above is the Vick-
rey–Clarke–Groves (VCG) auction (Clarke 1971; Vickrey
1961; Groves 1973). Informally, when using VCG, the price
an agent i pays for an allocated bundle b is based on
the “harm” its participation in the auction caused to other
agents. Formally, prices are defined as follows. Let a∗ de-
note the allocation chosen in the auction. Each agent i pays∑

i6=j vj(a
∗
−i) −

∑
i6=j vj(a

∗), where vj(a∗−i) is the value
agent j would get if agent i had not participated, and vj(a∗)
is the value j obtains from the current allocation.

Returning to the example in Figure 2, assume that both a1
and a2 get a value of 10 for achieving their goal and incur a
cost for traversing a path p to the goal based on the edges’
costs, i.e., v(p) = 10− cost(p). Then, v1(s1, X, g1) = 10−
2.5 = 7.5, while v1(s1, Y, g1) = 10− 2 = 8. Similarly, the
values for a2 are 8 for the path through Y and 7.3 for the
path through Z. If the agents bid truthfully, the auctioneer
will allocate the path s1, X, g1 to a1, and the path s2, Y, g2
to a2, as this allocation maximizes the auctioneer’s revenue
(7.5 + 8 = 15.5). a1 will pay v2(a∗−1)− v2(a∗) = 0 (it did
not cause any “harm”); a2 will pay v1(a∗−2)−v1(a∗) = 0.5.
The utilities for the agents are thus u1 = 10− 2.5− 0 = 7.5
and u2 = 10− 2− 0.5 = 7.5.

As mentioned above, VCG is strategyproof, meaning that
individual agents cannot manipulate the outcome in a useful

way by bidding untruthfully (Vickrey 1961; Clarke 1971;
Groves 1973). To illustrate, assume that a1 would have bid
only 5 on the path s1, X, g1, and 8 for the path s1, Y, g1, and
that a2 bids truthfully as before. The auctioneer will allocate
the path s1, Y, g1 to a1 and the path s2, Z, g2 to a2. So a1
was indeed able to manipulate the outcome. However, such a
manipulation does not benefit a1 due to the Vickrey payment
scheme: a1 will now need to pay v2(a∗−1) − v2(a∗) = 8 −
7.3 = 0.7. Its utility will thus be 10− 2− 0.7 = 7.3, which
is lower than its utility when reporting truthfully. Therefore,
the agent has no incentive to lie.

To the best of our knowledge, the only mechanism pro-
posed for self-interested MAPF is the Iterative Taxation
Framework (ITF) by Bnaya et al. (2013). This mechanism
assigns “taxes” to pairs of location and time, driving agents
to follow paths with higher-social welfare rather than selling
paths to agents as done in auction mechanisms. ITF has sev-
eral drawbacks compared to optimal, strategyproof auction
mechanisms. First, it is not guaranteed to maximize the so-
cial welfare. Second, it is not strategyproof: the mechanism
requires knowledge of the start and goal vertices for each
agent. A single agent can potentially manipulate the mech-
anism by reporting its start and goal vertices untruthfully in
a way that would result in lower taxes on the path it prefers.
Third, it does not support heterogeneous agents as it requires
that agents have equal costs over edges and that the mecha-
nism knows these costs.

An Iterative Combinatorial Auction for MAPF
The CA problem resulting from our reduction has several
important characteristics. First, a large number of bundles
needs to be considered by each agent as the number of pos-
sible paths grows exponentially with the cost. Second, the
sizes of bundles are potentially large as agents may need to
traverse long paths before reaching their goal. These charac-
teristics limit the type of CA mechanism that can be used to
solve MAPF problems in practice, in either cooperative or
non-cooperative settings.

In sealed-bid auctions, such as VCG, each agent needs to
bid over all bundles that it may be interested in. In MAPF,
this means that an agent i would need to find all paths from
si to gi and place bids on them. The number of paths be-
tween two vertices in a graph may be exponential in the path
length. Moreover, to find an allocation that maximizes its
revenue, the auctioneer will need to check the cross prod-
uct of these potentially exponential number of bids. Thus, a
sealed-bid mechanism such as VCG is not feasible for solv-
ing MAPF problems in practice.

Iterative CA mechanisms were designed to alleviate the
computational problem of eliciting agents’ preferences over
bundles (Parkes 2006). In contrast to sealed-bid auctions in
which agents submit bids for all their possibly desired bun-
dles, in iterative CAs agents are not required to report their
valuations for all bundles. Instead, the auction consists of
multiple rounds, gradually revealing agents’ valuations for
bundles. Agents can adjust their bids over time and are not
required to determine their exact valuation for every bundle
at the onset of the auction. Prices are raised in every round
according to the demand for items and agents can submit
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new bids as prices change. For example, in a MAPF prob-
lem agents might start by bidding on their shortest paths, and
then bid on longer paths when prices for shorter paths in-
crease. With this mechanism, agents do not have to compute
all of their possible paths ahead of time. They only perform
this computation when they are required to.

We describe an implementation of a particular iterative
CA, called iBundle (Parkes 1999), to solve the MAPF prob-
lem. iBundle was chosen because it maximizes social wel-
fare and is strategyproof. For simplicity, we describe the
basic iBundle mechanism (Parkes 1999) which was only
proven to be strategyproof in some scenarios. However, the
iBundle extend and adjust mechanism (Parkes and Ungar
2002) can be similarly used to ensure strategyproofness.

Each round of iBundle is composed of three stages:
1. Bidding: agents place bids on their desired bundles.

Agents are allowed to placeXOR bids, meaning that they
would like to get any of the bundles they bid on but not
more than one of them.

2. Winner determination: the auctioneer determines a provi-
sional allocation of bundles to agents. This is the alloca-
tion that maximizes the auctioneer’s revenue and is feasi-
ble, i.e., no item is allocated to more than one agent.

3. Price update: the auctioneer updates the “ask prices” of
bundles based on their demand.
The auction terminates when (a) the provisional allocation

includes at least one bundle for each of the agents , or (b) all
agents place exactly the same set of bids in successive itera-
tions1. Next, we describe each of the auction stages in more
detail, and show how to implement them efficiently using
techniques from the MAPF literature. As a running exam-
ple, consider the MAPF problem depicted in Figure 3(a)2.
For every agent i, si and gi denote its start and goal vertices.
Agents incur a cost of 1 for moving to a neighboring vertex
or staying at their current vertex.

s1 

g2 g1 

s2 

A 

B 

C 

D 

E 

F 

G 

H 

I 

s3 

g3 

B 

D A 

G C 

E 

F 

D 

G C 

E 

𝑴𝑫𝑫𝟐
𝟑 𝑴𝑫𝑫𝟑

𝟒 

(c) (d) 

E 

A 

C 

C 

C 

𝑴𝑫𝑫𝟏
𝟏 

(b) 

C I 

(a) 

Figure 3: (a) An example MAPF problem with three agents, a1,
a2 and a3. si and gi mark the start and goal locations for and agent
i; (b) MDD representing a1’s shortest path; (c) MDD representing
a2’s shortest paths; (d) MDD representing a3’s shortest paths.

Bidding
When deciding which paths (bundles) to bid on, agents need
to consider two factors: the path cost, denoted by cost(p)

1Condition (b) assumes that agents have deterministic bidding
strategies. Thus, if they submit the same bids in consequent rounds,
the same allocation will be chosen and prices will not change. Con-
sequently, agents will keep repeating their bids (Parkes 1999).

2For a complete description of the auction process for this ex-
ample problem see Amir et al. (2014).

and the path’s current ask price in the auction, denoted
ask(p). Agents are assumed to follow a myopic best re-
sponse strategy (Parkes 1999). According to this strategy,
agents bid on bundles that maximize their utility given the
current prices and the costs of the paths (i.e., their valuation
of a path minus its price).

When using this strategy, agents bid on their best bundles
at each iteration given the current prices and always place
bids with the current price (i.e., they do not consider raising
the price before it has been raised by the auctioneer). It has
been shown that myopic best response is a dominant strategy
for an agent given that other agents are implementing this
strategy (Parkes 2001). In MAPF, an agent’s best response
is to bid on all paths that minimize cost(p)+ask(p) at their
current ask price (ask(p)).

For example, in the first iteration of an auction
for the problem shown in Figure 3(a), a1’s best re-
sponse bid includes its shortest path, [〈A, t1〉, 〈C, t2〉].
a2’s best response is to place a XOR bid on its
three shortest paths:[〈B, t1〉, 〈A, t2〉, 〈C, t3〉, 〈E, t4〉];
[〈B, t1〉, 〈D, t2〉, 〈C, t3〉, 〈E, t4〉];
[〈B, t1〉, 〈D, t2〉, 〈G, t3〉, 〈E, t4〉]. Similarly, a3’s best
response includes all of its shortest paths with cost(p) = 4.

As prices increase, agents begin to consider longer paths.
Specifically, their best response should include all paths that
reach the goal with a minimum value of cost(p) + ask(p).
For example, given that all paths with cost(p) = 3 that a2
can traverse are priced at 1 (ask(p) = 1) and paths with
cost(p) = 4 are priced at 0, a2 will bid on all paths with
cost(p) = 3 at price 1 and all paths with cost(p) = 4 at price
0, as they have the same total cost (cost(p) + ask(p) = 4).

As the auction progresses, agents will consider bidding on
paths with higher costs. The number of paths reaching a goal
with a given cost can be exponential in the cost. This growth
in the number of bundles agents bid on is atypical of auction
problems and requires a compact representation to represent
bids. Fortunately, a compact representation for a set of paths
was proposed in the MAPF literature (Sharon et al. 2012c).
For a given cost c, the set of paths from si to gi can be
compactly represented as a multi-valued decision diagrams
(MDDs) (Srinivasan et al. 1990), where decision nodes are
{vertex, time step} pairs that are part of the paths from si
to gi of the corresponding cost. MDDs provide a compact
representation as their size is at most |V | × c (Sharon et al.
2012c). Agents bid on complete MDDs rather than explicitly
representing each path (each MDD can be seen as a XOR
bid that includes all paths represented by it).

Figure 3(b-d) shows MDDs for the agents’ shortest paths
to their goals. An MDD representing the paths of agent a
with cost c is denoted MDDc

a. For example, MDD3
2 (Fig-

ure 3(c)) describes all the paths that a2 can take from its
start vertex to its goal at a cost of 3. Each level of the MDD
includes all of the vertices that a2 might be at in a specific
time step when traversing a path of cost 3 to the goal. An
edge connects an MDD node with nodes in the next level
representing vertices that can be arrived at from the vertex
represented by the MDD node. For example, at level 1, a2
could be at node A or D. From node D it could move to ei-
ther node C or G. To ensure agents do not conflict after they
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reach their goals, we align the MDDs by extending them to
the length of the longest MDD by replicating the goal node
(as shown in dashed lines in the figure).

Winner Determination
At the end of each round of the auction, a provisional alloca-
tion is determined. The provisional allocation is chosen such
that it maximizes revenue and allocates non-conflicting bun-
dles for the set of agents included in the allocation. Ties are
broken in favor of allocations that include more agents. At
a high-level, the winner determination (WD) problem con-
sists of the following components: (1) generating candidate
allocations based on agents’ bids; (2) checking whether the
allocation is feasible; (3) computing the revenue of each al-
location, and (4) choosing the provisional allocation.

For example, in the first round of the auction for the
problem shown in Figure 3(a), each agent bids on the
MDD corresponding to its shortest paths (Figure 3(b-
d)). The possible candidate allocations include all com-
binations of bundles that agents bid on: (1) Allocating
a bundle to one of the agents only. E.g., allocating a1
its requested bundle ([〈A, t1〉, 〈C, t2〉]) and not allocat-
ing any bundle to a2 and a3; (2) allocating bundles to a
pair of agents. E.g., allocating to a1 its requested bundle
([〈A, t1〉, 〈C, t2〉]) and allocating to a2 one of its requested
bundles ([〈B, t1〉, 〈D, t2〉, 〈C, t3〉, 〈E, t4〉]), or (3) allocating
each of the agents one of their requested bundles.

However, not all candidate allocations are fea-
sible as some allocations consist of bundles that
include the same item. For example, allocat-
ing [〈B, t1〉, 〈A, t2〉, 〈G, t3〉, 〈E, t4〉] to a2 and
[〈F, t1〉, 〈D, t2〉, 〈C, t3〉, 〈E, t4〉, 〈I, t5〉] to a3 is infea-
sible, as they both include 〈E, t4〉. Thus, the candidate
allocations need to be checked for feasibility. Finally, of
all feasible allocations, the one that maximizes revenue is
chosen. Agents that received bundles in the provisional
allocation are termed “happy” while agents who did not
receive any bundle are termed “unhappy”.

The winner determination problem is computationally
hard (Sandholm 2002). The pathfinding domain poses ad-
ditional computational challenges for the winner determi-
nation process. First, the set of items is very large due to
the time dimension. Second, agents have relative valuations
for MDDs. Thus, if agents have unlimited budgets, they
will keep bidding on all paths they bid on in previous itera-
tions, resulting in a large number of bids and an increasing
number of candidate allocations to be considered. Finally,
checking whether an allocation is feasible requires solving
a sub-problem of the complete pathfinding problem, namely
searching for non-conflicting paths given agents’ MDDs.

To address these challenges, a Branch and Bound search
can be used to determine the provisional allocation. This ap-
proach is similar to that proposed by Sandholm (2002) with
some modifications to allow it to work with MDDs rather
than searching the space of individual bundles. Feasibility of
candidates can be done by searching the MDDs using spe-
cial prunning rules introduced by Sharon et al. (Sharon et al.
2012c). Computing the revenue of an allocation is straight-
forward (summing the prices of the MDDs in the allocation).

Price Update
Price updating in iBundle works as follows: initial prices for
all bundles are 0. At the end of each round, the prices of bun-
dles that “unhappy” agents bid on are raised to the maximal
amount bid on the bundle by an unhappy agent plus ε, where
ε is a parameter of the auction. The MDDs compactly rep-
resent all the paths (bundles) agents bid on. Thus, the price
of the entire MDD can be increased directly rather than con-
sidering each path separately.

For example, recall that at the end of the first iteration of
an auction for the problem shown in Figure 3(a), the pro-
visional allocation includes two agents. Let us assume that
paths for a1 and a3 were arbitrarily chosen to be included in
the provisional allocation. Then, the price for the paths a2
bid on, namely MDD3

2 , is raised by ε.
The choice of ε affects the efficiency and optimality of the

auction. For a small enough ε value, iBundle is known to ter-
minate with the optimal allocation when agents use the best
response bidding strategy. However, using smaller values of
ε leads to more iterations of the auction and thus sometimes
a larger value is preferred to speed-up the auction (giving up
optimality). In MAPF, it is sufficient to set ε to the minimal
edge cost to preserve optimality, because a lower increment
in price will not lead to a change in agents’ bids.

Experimental Results
We conducted an empirical evaluation of the proposed ap-
proach on a range of standard MAPF benchmarks (Sturte-
vant 2012), comparing it with state-of-the-art optimal
MAPF algorithms. In most cases iBundle performed better
than CBS (Sharon et al. 2012a) but worse than ICTS (Sharon
et al. 2012c), demonstrating its competitiveness with ex-
isting algorithms in the cooperative setting. Importantly,
in contrast with prior MAPF algorithms, the proposed ap-
proach provides strategyproofness guarantees when applied
to non-cooperative settings. For more details about the em-
pirical evaluation, see Amir et al. (2014).

Conclusion
This paper showed a mapping between MAPF problems and
CA, where allocations that maximize social welfare cor-
respond to optimal MAPF solutions. This mapping allows
using CA mechanism to solve a range of MAPF variants.
In particular, we show how CA mechanisms enable opti-
mally solving MAPF with heterogeneous agents, prioritized
agents, and self-interested agents. The resulting mechanism
is to our knowledge the first strategyproof mechanism for the
non-cooperative MAPF problem. The paper outlined several
computational challenges for solving MAPF problems with
CA mechanisms, and showed that iterative CA mechanisms
can be adapted to resolve them. Bridging between auctions
and MAPF opens the door for further integration of ideas
from these two separately studied areas.
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