
Multi-Agent Path Finding on Strongly Biconnected Digraphs

Adi Botea
IBM Research
Dublin, Ireland

Pavel Surynek
Faculty of Mathematics and Physics

Charles University Prague
Malostranské náměstı́ 25, 11 800, Praha 1

Abstract

Much of the literature on multi-agent path finding focuses on
undirected graphs, where motion is permitted in both direc-
tions along a graph edge. Despite this, travelling on directed
graphs is relevant in navigation domains, such as pathfinding
in games, and asymmetric communication networks.
We consider multi-agent path finding on strongly biconnected
directed graphs. We show that all instances with at least two
unoccupied positions can be solved or proven unsolvable. We
present a polynomial-time algorithm for this class of prob-
lems, and analyze its complexity. Our work may be the first
formal study of multi-agent path finding on directed graphs.

Introduction
Multi-agent path finding (MAPF) is an important computa-
tional problem, with applications in areas such as robotics
and computer games. Not surprisingly, the problem has re-
ceived a considerable attention in computer science areas
such as artificial intelligence, robotics and graph theory.

In a common problem formulation, coined as cooperative
path finding, the purpose is to navigate every agent from its
original location to its target location, while avoiding col-
lisions and deadlocks. The navigation environment is typi-
cally represented as a graph.

Current sub-optimal, scalable approaches work under the
key assumption that the underlying graph is undirected. For
instance, algorithms Push and Swap (Luna and Bekris 2011)
and Push and Rotate (de Wilde, ter Mors, and Witteveen
2013) implement a core primitive, called swap, where agents
must move in both directions along some graph edges.
Among other moves, the swap primitive involves moving
an agent to an adjacent node, to allow another agent to pass
through, after which the first agent comes back to its for-
mer location, traversing the graph edge in the opposite di-
rection. The MAPP algorithm (Wang and Botea 2011) re-
lies on reverting part of the recently performed moves, after
an agent reaches its target. The similar use of edges in both
directions appears in the BIBOX algorithm (Surynek 2009)
where robots in cycles are rotated in order to relocate a se-
lected robot and eventually rotated back after the robot gets
out of the cycle to restore the situation.

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1

2

3 4 5

6 7

8 9 10

11 12

13

1

2

3 4
5

7

10

12

13

9
6

8

11

Figure 1: An example of uni-directional road network and its
abstraction as a digraph. The elliptic road is uni-directional
as a rule. Other roads are uni-directional, as the centrifugal
force does not allow making sharp turns.

In navigation domains, uni-directional edges can arise
from the properties of the environment, such as the exis-
tence of one-way entrances, exits, escalators, bridges and
roads. Some agents could be able to travel down the hill
or float down the river, but not the other way around.
Furthermore, the literature shows approaches where uni-
directional traffic is imposed on purpose on a game map,
with the goal of avoiding head-to-head collisions between
mobile agents (Wang and Botea 2008). Motion in directed
graphs is also important in asymmetric communication net-
works (Marina and Das 2002; Jetcheva and Johnson 2006;
Wu and Grumbach 2010).

Uni-directional networks also appear in traffic domains
such as highways and railways. Connection lanes in high-
way system impose one way routing, as vehicles cannot
make sharp turns when traveling at high speeds (see Fig-
ure 1). Similar situations arise at railway switches, which
can switch a train to another track in one direction only
(Bauer and Delling 2008).

We contribute the first tractability analysis of multi-agent
path finding on directed graphs (digraphs). We focus on
strongly biconnected digraphs, i.e., strongly connected di-
graphs where the undirected graphs obtained by ignoring the
edge orientations have no cutting vertices. We demonstrate
that all instances with at least two unocuppied vertices can
be solved or proven unsolvable in polynomial time. We in-
troduce diBOX, a sub-optimal algorithm, and formally dis-
cuss its completeness, correctness, and complexity.

Previous formal studies of multi-agent pathfinding, some-
times also called coordinated pebble motion in graphs, ap-

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

2024

pear to be focused on undirected graphs (Wilson 1974;
Kornhauser, Miller, and Spirakis 1984). For instance, Wil-
son (1974) explicitly requires that the adjacency relation be-
tween agent configurations (called “labellings”) is symmet-
ric, which is equivalent to stating that the graph is undi-
rected. All graphs considered in these two works appear to
have undirected edges, with no mention about if/how parts
of the study, such as the considered permutation groups,
would be applicable to directed graphs. We see our work
as complementary to previous work on undirected graphs,
being a step towards achieving a similar level of understand-
ing for directed graphs.

Related Work
Motion planning problems related to MAPF assume the
existence of one mobile robot and several mobile obsta-
cles (Papadimitriou et al. 1994). This could be seen as a
multi-agent pathfinding problem where only one agent has a
specific target to achieve. Wu and Grumbach (2010) studied
motion planning with one agent and several mobile obsta-
cles on directed graphs, showing cases where the feasability
can be decided in linear time.

Much of the MAPF literature, including algorithms
named in the introduction, focuses on undirected graphs.
Part of the existing methods, however, can be applied to
both directed and undirected graphs, even though they are
typically evaluated on undirected graphs, such as grid maps.
Examples include sub-optimal, incomplete methods (Sil-
ver 2006), as well as optimal algorithms (Standley 2010;
Sharon et al. 2013). The latter are less scalable, which is
not surprising, given that solving MAPF optimally has been
shown to be NP-hard (Ratner and Warmuth 1986; Surynek
2010). A major focus in these contributions (Standley 2010;
Sharon et al. 2013) is an improved speed performance in
practice. Our contributions are substantially different, focus-
ing on a theoretical analysis of MAPF on directed graphs, as
explained in the last part of the introduction.

Background
In this section we overview a few concepts and results from
the literature that form a starting point to our approach.
Definition 1. Having a digraph D = (V,E) and a set of
agents A, a configuration of agents over D is a placement
of agents in vertices of the graph, with at most one agent
in each vertex. Formally, the configuration is a uniquely
invertible assignment of agents to vertices α : A −→ V .

If we need to know what agent is placed in a given vertex
we may use inverse configuration α−1 : V −→ A∪{blank}
which is well defined due to unique invertibility of α (blank
is used for unoccupied vertices).

A configuration can be transformed to another by a move
of agent. An agent can be moved in discrete time steps to
the neighboring vertex provided the target vertex is unoccu-
pied. The move is possible only along positive orientation
of edges. For simplicity, in this theoretical study we assume
that agents move one at a time.
Definition 2. The instance of multi-agent path finding over
directed graphs (dMAPF) consists of a digraphD = (V,E),

L0

L1 L2

L3
1

2

3 4 5

6 7

8 9 10

11 12

13

1

2

3 4 5

6 7

8 9 10

11 12

13

Figure 2: An example of a strongly biconnected digraph and
its ear decomposition. Dashed edges are trivial derived ears
(not explicitly labelled to avoid clutter).

a set of agentsA, an initial configuration α0 : A −→ V , and
a goal configuration α+ : A −→ V . The task is to find a
sequence of moves over D that transform α0 to α+.
Definition 3. An ear decomposition of a digraph D =
(V,E) is an ordered sequence of sub-digraphs of D, say
[L0, L1, . . . , Lr], such that:
• L0 is a cycle; and
• ∀i ∈ {1 . . . r}, Li is a path whose two endpoints belong

to Di = ∪0≤j<iLj , but no other vertices or edges of Li

belong to Di.
Each sub-digraph Li is called an ear (see Figure 2). An

ear is trivial if it has exactly one edge (Bang-Jensen and
Gutin 2008). An ear is cyclic if its endpoints are represented
by a single vertex. We say that L0 is the basic cycle and all
other ears are derived ears. Given an ear L, |L| denotes its
number of vertices. The interior of a derived ear L, denoted
as int(L), refers to the contained vertices different from its
endpoints. Its number of vertices is denoted as |int(L)|. The
endpoints are called the entrance and the exit point, respec-
tively. A digraph is said to be trivial iff it has only one vertex.
In this paper, we work with non-trivial digraphs.

Given an ear decomposition O = [L0, L1, . . . , Lr], we
call the k-prefix subgraph the subgraph restricted to the first
k ears, Ok = [L0, L1, . . . , Lk].
Definition 4. An open ear decomposition of a digraph D is
an ear decomposition with no cyclic derived ears.

An undirected graph G is biconnected if G is connected
and there are no cut vertices in G. A digraph D is strongly
connected if for any two distinct vertices v and w, there are
both a path from v to w and a path from w to v in D. Given
a digraph D, G(D) is the underlying graph of D, i.e., the
undirected graph obtained by ignoring the orientation of the
arcs (Wu and Grumbach 2010).
Definition 5 (Wu and Grumbach 2010). Let D be a di-
graph. D is said to be strongly biconnected if D is strongly
connected and G(D) is biconnected.
Theorem 1 (Wu and Grumbach 2010). Let D be a non-
trivial digraph. D is strongly biconnected iff D has an open
ear decomposition. Moreover, any cycle can be the starting
point of an open ear decomposition.

Solving Strongly Biconnected Digraphs
In this section we focus on solving multi-agent path find-
ing instances on strongly biconnected digraphs. We will

2025

1

2
3

4

5

6
7

Figure 3: An example of a partially bidirectional cycle.

show that all instances with two or more unoccupied vertices
(blanks) can be solved (or proven unsolvable) in polynomial
time, and will present algorithms suitable for this problem.

Definition 6. A digraph is a partially-bidirectional cycle if
it consists of a simple cycle C, plus zero or more edges of
the type (u, v), where (v, u) ∈ C (i.e., edges obtained by
swapping the direction of an edge from C - see Figure 3).

Definition 7. We say that an open ear decomposition of a
strongly biconnected digraph is regular if the basic cycle L0

has three or more vertices, and there exists a non-trivial de-
rived ear with both ends attached to the basic cycle.

Proposition 1. For every strongly biconnected digraphD =
(V,E), exactly one of the following two cases holds:

1. D has a regular open ear decomposition; or
2. D is a partially-bidirectional cycle.

Proof. Part A: Showing that at least one case holds. We
start by noting that any strongly biconnected digraph with
three or fewer vertices satisfies case 2. Thus, in the rest of
Part A, we assume that |V | ≥ 4.

Let [L0, . . . , Lr] be an open ear decomposition for D.
Unless L0 already has three or more vertices, we modify
the open ear decomposition slightly to obtain a basic cycle
with that property. Indeed, when L0 has two vertices, there
must exist a derived non-trivial ear L, since the graph has 4
or more vertices. Ear L, together with one edge from L0,
become the new basic cycle in the decomposition. The other
edge from L0 becomes a trivial derived ear. In the rest of the
analysis in Part A we can assume that |L0| ≥ 3.

At this point we distinguish between two scenarios. First,
we consider the case when L0 contains every vertex in V . If
there exists an edge e ∈ E \ L0 that connects two vertices
p and q that are not next to each other in the basic cycle L0,
then the edge e = (p, q) and part of L0’s edges create a new
basic cycle L′0. The remaining edges of L0 create a non-
trivial derived ear. We are now in case 1 of the proposition.
If no such an edge e exists, we are in case 2.

Consider now the scenario whenL0 contains only a subset
of the vertices in V . It remains to show that a non-trivial
derived ear exists. Consider a vertex w /∈ L0 and a path
from some vertex p ∈ L0 to w. (Such a path always exists,
as the digraph is strongly biconnected.) The first edge (r, s)
on that path that does not belong to L0 is the beginning of
an ear with at least one interior vertex, namely s. It follows
that one or more non-trivial derived ears exist. The first one

in the ordering of the decomposition has both its endpoints
on L0. This corresponds to case 1 of the proposition.

Part B: Showing that at most one case holds. This can
be proven by contradiction. Assume a given strongly bi-
connected digraphD is a partially-bidirectional cycle, and it
has a regular open ear decomposition. As D is a partially-
bidirectional cycle, the only options for the basic cycle L0

that could occur in an open ear decomposition are: i) L0

has two vertices; or ii) L0 contains all vertices. Option i)
contradicts the requirement that L0 has at least three ver-
tices. Option ii) contradicts the requirement that there exists
at least one non-trivial derived ear.

Partially-bidirectional cycles
In discussing multi-agent path finding on strongly bicon-
nected digraphs, we start with the easy case of partially-
bidirectional cycles. Then, in the next section, we discuss
the complementary, more involved case of strongly bicon-
nected digraphs with regular open ear decompositions.

Proposition 2. An instance on a partially-bidirectional cy-
cle, with at least one blank, has a solution if and only if the
ordering of the agents in the initial state is identical with the
ordering in the goal state.

Proof. The proof is obvious, as no swapping between agents
is possible: an instance is solvable if and only if the agents
come in the right order in the first place.

Digraphs with regular open ear decompositions
In this section we show that, on digraphs with a regular
open ear decomposition, every instance with two or more
blanks has a solution. For simplicity, assume that exactly
two blanks are available. We present an algorithm capable
of computing solutions in polynomial time.

Similarly to Surynek’s (2009; 2014) strategy for undi-
rected graphs, our algorithm solves the ears one by one, in
the reverse order, solving L0 at the end. When solving a de-
rived ear, we never touch the interior of previously solved
ears. A derived ear is solved if all interior positions labelled
as goals are occupied by the corresponding agents, and all
other interior positions (if any) are blank.

Borrowing blanks for L0. With no loss of generality, we
assume that, in the goal configuration, the two blanks are in-
side the basic cycle L0. When this doesn’t hold, the instance
is converted into another instance as follows. Identify a node
g that must be blank in the goal, and a directed path from g
to a location n ∈ L0. Shift all goal positions backwards by
one step along this path, resulting in a goal state where the
blank is at n ∈ L0. We call this procedure BorrowBlanks.
At the end, agents are pushed along this path by one step
each, reaching the original goal (method ReturnBlanks).

Solving derived ears. Solving a derived ear Li, i > 0,
with a goal configuration q1, . . . qz , pushes agents inside the
ear in order, starting with qz , the agent whose goal is the
farthest away from the ear’s entrance.

2026

Assume that the agents ql+1, . . . qz have been pushed in-
side, on the first z− l interior positions of Li, and we need to
insert the next agent ql. For simplicity, and without any loss
of generality, assume that all interior positions of Li are oc-
cupied, and the two available blanks are located elsewhere.

We distinguish between two cases. In case 1, the next
agent ql to insert is outside the ear Li. First, we bring one
blank to the last interior position of Li. As blanks travel
backwards in a directed graph, the positions of ql+1, . . . qz
are not impacted. Then, agent ql is brought to the entrance
of the ear, without touching

⋃
j≥i int(Lj). This is possible

with one remaining blank in use, according to Theorem 14
in (Wu and Grumbach 2010). We call the method that can
move an agent within a k-prefix subgraph MoveAgentInSub-
graph. Then agent ql is pushed inside Li, reaching a config-
uration where the first z − l + 1 interior positions of Li are
occupied with agents ql, ql+1, . . . , qz . This completes case
1. Let us recall that agent relocation as suggested in (Wu and
Grumbach 2010) can be implemented with the worst case
time complexity O(|V |2) and it produces O(|V |2) moves.
Definition 8. Let π be a simple path (chain) and let n be
node in the path. An edge (n,m) is an escape door for π if
either m does not belong to π, or m is in π, being at least
two positions earlier than n in π.

Intuitively, an escape door allows an agent to avoid mov-
ing forward on a given path π.
Proposition 3. Let O = [L0, L1, . . . , Lr] be a regular open
ear decomposition of a strongly biconnected digraph. For
any derived ear Li, i > 0, there exist a path π in Oi−1, from
the exit to the entrance of Li, such that π has an escape door
(n,m).

Proof sketch. Let a and b be the entrance and the exit of Li.
As Oi−1 is strongly biconnected, it has a path from a to b
and a path π from b to a. Assumming there is no escape
door along π, it follows that Oi is in fact a chain of nodes
(between a and b) with every two adjacent nodes linked in
both directions. This contradicts the requirement that the
basic cycle has 3 or more nodes.

In case 2, the agent ql is inside the ear. It has to be brought
out first, after which the agents ql+1, . . . qz , if any, will be re-
inserted. This method is called TakeAgentOutsideEar.

Here it is how it works. We build a simple cycle C ′ by
putting together Li and π, and bring two blanks to nodes m
and n mentioned in Proposition 3. Agents are pushed for-
ward (rotated) repeatedly, in the cycle C ′, until 1) all agents
ql+1, . . . qz (if any) reach again their positions inside Li; and
2) ql is outside the interior of Li. Besides forward moves
along C ′, there is one exception that applies whenever ql
is at node n. Instead of pushing ql forward along C ′, ql is
pushed through the escape door to m.

Even if m ∈ C ′, recall that m is not the node right before
n in the cycle. This ensures that pushing ql from n to m
does not cause a deadlock (i.e., there is no repetition of the
previous global agent configuration).

After applying method TakeAgentOutsideEar, ql is out-
side int(Li) and agents ql+1, . . . qz , if any, are inside Li.
This fits case 1 and the processing continues as in that case.

L0

L

u

1

2

3

a

b

v

c

4

Figure 4: Bringing u (Mickey) next to v (Minnie) as part
of solving the basic cycle. Mickey travels along L in such
a way that, at the end, L preserves its goal configuration.
Apart from relocating u, all other ordering relations in L0

are preserved.

Solving the basic cycle. When ordering agents inside the
cycle L0, we make use of a non-trivial derived ear L with
both ends connected to L0. Such an ear L always exists in
a regular decomposition. All agents belonging to interior
positions of L are already solved, as described earlier. Let
q1, . . . qz be these agents in the order they are arranged on
their goal positions in the ear L. Recall that there are two
blanks available in L0.

Assume that two agents u (Mickey) and v (Minnie) need
to be brought next to each other in L0, in the order u, v in
the direction L0. This process, described in detail below,
is referred to as method BringAgentsNextToEachOther. A
high-level overview of the process is shown in Figure 4. As
highlighted in Figure 5, this is split into several stages:
• Mickey’s departure: Rotate agents in the basic cycle L0

until u is at the entrance of the ear L, and a blank is avail-
able at the exit of the ear.

• Mickey’s admission into the bubble ride: Push all agents
in L one step further, so that agent u is on the first interior
position of L, and qz is in L0.
• Mickey’s bubble ride: Bring u along the ear L, until u

reaches the last interior position of L. The bubble ride
needs to be more sophisticated than simply pushing all
agents forward along L until agent u is on the last posi-
tion. The reason is that L’s internal configuration has to
be kept in such a way that, at the end of the bubble ride,
L’s goal configuration is very easy to restore.
A bubble ride is a series of macro-steps. Each macro step
progresses u along L by one position, and also re-inserts
back intoL an agent temporarily removed fromL. Agents
are re-inserted in the same order in which they left the ear
L, reconstructing L’s goal configuration step by step.
The dashed box in Figure 5 illustrates one macro,
changing the configuration of int(L) from u, 1, 2, 3 into
4, u, 1, 2 (listing agents from the first to the last, in the
direction of travel along L). More generally, the k-th
macro step starts from a configuration of int(L) such as
qz−k+2, . . . , qz, u, q1, . . . , qz−k.1 Agent qz−k+1 is in L0.
1When l > l′, sequence ql . . . ql′ is defined as the empty set.

2027

L0

L

u

1

2

3

a

b

v

c

4

L0

L

u

1

2

3

a

b

v

c

4

Bubble ride macro-step

L0

L

u

1

2

3

a

b

v

c

4

L0

L

u

1

2

3

a

b

v

c 4

repeat

L0

L

u

1

2

3

a

b

v

c

4

L0

L

u

1

2

3

a

b

v

c

4

Figure 5: Top: Mickey’s departure (left) and admission into
the bubble ride (right). In the dashed box, one macro-step
as part of a bubble ride: rotation inside L0 (right), followed
by progress along L (left). Bottom: Minnie’s trip (left) and
reunification (right). Clean-up not shown.

A macro-step has two “sub-macros”. First, agents are ro-
tated insideL0 until a blank is available at the exit fromL,
and qz−k+1 is at the entrace of L. Then, all agents along
L are pushed one step forward, pushing qz−k into L0, and
pushing agent qz−k+1 onto the first interior position of L.
At the end of the k-th macro step, the configuration of
int(L) is qz−k+1, . . . , qz, u, q1, . . . , qz−k−1. Agent qz−k
is inside L0. All other agents inside L0 preserve their or-
dering as it existed before applying the macro at hand. At
the end of the current bubble ride, after applying the last
macro, the configuration of int(L) is q2, . . . , qz, u. Agent
q1 is inside L0. All other agents in L0 preserve their
relative ordering that existed before starting the bubble
ride. In the running example, the resulting configuration
of int(L) is 2, 3, 4, u (Figure 5, bottom left).

• Minnie’s trip (Figure 5, bottom left): Rotate agents in the

basic cycle L0 until v is placed right after the exit from L,
and the exit is empty.

• Reunification (Figure 5, bottom right): Advance agents
inside L one step further, placing u next to v, inside L0,
and leaving a blank at the first interior position of L.

• Clean up: Rotate agents inside L0 until q1 is at the en-
trance of L, and then push q1 inside L.
After applying method BringAgentsNextToEachOther, L

has preserved its goal configuration. Agents u and v are next
to each other in the desired order. Apart from repositioning
u, no other ordering relationships were affected inside L0.
The process is repeated until the basic cycle L0 is solved,
which completes solving the entire instance.

The solving strategy outlined in the previous paragraphs
allows us to formulate the following result.
Proposition 4. On a strongly biconnected digraph with a
regular open ear decomposition, all multi-agent path finding
instances with two or more blanks have a solution.

In summary, a strongly biconnected digraph either is a
partially bidirectional cycle, or it admits a regular open ear
decomposition. On partially bidirectional cycles, all in-
stances with at least one blank can be solved or proven un-
solvable. On digraphs with a regular open ear decomposi-
tion, all instances with at least two blanks have a solution.

Algorithm Analysis
We put together all pieces described in the previous sec-
tion, obtaining an algorithm that we call diBOX. We show
its pseudo-code in Algorithm 1 and analyze its complexity.

Rotate is a one-step rotation of all the agents contained
within a cycle C with at least one blank. It consumes |C|
steps and produces |C| moves.

Given a cycle C, a goal configuration α+ and an agent u,
the agent that should be next to u, in the positive orientation
ofC, is provided in constant time by the function NextAgent.

As the configuration in the basic cycle may be shifted
with respect to the required goal configuration after putting
agents into the right order, several final rotations of the basic
cycle may be necessary. This final correction is done with
method ShiftAgentsInCycle. The operation consumes a time
of O(|C|2), where C is the cycle at hand, and produces the
same number of moves. Indeed, O (|C|) rotations may be
necessary, while one rotation needs |C| steps and moves.

If the goal configuration does not have two blanks in the
basic cycle, the instance is transformed with procedure Bor-
rowBlanks. At the end, the original goal configuration is
restored with procedure ReturnBlanks. These two methods
can run in a time of O (|E|), producing O (|V |) moves.
Proposition 5. The worst-case time complexity of diBOX is
within O(|V |3) and so is the number of moves.

Proof. Checking if D = (V,E) is a partially bidirectional
cycle can be done inO (|V |) time steps. The key observation
is that, in a partially bidirectional cycle, nodes have at most
two outgoing edges each, one going “forward” and the other
(if present) going “backwards”, to the previous node. This
property allows to reduce the search for a Hamiltonian path

2028

Algorithm 1 diBOX in pseudocode.
input: a digraph D = (V,E)

a set of agents A
an initial configuration α0 of agents over D
a goal configuration α+ of agents over D

output: sequence of moves transforming α0 into α+

diBOX (D,A, α0, α+)
1: if D is a partially bidirectional cycle then
2: if α0 and α+ represent the same ordering in D then
3: ShiftAgentsInCycle (D,α+)
4: else
5: return UNSOLVABLE
6: else
7: let [L0, L1, . . . , Lr] be a regular open ear decomp.

with non-trivial ear L1 attached to L0

10: if |{x ∈ L0|α−1+ (x) = blank}| < 2 then
11: α′+ ← BorrowBlanks

(
D,L0, α+

)
12: SolveEars (D, [L0, L1, . . . , Lr] , α0, α

′
+)

13: ReturnBlanks
(
D,α+, α

′
+

)
14: else
15: SolveEars (D, [L0, L1, . . . , Lr] , α0, α+)

SolveEars (D, [L0, L1, . . . , Lr] , α0, α+)
16: α← α0

17: for i = r downto 1 do
18: SolveDerivedEar (D,Li, α+)
19: SolveBasicCycle (L0, L1, α+)

SolveDerivedEar (D,Li, α+)
20: let Li = [x0, x1, x2, . . . , xz+1]
21: let C ′ be a cycle containing Li in D \

⋃
j>i int(Lj)

22: for l = z downto 1 do
23: ql ← α−1+ (xl)
24: if α−1(x0) 6= ql then
25: if ql ∈ {α−1 (xz) , . . . , α−1(xz−l+1)} then
26: TakeAgentOutsideEar (ql, Li, C

′)

27: MoveAgentInSubgraph (ql, x0,
⋃i−1

j=1 Lj)
28: Rotate (C ′)

SolveBasicCycle (L0, L1, α+)
29: let L0 = [x1, x2, . . . , xz]
30: let L1 be connected to L0 in xa and xb
31: for l = 1 to z − 1 do
32: u← α−1(xl)
33: if u 6= blank then
34: v ← NextAgent (xl, L0, α+)
35: BringAgentsNextToEachOther (L0, L1, u, v)
36: ShiftAgentsInCycle (L0, α+)

to at most two deterministic walks, avoiding any branching
and backtracking. Details are skipped to save room.

A regular open ear decomposition [L0, L1, . . . , Lr] of re-
quired properties can be found in the worst-case time of
O (|V |+ |E|) (Schmidt 2013). Note that trivial derived ears

are skipped by the algorithm. Ignoring these does not af-
fect the completeness of diBOX. The number of remaining
edges is within O (|V |), since, in every non-trivial ear, the
numbers of edges and interior vertices differ by 1. This ob-
servation enables finding a path or a cycle connecting two
given vertices in O (|V |) steps with breadth first search.

Processing a single agent when solving a derived ear Li

involves at most |C ′| rotations of the cycle C ′ associated
with Li, as well as at most two relocations of ql within a
sub-graph. As a single rotation requires O (|C ′|) steps and
produces the same number of moves, a single agent con-
sumes O(|C ′|2) moves in rotations. The agent relocations
addO(|V |2) moves and time (Wu and Grumbach 2010). Al-
together, processing all the agents in derived ears requires a
time of O(|V |3) and produces O(|V |3) moves.

It remains to analyze the solving the basic cycle L0.
Bringing agents next to each other requires O (|L0|) rota-
tions of L0, to bring the first agent to the entrance of the non-
trivial ear L1; then the second agent needs to be brought to
the exit of the ear; and finally an agent that got out of the ear
into L0 needs to be put back. Rotations within L0 consume
a time of O(|L0|2) and produce the same number of moves.
For all the agents in L0, both the time and the number of
moves are within O(|L0|3), which boils down to O(|V |3).

A single bubble ride macro-step requires |L1| rotations of
a cycle of a size bounded by |L0|+ |L1|. This includes rota-
tions necessary to make a movement of an agent inside and
outside L1. Counting all the agents for which the bubble
ride is done, we obtain both a time and a number of moves
of |L0| · |L1| · (|L0|+ |L1|), which boils down to O(|V |3).
The time and the number of moves for remaining opera-
tions such as borrowing and returning blanks is dominated
by O(|V |3). Altogether, both the worst-case time complex-
ity and the number of moves are within O(|V |3).

Conclusion
We have performed a formal study of multi-agent path find-
ing on strongly biconnected digraphs. We found that in-
stances with at least two blanks have a solution, except for
the trivial case of badly ordered instances on partially bicon-
nected cycles. We have presented a sub-optimal algorithm,
called diBOX, whose worst-case time complexity and so-
lution length are both within O(|V |3), where V is the set
of vertices. Similarly to BIBOX (Surynek 2009), a method
for undirected biconnected graphs, our algorithm solves ears
in reverse order. However, the restriction to uni-directional
movements makes our algorithm more involved than the
case when bi-directional movement is possible.

In future work, we plan to extend our analysis to other
classes of digraphs, or to instances where rotations in a cycle
do not require using a blank. We are also interested in im-
plementing and evaluating the performance of our method.

Acknowledgement
Pavel Surynek is partially supported by the Czech Science
Foundation (contract # 15-15873Y/P103). We thank Davide
Bonusi for pointing out a case not covered in an earlier ver-
sion. We thank the anonymous reviewers for their feedback.

2029

References
Bang-Jensen, J., and Gutin, G. Z. 2008. Digraphs: Theory,
Algorithms and Applications. Springer Publishing Com-
pany, Incorporated, 2nd edition.
Bauer, R., and Delling, D. 2008. SHARC: fast and robust
unidirectional routing. In Proceedings of the Tenth Work-
shop on Algorithm Engineering and Experiments, ALENEX
2008, San Francisco, California, USA, January 19, 2008,
13–26.
de Wilde, B.; ter Mors, A. W.; and Witteveen, C. 2013.
Push and rotate: Cooperative multi-agent path planning.
In Proceedings of the 2013 International Conference on
Autonomous Agents and Multi-agent Systems (AAMAS-13),
87–94. Richland, SC: International Foundation for Au-
tonomous Agents and Multiagent Systems.
Jetcheva, J. G., and Johnson, D. B. 2006. Routing character-
istics of ad hoc networks with unidirectional links. Ad Hoc
Networks 4(3):303–325.
Kornhauser, D.; Miller, G.; and Spirakis, P. 1984. Coordi-
nating pebble motion on graphs, the diameter of permutation
groups, and applications. In Proceedings of the 25th Annual
Symposium on Foundations of Computer Science (FOCS),
241–250.
Luna, R., and Bekris, K. E. 2011. Push and Swap: Fast Co-
operative Path-Finding with Completeness Guarantees. In
Proceedings of the International Joint Conference on Artifi-
cial Intellgience (IJCAI-11), 294–300.
Marina, M. K., and Das, S. R. 2002. Routing performance
in the presence of unidirectional links in multihop wireless
networks. In Proceedings of ACM MobiHoc, 12–23.
Papadimitriou, C. H.; Raghavan, P.; Sudan, M.; and Tamaki,
H. 1994. Motion planning on a graph. In Proceedings of
the 35th Annual Symposium on Foundations of Computer
Science (SFCS-94), 511–520. Washington, DC, USA: IEEE
Computer Society.
Ratner, D., and Warmuth, M. 1986. Finding a shortest solu-
tion for the N ×N extension of the 15-puzzle is intractable.
In Proceedings of AAAI National Conference on Artificial
Intelligence (AAAI-86), 168–172.
Schmidt, J. M. 2013. A simple test on 2-vertex and 2-edge-
connectivity. Information Processing Letters 113(7):241–
244.
Sharon, G.; Stern, R.; Goldenberg, M.; and Felner, A.
2013. The increasing cost tree search for optimal multi-
agent pathfinding. Artificial Intelligence 195:470–495.
Silver, D. 2006. Cooperative pathfinding. AI Programming
Wisdom.
Standley, T. S. 2010. Finding optimal solutions to cooper-
ative pathfinding problems. In Proceedings of the National
Conference on Artificial Intelligence (AAAI-10), 28–29.
Surynek, P. 2009. A novel approach to path planning
for multiple robots in bi-connected graphs. In IEEE In-
ternational Conference on Robotics and Automation (ICRA
2009), 3613–3619.
Surynek, P. 2010. An optimization variant of multi-robot
path planning is intractable. In Fox, M., and Poole, D., eds.,

Proceedings of the National Conference on Artificial Intelli-
genc (AAAI-10). AAAI Press.
Surynek, P. 2014. Solving abstract cooperative path-finding
in densely populated environments. Computational Intelli-
gence 30(2):402–450.
Wang, K.-H. C., and Botea, A. 2008. Fast and Memory-
Efficient Multi-Agent Pathfinding. In Proceedings of
the International Conference on Automated Planning and
Scheduling (ICAPS-08), 380–387.
Wang, K.-H. C., and Botea, A. 2011. MAPP: a Scalable
Multi-Agent Path Planning Algorithm with Tractability and
Completeness Guarantees. Journal of Artificial Intelligence
Research JAIR 42:55–90.
Wilson, R. M. 1974. Graph puzzles, homotopy, and the
alternating group. Journal of Combinatorial Theory, Series
B 16(1):86–96.
Wu, Z., and Grumbach, S. 2010. Feasibility of motion plan-
ning on acyclic and strongly connected directed graphs. Dis-
crete Applied Mathematics 158(9):1017 – 1028.

2030

