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Abstract
We consider the problem of winner determination under
Chamberlin–Courant’s multiwinner voting rule with ap-
proval utilities. This problem is equivalent to the well-
known NP-complete MaxCover problem (i.e., a version
of the SetCover problem where we aim to cover as many
elements as possible) and, so, the best polynomial-time
approximation algorithm for it has approximation ratio
1 − 1

e
. We show exponential-time/FPT approximation

algorithms that, on one hand, achieve arbitrarily good
approximation ratios and, on the other hand, have run-
ning times much better than known exact algorithms.
We focus on the cases where the voters have to approve
of at most/at least a given number of candidates.

Introduction
We study the complexity of winner determination under
Chamberlin–Courant multiwinner voting rule with approval
utilities. Chamberlin and Courant (1983) proposed their rule
as a mean of electing committees of representatives (e.g.,
parliaments, university senates, and so on), but this rule has
also found many other applications, for example, in build-
ing recommendation systems (Lu and Boutilier 2011), as
a model of resource allocation (Skowron, Faliszewski, and
Slinko 2013b), or as a variant of the facility location prob-
lem (see, for example, discussions provided by Procaccia et
al. (2008) and Betzler et al. (2013)).

Intuitively, Chamberlin–Courant rule proceeds as follows.
Consider a setting where we have some set C of candidates,
a collection V of voters, and the goal is to pick a com-
mittee of K candidates that, in some sense, best represent
the voters. Each voter provides numerical utilities regarding
the available candidates. These utilities express how satis-
fied each voter would be from being represented by each of
the candidates (by assumption, a voter can be represented
by a single candidate only). Typically, though not always,
the voters do not express the utilities directly but rather rank
the candidates and the election rule uses a scoring function
to compute the utilities from the rankings (e.g., Borda scor-
ing function assigns utility m− i to a candidate that a voter
ranks as i’th best among m candidates). Given some set W
of K candidates, each voter’s representative is the candidate
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from W to which this voter has assigned the highest utility
(if there are several such candidates, the voter is represented
by any one of them). Chamberlin–Courant rule picks a set
of K candidates that maximizes the sum of the utilities that
the voters derive from their representatives.1

Computing winners under Chamberlin–Courant rule is
NP-hard (see the work of Procaccia et al. (2008) and of Lu
and Boutilier (2011)). However, there is a general greedy
approximation algorithm that runs in polynomial time and
achieves approximation ratio 1 − 1

e (irrespective of the na-
ture of voters’ utility values; see the analysis of Lu and
Boutilier (2011)). For the case of utilities derived using
Borda scoring fuction, even stronger approximation algo-
rithms exist: Skowron et al. (2013b) have shown a practi-
cally useful polynomial-time approximation scheme.

We consider the case of approval utilities, i.e., the case
where agents’ utilities come from the set {0, 1}; the agent
gives utility 1 to the approved candidates and the utility 0
to the disapproved ones. This case is particularly interest-
ing because providing approval information puts much less
burden on the agents than providing preference rankings.
Unfortunately, this case is also computationally harder then
the variant of the rule with preference rankings and Borda
utilities (no polynomial-time approximation algorithm bet-
ter than the general one is possible unless P = NP).

Our Contribution. Chamberlin–Courant rule with ap-
proval utilties is equivalent to the MaxCover problem. In the
MaxCover problem we are given a set N of n elements, a
family S = {S1, . . . , Sm} of m subsets of N , and an inte-
ger K. The goal is to find a size-at-most-K subcollection of
S that contains (covers) as many elements from N as possi-
ble. Now, each voter corresponds to an element in the set
N and each candidate corresponds to a set in the family
S. If a voter i approves of candidate Sj , we have i ∈ Sj :
Picking the set Sj to be included in the MaxCover solu-
tion means that the voter i is “covered” (i.e., has a candidate
in the committee that he or she approves of). That is, there
is a one-to-one mapping between winner-determination un-
der approval-based Chamberlin–Courant rule and the Max-

1Chamberlin–Courant rule has some disadvantages as a rule
for electing parliaments, but it is still quite an attractive one. For
more detailed comparison of multiwinner voting rules we point the
reader to the work of Elkind et al. (2014).
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Cover problem. In the technical part of the paper we focus
on studying the more abstract MaxCover problem, but we
explain our various assumptions in terms of the Chamberlin–
Courant voting rule.

The standard greedy algorithm for MaxCover that itera-
tively picks sets that cover most yet-uncovered elements has
approximation ratio 1− 1

e and this is optimal unless P = NP
(see, e.g., the textbook (Hochbaum 1996) for the algorithm
and the work of Feige (1998) for the approximation lower
bound). Thus in our work we focus on exponential-time al-
gorithms that, on one hand, achieve arbitrarily good approx-
imation ratios (i.e., are approximation schemes) and, on the
other hand, have running times significantly better than the
known exact algorithms (indeed, we are often interested in
fixed-parameter tractable (FPT) approximation schemes, pa-
rameterized by the number of sets allowed in the solution)

We consider three variants of the MaxCover problem, de-
pending on the restrictions regarding elements’ frequencies
(an element frequency is the number of sets it belongs to):

Upper-bounded frequencies. In this variant we assume
that there is some constant p such that each element ap-
pears in at most p sets. This variant corresponds to win-
ner determination under Chamberlin–Courant rule where
each agent approves of at most p candidates (this is quite a
natural restriction; often the voters have energy to express
approvals for a small set of candidates only and some-
times such upper bounds are even put forward by election
rules). For this case we show FPT approximation schemes
(deterministic and randomized).

Lower-bounded frequencies. In this variant we require
that there is some constant p such that each element be-
longs to at least p sets. This corresponds to a setting where
each voter is required to approve of at least p candidates.
For this case we show an improved analysis of the stan-
dard, polynomial-time, greedy algorithm.

Unrestricted case. In this variant we put no restrictions on
the MaxCover inputs. While we were unable to find FPT
approximation schemes in this case (randomized or not),
using an approach introduced by Cygan et al. (2009) and
Croce and Paschos (2012), we show exponential-time ap-
proximation schemes that seamlessly exchange running
time for the quality of the approximation.

We omit some of our proofs due to space constraints. All
missing proofs are available in the full version of the pa-
per (Skowron and Faliszewski 2013).

Related Work. Winner-determination under Chamberlin–
Courant rule received quite a lot of attention in recent
years. Its worst-case complexity was studied by Procaccia
at al. (2008) (for the case of approval utilities) and by Lu
and Boutilier (2011) (for the case of Borda utilities). Lu
and Boutilier have also shown the greedy polynomial-time
(1 − 1

e )-approximation algorithm for the rule. Skowron et
al. (2013b; 2013a) have shown a polynomial-time approx-
imation scheme for the case of Borda utilities and eval-
uated it empirically. Other authors have studied the pa-
rameterized complexity of the rule and its complexity in
restricted domains (Betzler, Slinko, and Uhlmann 2013;

Yu, Chan, and Elkind 2013; Skowron et al. 2013), as well
as in online settings (Oren and Lucier 2014).

Chamberlin–Courant rule is, by far, not the only natural
way of selecting committees based on approval information.
Various such rules are reviewed by Kilgour (2010) and are
studied algorithmically, e.g., by LeGrant et al. (2007), Cara-
giannis et al. (2010), and Aziz et al. (2014). Naturally, there
are also many other multiwinner voting rules.

On the technical side, our work provides parameter-
ized complexity analysis of the MaxCover problem. This
problem received relatively little attention in the literature,
though recently, and independently, Bonnet et al. (2013) also
studied its complexity. Their work is similar in spirit to ours,
but the only true overlap between the papers is Theorem 2.

On the other hand, researchers often consider MaxVertex-
Cover, a much-restricted variant of MaxCover in which we
are given a graph G = (V,E) and an integer K, and we
ask for at most K vertices that jointly cover as many edges
as possible (i.e., it is a “Max” variant of the standard Vertex-
Cover problem). We stress that MaxVertexCover is consider-
ably simpler even than MaxCover with frequencies bounded
by two. Currently the best polynomial-time approximation
algorithm for MaxVertexCover, due to Ageev and Sviri-
denko (1999), has approximation ratio of 3

4 . Parameterized
complexity of MaxVertexCover was first studied by Guo et
al. (2007). The problem was also studied by Cai (2008), who
gave the currently best exact algorithm for it, and by Marx,
who gave an FPT approximation scheme (2008); interest-
ingly, our more general algorithm is faster than that of Marx
(see the discussion after Theorem 1).

Leaving the realm of FPT running time, Croce and
Paschos (2012) provide an exponential-time approximation
strategy for MaxVertexCover, based on combining exact
(exponential-time) algorithms with (polynomial-time) ap-
proximation ones. We use a similar idea (also based on the
work of Cygan et. al (2009)) for the case of unrestricted
MaxCover problem and compare it to their approach.

Preliminaries
In the introduction we have presented a natural one-to-one
correspondence between the Chamberlin–Courant rule and
the MaxCover problem. We focus on the MaxCover prob-
lem as this way our results are useful both to people inter-
ested in multiwinner voting and to those interested in the ab-
stract MaxCover problem only. We assume familiarity with
standard notions regarding algorithms and (parameterized)
complexity theory, but we provide a brief review. For each
positive integer n, we write [n] to mean {1, . . . , n}.

Let P be an algorithmic problem where, given some in-
stance I , the goal is to find a solution s that maximizes a
certain function f . Given an instance I of P , we refer to
the value f(s) of an optimal solution s as OPT(I) (or sim-
ply as OPT if the instance I is clear from the context).
Let β, 0 < β ≤ 1, be some fixed constant. An algo-
rithm A that given instance I returns a solution s′ such that
f(s′) ≥ βOPT(I) is called a β-approximation algorithm
for P . Analogously, we define OPT(I) and the notion of a
γ-approximation algorithm, γ > 1, for the case of a prob-
lem P ′, where the task is to find a solution that minimizes
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a given goal function g. Given instance I of some algorith-
mic problem, we write |I| to denote the length of the stan-
dard, efficient encoding of I . In this paper we focus on the
following two problems (the former directly models winner-
determination under Chamberlin–Courant rule, whereas the
latter models a variant of the rule where we measure voter’s
dissatisfaction; the number of voters that are not represented
by someone they approve of).

Definition 1. An instance I = (N,S,K) of the MaxCover
problem consists of a set N of n elements, a collection S =
{S1, . . . , Sm} of m subsets of N , and nonnegative integer
K. The goal is to find a subcollection C of S of size at most
K that maximizes ‖⋃S∈C S‖.
Definition 2. The MinNonCovered problem is defined in the
same way as the MaxCover problem, but the goal is to find
a subcollection C such that ‖N‖ − ‖⋃S∈C S‖ is minimal.

In the decision variant of MaxCover (of MinNonCovered)
we are additionally given an integer T (an integer T ′) and we
ask if there is a collection of up to K sets from S that cover
at least T elements (that leave at most T ′ elements uncov-
ered). MaxVertexCover is a variant of MaxCover where we
are given a graph G = (V,E), the edges are the elements
to be covered, and vertices define the sets that cover them
(a vertex covers all the incident edges). SetCover and Ver-
texCover are special cases of the decision variants of Max-
Cover and MaxVertexCover, where we have to cover all the
elements (all the edges).

MaxCover and MinNonCovered are quite different in
terms of approximation. E.g., if there is a solution that covers
all the elements, then a β-approximation algorithm for Max-
Cover can cover a β fraction of them, but a γ-approximation
algorithm for MinNonCovered has to cover them all.

Given an instance I of MaxCover (MinNonCovered), we
say that an element e has frequency t if it appears in exactly t
sets. We mostly focus on the variants of MaxCover and Min-
NonCovered where there is a given constant p such that each
element’s frequency is at most p. We refer to these problems
as variants with upper-bounded frequencies. (It is tempting
to think that MaxCover with frequencies equal to two is sim-
ply MaxVertexCover, but in fact it is a considerably richer
problem. In the former, two sets can share many elements,
while in the latter two vertices may be connected by at most
one edge. Thus, MaxCover with frequencies equal to two is
closer in spirit to MaxVertexCover on multigraphs.)

Our focus is on (approximation) algorithms that run in
FPT time (see the books of Downey and Fellows (1999),
Niedermeier (2006), and Flum and Grohe (2006) for details
on parameterized complexity theory). Given an instance I of
a problem—whose part, say k, is declared as a parameter—
an FPT algorithm is required to run in time f(k)poly(|I|),
where f is some computable function and poly(·) is some
polynomial. (For our problems, unless said otherwise, we
always take K, the size of the solution, to be the param-
eter.) There is also a whole hierarchy of hardness classes,
FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[P] ⊆ · · · . Since our
focus is on algorithmic results, we omit the standard (quite
involved) definitions of these classes and instead point the
reader to the textbook of Niedermeier (2006). Interestingly,

VertexCover is well-known to be in FPT, but the decision
variant of MaxVertexCover is W[1]-complete (Guo, Nieder-
meier, and Wernicke 2007).

Worst-Case Complexity Results
To justify seeking FPT approximation algorithms, we first
investigate parametrized complexity of the MaxCover prob-
lem. For upper-bounded frequencies it is W[1]-hard (be-
cause MaxVertexCover is (Guo, Niedermeier, and Wernicke
2007)) and we show that it, indeed, is W[1]-complete. For
lower-bounded frequencies it is W[2]-hard and in W[P].
Theorem 1. (1) For each constant p greater than 2, the
MaxCover problem with frequencies upper-bounded by p is
W[1]-complete (when parameterized by the number of sets
in the solution). (2) For each constant p, p ≥ 1, MaxCover
where each element belongs to at least p sets is W[2]-hard
and belongs to W[P] (when parameterized by the number of
sets in the solution)

For parameter T , the number of elements that we should
cover, Bläser gave an FPT algorithm (2003) for MaxCover.
On the other hand, for parameter T ′ = n− T , i.e., the num-
ber of elements we can leave uncovered (this means con-
sidering the MinNonCovered problem), we show that the
problem is para-NP-complete (i.e., it is NP-complete even
for a constant value of the parameter), but becomes W[2]-
complete for the joint parameter (K,T ′).
Theorem 2. (1) The MaxCover problem is para-NP-
complete when parameterized by the number T ′ of elements
that can be left uncovered. This holds even if each element’s
frequency is upper-bounded by some constant p, p ≥ 2. (2)
MaxCover is W[2]-complete when parameterized by both
the number K of sets that can be used in the solution and
the number T ′ of elements that can be left uncovered.

Algorithms for the Bounded Frequencies
Cases

This section presents our core results, i.e., approximation al-
gorithms for MaxCover/MinNonCovered with bounded fre-
quencies.
The MaxCover Problem with Upper Bounded Frequen-
cies. Our FPT approximation scheme for MaxCover with
upper-bounded frequencies works as follows. Given an in-
stance I = (N,S,K)—with frequencies bounded by some
constant p—and a required approximation ratio β, the algo-
rithm restricts itself to a number of sets from S with high-
est cardinalities, tries all K-element subcollections of these
sets, and returns the best one (the size of the restriction de-
pends only on K, p, and β; see Algorithm 1).

Below, we show that this algorithm indeed achieves a re-
quired approximation ratio, then we show that our analysis is
tight up to the constant factor of 3

4 , and then we compare our
algorithm to the FPT approximation scheme for MaxVertex-
Cover of Marx (2008).
Algorithm 1. Let (N,S,K) be the input MaxCover in-
stance. Let A be the set of d 2pK

(1−β) + Ke sets from S with
highest cardinalities. Return a K-element subset of A that
covers most elements.
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Theorem 3. For each instance I = (N,S,K) of MaxCover
where each element from N appears in at most p sets in
S, Algorithm 1 outputs a β-approximate solution in time

poly(n,m) ·
( 2pK

(1−β)+K

K

)
.

Proof. Establishing the running time is immediate and so we
focus on showing the approximation ratio. Consider an input
instance I . Let C be the solution returned by Algorithm 1 and
let C∗ be some optimal solution. Let c be an arbitrary func-
tion such that for each element e such that ∃S∈C∗ : e ∈ S,
c(e) is some S ∈ C∗ such that e ∈ S. We refer to c as the
coverage function. Intuitively, the coverage function assigns
to each element covered under C∗ (by, possibly, many dif-
ferent sets) a set “responsible” for covering it. We say that S
covers e if and only if c(e) = S. Let OPT be the number of
elements covered by C∗.

We will show that C covers at least βOPT elements. Nat-
urally, the reason why C might cover fewer elements than
C∗ is that some sets from C∗ may not be present in A, the
set of the subsets considered by the algorithm. We will show
an iterative procedure that starts with C∗ and, step by step,
replaces those members of C∗ that are not present in A with
the sets from A. The idea of the proof is to show that each
such replacement decreases the number of covered element
by at most a small amount.

Let ` = ‖C∗ \ A‖. Our procedure will replace the `
sets from C∗ that do not appear in A with ` sets from A.
We renumber the sets so that C∗ \ A = {S1, . . . , S`}. We
will replace the sets {S1, . . . , S`} with sets {S′1, . . . , S′`}
defined through the following algorithm. Assume that we
have already computed sets S′1, . . . , S

′
i−1 (thus for i = 1

we have not yet computed anything). We take S′i to be
a set from A \ (C∗ ∪ {S′1, . . . , S′i−1}) such that the set
(C∗ \ {S1, . . . , Si}) ∪ {S′1, . . . , S′i} covers as many ele-
ments as possible. During the i’th step of this algorithm, af-
ter we replace Si with S′i in the set (C∗ \ {S1, . . . , Si−1}) ∪
{S′1, . . . , S′i−1}, we modify the coverage function as fol-
lows: (1) for each element e such that c(e) = Si, we set
c(e) to be undefined; (2)for each element e ∈ S′i, if c(e) is
undefined then we set c(e) = S′i.

After replacing Si with S′i, it may be the case that fewer
elements are covered by the resulting collection of sets.
Let xi denote the difference between the number of ele-
ments covered by (C∗ \ {S1, . . . , Si}) ∪ {S′1, . . . , S′i} and
by (C∗ \ {S1, . . . , Si−1}) ∪ {S′1, . . . , S′i−1} (or 0, if by
a fortunate coincidence there are more elements covered
after replacing Si with S′i). By the construction of the
set A and the fact that Si /∈ A, each set from A con-
tains more elements than Si. We infer that every set from
A \ (C∗ ∪ {S′1, . . . , S′i−1}) must contain at least xi ele-
ments covered by (C∗ \ {S1, . . . , Si−1}) ∪ {S′1, . . . , S′i−1}.
Indeed, if some set S′ ∈ A\(C∗∪{S′1, . . . , S′i−1}) contained
fewer than xi elements covered by (C∗ \ {S1, . . . , Si−1}) ∪
{S′1, . . . , S′i−1}, S′ would have to cover at least ‖S′‖ −
(xi − 1) ≥ ‖Si‖ − (xi − 1) elements uncovered by (C∗ \
{S1, . . . , Si−1})∪{S′1, . . . , S′i−1}. But this would mean that
after replacing Si with S′, the difference between the num-
ber of covered elements would be at most (xi − 1).

Let C∗2 denote the set obtained after the above-described `
iterations. Since, for each i, the set (C∗ \ {S1, . . . , Si−1}) ∪
{S′1, . . . , S′i−1} is a subset of C∗∪C∗2 , we know that, for each
i, each set from A \ (C∗ ∪ {S′1, . . . , S′`}) (there is ‖A‖ −
K such sets) must contain at least xi elements covered by
C∗ ∪ C∗2 (there is at most 2OPT such elements). Since each
element is contained in at most p sets, we infer that for each
i, xi(‖A‖ − K) ≤ 2OPTp and, as a consequence, xi ≤
2OPTp
‖A‖−K = 2OPTp(1−β)

2pK . Since ` ≤ K, we conclude that∑`
i=1 xi ≤ 2OPTpK (1−β)

2pK = (1 − β)OPT. That is, after
replacing the sets from C∗ that do not appear in A with sets
from A, at most (1 − β)OPT elements fewer are covered.
This means that there are K sets in A that together cover at
least βOPT elements. Since the algorithm tries all size-K
subsets of A, it finds a solution that covers at least βOPT
elements.

Proposition 4. There is a family I of pairs (I, β) where I
is an instance of MaxCover with bounded frequencies and β
is a real number, 0 < β < 1, such that for each (I, β) ∈ I,
if we use Algorithm 1 to find a β-approximate solution for I ,
it outputs an at-most (( 3

4 + 1
4β)OPT(I))-approximate one.

Let us now restrict the setting to the MaxVertexCover
problem and compare our algorithm to that of Marx (2008),
which works as follows: If the input graph contains a ver-
tex with a large enough degree then the algorithm outputsK
highest-degree vertices; otherwise it solves the problem ex-
actly in FPT time. To achieve approximation ratio β, Marx’s

algorithm needs time at least Ω(( k3

1−β )(
k3

1−β )) and our algo-

rithm needs poly(n,m) ·
( 2pK

(1−β)+K

K

)
time. That is, our algo-

rithm is faster and more general (Marx’s approach does not
generalize; we postpone the exact discussion why this is so
until the full version of the paper). On the other hand, the
exact part of Marx’s algorithm is interesting in its own right.
The MaxCover Problem with Lower-Bounded Frequen-
cies. For MaxCover with lower-bounded frequencies, the
standard algorithm (to which we refer as “the greedy algo-
rithm”) which in each iteration greedily extends the solution
with a set that contains the most yet-uncovered elements, can
achieve a better approximation ratio than in the unrestricted
case (and our analysis is tight).

Theorem 5. The greedy algorithm is a polynomial-time (1−
e−max( pKm ,1))-approximation algorithm for the MaxCover
problem with frequency lower bounded by p, on instances
with m elements where we can pick up to K sets.

Proposition 6. For each rational α, α ≥ 1, there is an in-
stance I(α) of MaxCover (with m sets, element frequency
lower-bounded by p, K sets to use, and pK

m = α) such that
on input I(α), The greedy algorithm achieves approxima-
tion ratio no better than (1− e− pKm ).

Theorem 5 has interesting implications. For each α, 0 <
α < 1, let α-MaxCover be a variant of MaxCover where
for each instance the ratio p

m is at least α. This prob-
lems arises, e.g., if we use approval-based variant of the
Chamberlin-Courant rule with a requirement that each voter
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Algorithm 2: For MinNonCovered with frequency upper-
bounded by p.

Parameters:
(N,S,K) — input MinNonCovered instance
p — bound on the number of sets each element can belong to
β — the required approximation ratio of the algorithm
ε — the allowed probability of achieving worse than β

approximation ratio
Search(s, partial):

if s = 0 then return partial ;
e← randomly select element not-yet covered by partial ;
best ← {};
foreach S ∈ S such that e ∈ S do

sol ← Search((s− 1), partial ∪ {S});
if sol is better than best then best ← sol ;

return best ;
Main(): run Search(K, {}) for d− ln ε/(β−1

β
)Ke times;

return the best solution;

must approve at least some constant fraction of the candi-
dates (e.g., 10%). There exists a polynomial-time approxi-
mation scheme (PTAS) for this version of the problem.
Theorem 7. For each α, 0 < α ≤ 1, there is a PTAS for
α-MaxCover.

The exact complexity of α-MaxCover is quite interesting.
Using the greedy algorithm, we can show that it belongs to
the second level of Kintala and Fisher’s β-hierarchy of lim-
ited nondeterminism (1980). (A problem belongs to the class
β2 if it can be solved using at most O(log2 n) nondetermin-
istic bits, where n is the size of the input.) In effect, it is
unlikely that α-MaxCover is NP-complete.
Theorem 8. For each α, 0 < α < 1, α-MaxCover is in β2.

The MinNonCovered Problem with Upper-Bounded
Frequencies. Algorithm 2 is a randomized FPT approxima-
tion scheme for the task of minimizing the number of uncov-
ered elements (for the case of upper-bounded frequencies).
It works as follows: It picks a random uncovered element
e and for each of the sets S that contain e, it tries to re-
cursively build a solution that includes S. Since we assume
a constant bound on elements’ frequencies, this algorithm
works in FPT time. Further, if it is possible to cover all the
elements, the algorithm finds such a solution (irrespective of
the random choices). If not all elements can be covered, it
still finds a good solution with high probability.
Theorem 9. Algorithm 2 outputs a β-approximate solu-
tion for the MinNonCovered problem with probability (1 −
ε). The time complexity of the algorithm is poly(n,m) ·
d− ln ε/(β−1β )Ke · pK .

Proof. Let I = (N,S,K) be out input instance of MinNon-
Covered and fix some β, β > 1, and ε, 0 < ε < 1. Each
element from N appears in at most p sets from S.

By ps we denote the probability that a single invocation
of the function Search (from the Main function) returns a
β-approximate solution. We will first show that ps is at least
(β−1β )K , and then we will use the standard argument that if

we make d− ln ε
ps
e calls to Search, then the best output is a

β-approximate solution with probability (1− ε).
Let C∗ be some optimal solution for I , let N∗ ⊆ N be

the set of elements covered by C∗, and let U∗ = N \ N∗
be the set of the remaining, uncovered elements. Consider a
single call to Search from the “for” loop within the func-
tion Main. Let Ev denote the event that during such a call,
at the beginning of each recursive call, at least a β−1

β frac-
tion of the elements not covered by the constructed solution
(i.e., the solution denoted partial in the algorithm) belongs
to N∗. Note that if the complementary event, denoted Ev ,
occurs, then Search definitely returns a β-approximate so-
lution. Why is this the case? Consider some tree of recursive
invocations of Search, and some invocation of Search
within this tree. Let X be the number of elements not cov-
ered by partial at the beginning of this invocation. If at most
β−1
β X of the not-covered elements belong to N∗, then—of

course—the remaining at least 1
βX of them belong to U∗.

In other words, then we have 1
βX ≤ ‖U∗‖ and, equiv-

alently, X ≤ β‖U∗‖. This means that partial already is
a β-approximate solution, and so the solution returned by
the current invocation of Search will be β-approximate as
well. (Naturally, the same applies to the solution returned at
the root of the recursion tree.)

Now, consider the following random process P . (Intu-
itively, P models a particular branch of the Search re-
cursion tree.) We start from the set N ′ of all the elements,
N ′ = N , and in each of the next K steps we execute the
following procedure: We randomly select an element e from
N ′ and if e belongs to N∗, we remove from N ′ all the el-
ements covered by the first2 set from C∗ that covers e. Let
popt be the probability that a call to Search (within Main)
finds an optimal solution for I , and let popt|Ev be the same
probability, but under the condition that Ev takes place. It is
easy to see that popt is greater or equal than the probability
that in each step P picks an element from N∗. Let phit be
the probability that in each step P picks an element from
N∗, under the condition that at the beginning of every step
more than (β−1)

β fraction of the elements in N ′ belong to
N∗. Again, it is easy to see that popt|Ev ≥ phit . Further, it is
immediate to see that phit ≥ (β−1β )K .

Altogether, combining all the above findings, we know
that the probability that RecursiveSearch returns a
β-approximate solution is at most ps ≥ P(Ev) +

P(Ev)popt|Ev ≥ popt|Ev ≥ (β−1β )K . (That is, either the
event Ev does not take place and Search definitely returns
a β-approximate solution, or Ev does occur, and then we
lower-bound the probability of finding a β-approximate so-
lution by the probability of finding the optimal one.) To con-
clude, the probability of finding a β-approximate solution in
one of the x = d− ln ε/(β−1β )Ke independent invocations

of Search from Main is at least 1 − (1 − (β−1β )K)x ≥
1− eln ε = 1− ε. Establishing the running time is clear.

2We assume the sets in C∗ are ordered in some arbitrary way.
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Algorithm 3: For the MaxCover problem.
Parameters:
(N,S,K) — input MaxCover instance
X — the parameter of the algorithm
C = {}, Cbest = {};
foreach (K −X)-element subset C of S do

for i← (K −X + 1) to K do
Cov ← {e ∈ N : ∃S∈Ce ∈ S} ;
Sbest ← argmaxS∈{S1,...,Sm}\C
{e ∈ N \ Cov : e ∈ S}‖;
C ← C ∪ {Sbest}

Cbest ← better solution among Cbest and C;
return Cbest

Algorithms for the Unrestricted Case
So far we have focused on the MaxCover problem where ele-
ment frequencies were either upper- or lower-bounded. Now
we consider the unrestricted variant of the problem. We give
an exponential-time approximation scheme that, nonethe-
less, is not FPT. The main idea, which is similar to that of
Cygan et. al (2009) and that of Croce and Paschos (2012),
is to solve one part of the problem using a brute-force al-
gorithm and to complete the solution using the greedy ap-
proximation algorithm (the greedy algorithm for the case of
the MaxCover problem; Ageev and Sviridenko’s (1999) al-
gorithm if we focus on MaxVertexCover instance).
Theorem 10. For each MaxCover instance I = (N,S,K)
and each integer X , 0 ≤ X ≤ K, Algorithm 3 com-
putes an (1−X

K e
−1)-approximate solution in time

(
m

K−X
)
+

poly(K,n,m).

Proof. Let I = (N,S,K) be our input instance and let C∗,
C∗ ⊆ S, be some optimal solution. Let C∗X be a subset of
(K −X)-elements from C∗ that together cover the greatest
number of the elements. The sets from C∗X cover at least
a fraction K−X

K of all the elements covered by C∗. Con-
sider the problem of covering N \ ⋃S∈C∗X S with X sets
from (S \ C∗X). Since C∗ \ C∗X is an optimal solution for
this problem and the greedy algorithm has approximation
ratio 1 − 1

e , Algorithm 3’s approximation ratio is at least
(K−XK + X

K (1− 1
e )) = (1− X

K e
−1).

Corollary 11. There exists an (1 − X
4K )-approximation

algorithm for MaxVertexCover problem running in time(
m

K−X
)

+ poly(K,n,m)

It is interesting to compare our Algorithm 3, in the vari-
ant tailored to the MaxVertexCover problem, to a similar al-
gorithm of Croce and Paschos (2012). Let Aa and Ae be,
respectively, an approximation algorithm and an exact al-
gorithm for MaxVertexCover. For a given value X , the al-
gorithm of Croce and Paschos (2012) first uses Ae to find
an optimal solution that uses K − X vertices (out of the
K allowed in the solution) and then solves the remaining
part of the problem using Aa. If βa is the approximation ra-
tio of Aa, then this approach gives a (XK + βa(1 − X

K )2)-
approximation algorithm. (Our algorithm is very similar,
but we run the approximation algorithm for every possible
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Figure 1: The comparison of the approximation ratios of Al-
gorithm 3 and the algorithm of Croce and Paschos (2012)
for MaxVertexCover.

choice of K − X initial vertices, and not only for those
K −X vertices that cover most edges.)

In Figure 1 we compare the approximation ratios of Al-
gorithm 3 (version from Corollary 11) and of the algorithm
of Croce and Paschos. The x-axis represents the parameter
K−X
K , measuring the fraction of the solution obtained using

the exact algorithm (for 0 we use the approximation algo-
rithm alone and for 1 we use the exact algorithm alone). On
the y-axis we give approximation ratio of each algorithm.
For both algorithms we use the 3

4 -approximation algorithm
of Ageev and Sviridenko (1999) and the brute-force algo-
rithm, so for each X , the exponential part of their running
times is the same (as far as we know, brute-force search is
the fastest polynomial-space exact algorithm for the prob-
lem; a faster algorithm, due to Cai (2008), uses exponential
space). Under such set-up, Algorithm 3 is superior; trying
the approximation algorithm for each initial choice ofK−X
vertices creates more opportunities to do well.

Conclusions and Future Work

We have studied approximation algorithms for Chamberlin–
Courant voting rule, for the case of approval utilties. We
have phrased our technical results in terms of the Max-
Cover problem, but now we take a step back and consider
the results from the point of view of multiwinner voting:
As long as the elected committee is small (that is, the value
K under MaxCover is small) and each voter approves of
a small, bounded, number of voters, Chamberlin–Courant
rule can be very well approximated (the exponential parts
of the running times of our algorithms is low in this set-
ting). If we require that each voter approves of some frac-
tion of the candidates, the standard greedy algorithm be-
comes a polynomial-time approximation scheme. For the
completely unrestricted case, we gave an exponential ap-
proximation scheme, in which it is possible to seamlessly
exchange the quality of the solution for the running time.
Our most interesting open problem is to establish the exact
complexity of α-MaxCover.
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