
Distributing Coalition Value Calculations to Coalition Members

Luke Riley, Katie Atkinson, Paul E. Dunne and Terry R. Payne
Department of Computer Science

University of Liverpool
Liverpool, UK

{L.J.Riley, K.M.Atkinson, P.E.Dunne, T.R.Payne}@liverpool.ac.uk

Abstract
Within characteristic function games, agents have the option
of joining one of many different coalitions, based on the util-
ity value of each candidate coalition. However, determining
this utility value can be computationally complex since the
number of coalitions increases exponentially with the number
of agents available. Various approaches have been proposed
that mediate this problem by distributing the computational
load so that each agent calculates only a subset of coalition
values. However, current approaches are either highly inef-
ficient due to redundant calculations, or make the benevo-
lence assumption (i.e. are not suitable for adversarial environ-
ments). We introduce DCG, a novel algorithm that distributes
the calculations of coalition utility values across a commu-
nity of agents, such that: (i) no inter-agent communication
is required; (ii) the coalition value calculations are (approx-
imately) equally partitioned into shares, one for each agent;
(iii) the utility value is calculated only once for each coali-
tion, thus redundant calculations are eliminated; (iv) there is
an equal number of operations for agents with equal sized
shares; and (v) an agent is only allocated those coalitions in
which it is a potential member. The DCG algorithm is pre-
sented and illustrated by means of an example. We formally
prove that our approach allocates all of the coalitions to the
agents, and that each coalition is assigned once and only once.

1 Introduction
Coalition formation is the process by which a number of
agents partition themselves into temporary teams (i.e. coali-
tions), where each coalition collaborates to achieve mutu-
ally beneficial results. Coalition formation is a well stud-
ied research area in multi-agent systems and has a wide
range of potential applications, including: electronic auc-
tions/market places; communication networks; the smart
grid; grid computing; distributed vehicle routing; sensor
networks; multi-agent planning; and computational trust
(Chalkiadakis, Elkind, and Wooldridge 2011).

Coalition formation can be divided into a three stage pro-
cess (Sandholm et al. 1999): (1) calculating the utility value
of each possible coalition; (2) finding a satisfiable set of
coalitions; and (3) dividing the utility values of the coali-
tions into a stable distribution (where no agent can object
to its assigned payoff). The first stage of coalition formation

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

requires the agents to calculate the utility value of each coali-
tion, which can be computationally complex as the number
of coalitions that can form given a population of n agents
is 2n − 1. Furthermore, the complexity of calculating an in-
dividual coalition’s value can vary, and potentially be ex-
ponential (Sandholm and Lesser 1997). Thus, even if each
agent only calculates the value of those coalitions that it can
potentially form (i.e. 2n

2), then this can still result in a signif-
icant overlap of calculations, such that this redundancy can
converge to 100%, as limn→∞

2n−1
n2(n−1) = 0.

Various studies have explored how to distribute coalition
value calculations amongst agents, to reduce the computa-
tion cost for each agent, and possibly reduce the overall
computation time (Shehory and Kraus 1995; 1996; 1998;
Rahwan and Jennings 2007; Vinyals et al. 2012). Further-
more, as the agents themselves can potentially determine the
value of the coalitions in which they participate, this elim-
inates the need for a trusted central authority/independent
third-party responsible for determining the value calcula-
tions. However, existing approaches are not necessarily ef-
ficient: some only guarantee that every coalition value will
be calculated at least once, potentially resulting in redun-
dant calculations (Shehory and Kraus 1995; 1996; 1998);
while others distribute the calculations unequally amongst
the agents (Vinyals et al. 2012). The approach given in (Rah-
wan and Jennings 2007) does not suffer from these deficien-
cies but allocates some coalitions to agents that do not ap-
pear in them, which can be undesirable in adversarial envi-
ronments where deception may occur.

We present a novel algorithm for distributing coalition
value calculations, named the Distributed Coalition Genera-
tion (DCG) algorithm, that addresses these limitations by al-
locating all coalitions to agents that appear in them and bal-
ancing the computational load approximately evenly (wrt.
share size and number of operations) across the agents. This
process is completed without inter-agent communication in
a way that eliminates redundant coalition value calculations.

Furthermore, the DCG algorithm can be combined with
other approaches to complete the coalition formation pro-
cess. For example, if agents want to find a core/ε-core sta-
ble solution (Osbourne and Rubinstein 1994), then DCG
can be used as input to algorithms, such as (Cesco 1998;
Wu 1977), that determine such solutions.

In this paper, the distributed coalition value calculation

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

2117

problem is presented and related work critiqued in Section 2.
Section 3 describes the underlying coalition ordering mech-
anism and provides an example, while the DCG algorithm
is presented in Section 4. Proofs for the properties of this
work are presented in Section 5 which focus on how: (a) all
coalitions are assigned; and (b) all coalitions are assigned
once and only once. After the DCG algorithm and related
theory has been fully introduced, comparisons with related
work are made in Section 6. Possible lines of future work are
detailed in Section 7 and the paper concludes in Section 8.

2 Related Work
The characteristic function game model of coalition forma-
tion (Osbourne and Rubinstein 1994) is denoted: G = 〈N, v〉
where N = {1, 2, ..., n} is the set of agents, and v is the
characteristic function (v(2N) → R) which assigns every
possible coalition a real numeric payoff. To find an outcome
of a characteristic function game, the value of each coali-
tion needs to be calculated and the coalitions compared. As
it assumes that each coalition’s value is static, determinis-
tic and independent of the other coalitions that could form,
a characteristic function game has the property that each
coalition’s value needs to be calculated only once.

This property was originally exploited by Shehory and
Kraus (Shehory and Kraus 1995; 1996; 1998) to reduce
the number of redundant calculations. Instead of each agent
calculating each coalition value in which it is a member,
they introduced an algorithm (referred to here as SK) where
each agent negotiated over which coalitions (that also com-
prised that agent) should be allocated to its value calculation
share. However, this algorithm suffers from several limita-
tions (Rahwan and Jennings 2007): (i) many messages need
to be sent between the agents to facilitate the negotiation; (ii)
there is no guarantee that the number of coalition value cal-
culations performed by each agent is approximately equal;
and (iii) there is no guarantee that every coalition value is
calculated once and only once (SK only guarantees that ev-
ery coalition value will be calculated at least once).

Rahwan and Jennings argued that the SK algorithm
utilised the resources of the system inefficiently, and ad-
dressed this by proposing the Distributed Coalition Value
Calculation algorithm (DCVC) (Rahwan and Jennings
2007). Their algorithm grouped coalitions into lists, and di-
vided the lists into shares, one for each agent. They showed
that: (i) no inter-agent communication was necessary; (ii)
the agents’ coalition value calculation shares were approx-
imately equal; and (iii) each coalition value was calculated
once and only once. However, a weakness of DCVC was that
a coalition assigned to an agent i’s share may not include i.

More recently, Vinyals et al. (Vinyals et al. 2012) pro-
posed an algorithm (referred to as VBFR) that distributes
the coalition value calculations to agents when they are con-
nected in a network, with the property that each coalition
must include member agents that are connected together in
a graph. However their algorithm failed to evenly distribute
the coalition value calculations (for a fully connected graph),
because the number of calculations that an agent had to per-
form was correlated with an ID associated to each agent.

3 Preliminaries and Introductory Example
The DCG algorithm (in Section 4) exploits a novel method
for representing and ordering coalitions, such that different
coalitions can be allocated to each agent, in such a way as
to facilitate the construction of shares (one per agent) that
eliminate redundant coalition value calculations.

Ordering and Integer Partitions
In this paper, a coalition C ⊆ {1, 2, ..., n} is represented as
an ordered sequence of identifiers (IDs) that form a coali-
tion array, where no agent appears more than once in any
coalition, and where the coalition size s = |C|. An integer
increment value between two contiguous agents i and j in a
coalition array corresponds to the difference in the agents’
IDs1. For example, if we have a coalition array [3, 6, 1], then
there are two integer increment values between the ID pairs
3, 6 and 6, 1. There is an additional increment between the
last and the first agent IDs in the array; i.e. the ID pair 1, 3.
The integer increment value between two agents i and j can
be decomposed into a baseline increment (which is assumed
to be 1, since agent IDs are unique) and an offset increment,
denoted ti = (j − i) − 1 mod n (i.e. integers modulo n).
Thus, if ti = 0, the difference between the IDs for agents i
and j corresponds only to the baseline increment; whereas if
ti 6= 0, then ti represents an additional offset increment. An
increment array (IA) denoted t = 〈t0, t1, ... , ts−1〉 there-
fore represents the offset increments between the identifiers
of the coalition array. For example, given the coalition array
[3, 6, 1], the corresponding IA will be 〈2, 0, 1〉.

An integer partition of x is a combination of positive in-
tegers that add up to exactly x. The DCG algorithm uses
integer partitions to identify the offset increments between
consecutive pairs of IDs in the coalition array. The full set
of integer partitions is denoted I(n− s); for example, given
n = 6 and s = 3, I(n − s) = {{3}, {2, 1}, {1, 1, 1}}. In-
crement arrays can be formed from an integer partition I for
coalitions of size s, only when I ∈ I(n− s) and |I| ≤ s, by
including additional zero values to satisfy the property:

s−1∑
i=0

ti = (n− s)

For example, when n = 6 and s = 3, the integer parti-
tion {2, 1} could be used to form various possible increment
arrays: 〈2, 1, 0〉, 〈2, 0, 1〉, etc. The integer increment values
corresponding to the increment array 〈2, 1, 0〉 result from the
two following coalition arrays [1, 4, 6] and [2, 5, 1], as the ID
pairs 1, 4 and 2, 5 share (2 + 1), whereas the ID pairs 4, 6
and 5, 1 share (1 + 1). As IAs are shared between coalition
arrays, the new ordering method introduced in this paper di-
vides the coalitions into 2-dimensional lists Ls,t.

Each increment array t represents the necessary offset in-
crements from one agent ID of the coalition array to the next.
For agent i to generate a coalition C assigned to itself using
t, the first element of the coalition array will be i to motivate

1As agent IDs are in the range [1, n], IDs modified using an
integer increment will result in an ID modulo n. The agent ID n
will be returned when the ID 0 is found because 0 ≡ n (mod n).

2118

L3

L3,〈3,0,0〉 L3,〈2,1,0〉 L3,〈2,0,1〉 L3,〈1,1,1〉
CV1 1,5,6 1,4,6 1,4,5
CV2 2,6,1 2,5,1 2,5,6
CV3 3,1,2 3,6,2 3,6,1
CV4 4,2,3 4,1,3 4,1,2 4,6,2
CV5 5,3,4 5,2,4 5,2,3 5,1,3
CV6 6,4,5 6,3,5 6,3,4

Table 1: Coalition value calculation shares (CV) for all
coalitions of size s = 3, when there are n = 6 agents.

i to compute the coalition’s value. The second agent ID j
in the coalition array will be = (i+ t0 + 1) mod n; and the
third agent ID k will be = ((i+t0+1)+t1+1) mod n. This
continues until the coalition’s size s limit has been reached.

Table 1 presents a subset of the coalition arrays, grouped
by IAs of size s = 3 for n = 6 agents. Each column rep-
resents a single list Ls,t for some IA t, whereas the rows
present the coalition value calculation shares (CVs) com-
prising the different coalition arrays with a common first el-
ement (whereCVi is agent i’s share). The table represents all
coalition arrays necessary for coalitions of size s = 3. To as-
sign all of the coalitions, multiple IAs are needed; however,
every coalition is assigned once and only once. Note that an
integer partition may form more than one increment array;
for example the two increment arrays 〈2, 1, 0〉 and 〈2, 0, 1〉
are formed from the {2,1} integer partition.

Four different IAs are required for all the coalitions to be
allocated in the above example. The IA tx = 〈2, 0, 1〉 is valid
as {2, 1} is a candidate integer partition of I(6 − 3) that
satisfies |{2, 1}| ≤ s = 3. Yet as |{2, 1}| 6= 3, additional
zeros are needed to fill up the IA to make the IA the required
size s. If agent 2 used tx, the coalition array would comprise:
= {i, (i+ tx0 + 1) mod n, ((i+ tx0 + 1) + tx1 + 1) mod n}
= {2, (2 + 2 + 1) mod 6, ((2 + 2 + 1) + 0 + 1) mod 6}
= {2, 5, 0} ≡ {2, 5, 6}
In the above example, the ID 0 was generated. As 0 ≡ n
(mod n), this is replaced with ID = n = 6 in this coalition.

Each IA should be used n times (once for each agent) un-
less the IA includes a sequence that is repeated throughout
the IA. In Table 1, 〈1, 1, 1〉 is the only IA with a repeated
sequence, with {1} being repeated m = 3 times. The num-
ber of times an IA with a repeating sequence should be used
relates to the size of the repeating sequence and is given by
r (introduced in the next subsection). The choice of agents
that should use this type of IA will depend on the allocation
of other coalitions, and is described in Section 4.

If any other IA was used other than the ones listed in Ta-
ble 1, it would result in a coalition’s value being calculated
more than once. For example, if agent 6 used ty = 〈1, 2, 0〉,
the coalition array [6, 2, 5] would be generated despite this
coalition being generated by agent 2 using tx = 〈2, 0, 1〉.

A Distributed Method for Coalition Generation
The period of t, denoted by π(t) is defined as:

min
1≤p≤s

t =〈t0, t1, ..., tp−1, t0, t1, ..., tp−1, ..., t0, t1, ..., tp−1〉

Hence, t is formed by m identical copies of a sequence
of length π(t). Given C ⊆ {1, 2, ... , n}, an agent ID ag
generates C from ag if C = {ag1, ag2, ... , ags} and:

agi =

{
ag if i = 1
(ag + φi) mod n if (ag + φi) mod n 6= 0
n if (ag + φi) mod n = 0

where:

φi =
i−2∑
k=0

tk + (i− 1)

Additionally, C(ag, t) denotes the subset of {1, 2, ... , n}
generated by the IA t from agent ag. It is possible to demon-
strate that each t only needs to be used by r = (n× π(t))/s
different agents. If more than r agents use t to generate
a coalition, then repeated coalitions will be generated. For
example, if the chosen IA from Table 1 is tq = 〈1, 1, 1〉
then r = (n × π(tq))/s = (6 × 1)/3 = 6/3 = 2
agents should use tq , which is true as any other agent us-
ing tq would repeat either coalition {1, 3, 5} or {2, 4, 6}. Fi-
nally, if tx and ty generate the same coalition C for two
different agents i, j ∈ C (i.e. C(i, tx) = C(j, ty)), then
tx and ty are classified as belonging to the same equiva-
lence class, denoted tx ≈ ty . For example, the IAs in the
following equation belong to the same equivalence class:
C(2, 〈2, 0, 1〉) = C(6, 〈1, 2, 0〉) = {2, 5, 6}. We write
tx ≈ ty when tx = 〈tyk, ..., t

y
s−1, t

y
0, ..., t

y
k−1〉 for some

0 ≤ k ≤ s − 1. Section 5 proves that rather than consid-
ering every possible IA, it suffices only to consider a single
representative from each equivalence class ≈.

4 The Distributed Coalition Generation
Algorithm

The DCG algorithm used by each agent i to generate all of
its coalitions in its coalition value calculation share is pre-
sented in Algorithm 1. The balance pointer is initialised,
and references the next agent to calculate a coalition’s value.
It is similar to the α pointer in Rahwan and Jennings (2007),
and its use by SingleSize ensures that all the agents’
shares are either equal in size or have a difference in size
of +/− 1. Line 21 allows only the next r agents to calcu-
late a coalition, starting from the agent referred to by the
balance pointer, and continuing in an ascending order. If
agent n (i.e. the agent with the highest ID) is assigned to
calculate a coalition’s value, and z more coalition value cal-
culations are required, then line 21 also allows agents 1 to z
to calculate a coalition’s value.

The DCG algorithm calls SingleSize for every possi-
ble size of the coalitions. This function returns all coalitions
of size s in agent i’s share. The while loop (lines 18-30)
uses a black box function, named build (lines 17 and 29),
to determine the next IA of a new equivalence class. This
new IA is used to generate another coalition for agent i, if i
is one of the next r agents to be assigned a coalition (lines
19 to 23). Regardless of who uses the new IA, the balance
pointer is updated (lines 24-27). When the build function
returns null, this indicates that all the coalitions of size s for
agent i’s calculation share have been found.

2119

Algorithm 1: The Distributed Coalition Generation
(DCG) Algorithm

1: global int balance := 1;
2:
3: function DCG (int n,i) returns 〈Cs〉ns=1;
4: Input: 〈n, i〉 (1 ≤ i ≤ n); where n is the number of

agents and i the agent ID.
5: Output: 〈Cs〉ns=1; Cs = {Cs

1 , C
s
2 , ... , C

s
k},

Cs
j ⊆ {1, 2, ... , n}, |Cs

j | = s; where 〈Cs〉ns=1 is the
collection of coalitions, of all sizes 1 ≤ s ≤ n,
assigned to agent i’s share.

6: begin
7: for (int s = 1; s ≤ n; s++) do
8: Cs := SingleSize(n,s,i);
9: end for

10: return 〈C1, ... , Cn〉;
11: end;
12:
13: function SingleSize (int n,s,i) returns Ci;
14: Input: 〈n, s, i〉 (1 ≤ s ≤ n); where n is the number

of agents, s the size of the coalitions and i the
agent ID.

15: Output: Ci; Ci = {Ci
1, C

i
2, ... , C

i
k},

Ci
j ⊆ {1, 2, ... , n}, |Ci

j | = s; where Ci is the
collection of coalitions (of size s) assigned to agent
i’s share.

16: begin
17: ty := build(n,s,0);
18: while (ty 6= null) do
19: p := π(t);
20: r := (n× p)/s;
21: if (balance ≤ i < balance+ r) or (balance+ r

> n and 1 ≤ i < balance+ r − n) then
22: C := C(i, t);
23: Ci := Ci ∪ C;
24: balance := balance+ r;
25: if balance > n then
26: balance := balance− n;
27: end if
28: end if
29: ty := build(n,s,y+1);
30: end while
31: return 〈Ci1, ... , Cik〉;
32: end

A possible implementation of the black box build func-
tion is presented in Algorithm 2. It relies on an indexing
scheme that defines the function place : t → N0 to map an
IA t = 〈t0, ... , ts−1〉 to a non-negative integer; i.e.

place(〈t0, t1, ... , ts−1〉) =
s−1∑
i=0

(ti × (n− s+ 1)i)

Informally, place(t) treats t as an integer expressed in
base n − s + 1. With this convention, the number of dis-
tinct IAs is bounded by (n− s+1)s. For example, using the

Algorithm 2: One possible method to find representa-
tive IAs from equivalence classes of ≈.

1: function decode (int n,s,k) returns s-tuple;
2: Input: 〈n, s, k〉; where n is the number of agents,
s is the size of the coalition (1 ≤ s ≤ n) and k is
the index position to convert to an s-tuple.

3: Output: 〈t0, t1, ... , ts−1〉 with∑s−1
i=0 ti × (n− s+ 1)i = k

4: begin
5: val := k;
6: for (int index = 0; index < s; index++) do
7: tindex := remainder(val, n− s+ 1);
8: val := (val − tindex)/(n− s+ 1);
9: end for

10: return 〈t0, t1, ... , ts−1〉;
11: end;
12:
13: function build (int n,s,y) returns s-tuple;
14: Input: 〈n, s, y〉; where n is the number of agents,

s is the size of the coalition (1 ≤ s ≤ n) and y is
the index position to start searching from
(0 ≤ y < (n− s+ 1)s+1).

15: Output: 〈tk0 , tk1 , ... , tks−1〉; the next IA of a class
[≈]i not used so far.

16: begin
17: for (int k = y; k < (n− s+ 1)s+1; k ++) do
18: tk = 〈tk0 , ... , tks−1〉 := decode(n,s,k);
19: int tot :=

∑s−1
i=0 tki ;

20: if tot = n− s and ¬Used[k] then
21: Used[k] := true
22: p := π(tk);
23: for (z = p− 1; z > 0; z −−) do
24: Used[place(〈tkz , ..., tks−1, tk0 , ..., tkz−1〉)]

:= true;
25: end for
26: return tk;
27: end if
28: end for
29: return null;
30: end;

place function for the IA tx = 〈2, 1, 0〉, would give the value
val = 2+4+0 = 6 because: (tx0 = 2)× (6− 3+ 1)0 = 2;
(tx1 = 1)×(6−3+1)1 = 4; and (tx2 = 0)×(6−3+1)2 = 0.

This build function finds the next index value k (> y)
of a representative of an equivalence class not used so far,
while decode returns the s-tuple corresponding to the in-
dex value val = k. Each element of the s-tuple returned
by decode is at least 0 and at most n − s; however, the s-
tuple is not necessarily an IA as defined earlier (as it may not
sum to n− s). This build function filters out any s-tuples
returned by the decode function (lines 19-20) that either:
(i) do not sum to n − s; or (ii) are a member of an equiv-
alence class previously used. This build function knows
which equivalence classes have been used so far since all
the indexes of IAs of the same equivalence class are marked

2120

as used in the Boolean Used array (lines 21-25). When this
build function finds an s-tuple that is not filtered out by (i)
and (ii), then this s-tuple is an IA of an equivalence class not
previously used, and is returned (line 26). If no IA of a new
equivalence class can be found, then null is returned (line
29).

To illustrate how the decode function works: decod-
ing val = 6 gives as expected tx = 〈2, 1, 0〉, as: tx0 =
remainder(6, 6 − 3 + 1) = remainder(6, 4) = 2 while
val becomes val := (6− 2)/(6− 3 + 1) = 4/4 = 1; tx1 =
remainder(1, 6 − 3 + 1) = remainder(1, 4) = 1 while
val becomes val := (1 − 1)/(6 − 3 + 1) = 0/4 = 0; and
tx2 = remainder(0, 6− 3 + 1) = remainder(0, 4) = 0.

Finally, if all the agents are required to only store one
coalition in memory at a time (i.e. perform DCG with min-
imal memory requirements), then the following modifica-
tions to Algorithm 1 need to be made: (a) do not use the
〈Cs〉ns=1 data object of line 3 and 10; (b) do not use the Ci
data object of line 15 and 31; and (c) replace line 23 with
perform v(C).

5 Theoretical Evaluation
To evaluate the DCG algorithm, we prove that the algorithm
will generate all of the coalitions possible for a community
of n agents; and that each coalition is assigned once and only
once, thus eliminating redundancy. We start with the follow-
ing Lemma that shows that all coalitions will be generated:
Lemma 5.1. Let C ⊆ {1, 2, ... , n} with |C| = s. There is
an IA t and i ∈ C such that C = C(i, t).

Proof. Let C = {x, x0, x1, ... , xs−2}. Without loss of gen-
erality we may assume:

x < x0 < x1 < · · · < xi < xi+1 < · · · < xs−2

It suffices to find t = 〈t0, ... , ts−1〉 with C(x, t) = C and∑s−1
i=0 ti = n− s, i.e.:

t0 = x0 − (x+ 1)

· · ·

tk = xk −

(
k−1∑
i=0

ti + x+ k + 1

)
· · ·

ts−1 = n−
s−2∑
i=0

ti

The next Lemma shows that IAs of an equivalent class gen-
erate the same coalitions:
Lemma 5.2. If t ≈ u then

n⋃
i=1

{ C(i, t) } =
n⋃

i=1

{ C(i, u) }

Proof. Without loss of generality we may assume that t ≈ u
is witnessed by the choice k = s− 1, i.e.

〈u0, u1, ... , us−1〉 = 〈ts−1, t0, t1, ... , ts−3, ts−2〉

Define ϕr for 1 ≤ r ≤ s+ 1

ϕr =

{
0 if r = 1∑r−2

k=0 tk + (r − 1) if 2 ≤ r ≤ s+ 1

Note that ϕs+1 = n. Define ψr for 1 ≤ r ≤ s+ 1 via

ψr =

{
0 if r = 1

ts−1 +
∑r−3

k=0 tk + r−1 if 2≤ r ≤ s+1

Comparing respective terms we see that for all 2 ≤ k ≤ s:

ψk = ϕk + (ts−1 − tk−2)

This leads to the following:

C(i, t) =

{
C(n− ts−1 + i–1, u) if 1≤ i ≤ ts−1+1
C(i− ts−1−1, u) if ts−1+2≤ i ≤ n

To see this, consider when 1 ≤ i ≤ ts−1 + 1. We have,

C(i, t) =
s⋃

k=1

{i+ ϕk}

When λ = n− ts−1 + i− 1 the above is claimed to be:

C(λ, u) =
s⋃

k=1

{λ+ ψk}

= {λ} ∪
s⋃

k=2

{λ+ ϕk + ts−1 − tk−2}

Consider the terms:

n− ts−1 + i− 1 + ϕk + ts−1 − tk−2

For 2 ≤ k ≤ s, from the fact that ϕk =
∑k−2

j=0 tj + k − 1,
these are equal to:

n− ts−1+ i−1+
k−3∑
j=0

tj + k−1 + ts−1 = n+ i+ϕk−1

In total we have, for 1 ≤ i ≤ ts−1 + 1:

C(i, t) =
s⋃

k=1

{i+ ϕk}

C(λ, u) = {n− ts−1 + i− 1} ∪
s⋃

k=2

{n+ i+ ϕk−1}

Given that n+ i+ϕk−1 and i+ϕk−1 are congruent modulo
n, which are elements ofC(i, t), the only terms unaccounted
for are {n−ts−1+ i−1} ∈ C(λ, u) and {i+ϕs} ∈ C(i, t).
For these, however,

i+ ϕs = i+
s−2∑
j=0

tj + s− 1

= i+ (n− s− ts−1) + s− 1

= i+ n− ts−1 − 1

2121

When ts−1 +2 ≤ i ≤ n and ω = i− ts−1 − 1, it is claimed
that

C(i, t) =
s⋃

k=1

{i+ ϕk}

corresponds to:

C(ω, u) =
s⋃

k=1

{ω + ψk}

= {ω} ∪
s⋃

k=2

{ω + ϕk + ts−1 − tk−2}

Now inspecting the terms for 2 ≤ k ≤ s:

i− ts−1 − 1 + ϕk + ts−1 − tk−2
These, again, simplify to i+ ϕk−1, so that

C(i, t) =
s⋃

k=1

{i+ ϕk}

C(ω, u) = {ω} ∪
s⋃

k=2

{i+ ϕk−1}

When 1 ≤ k ≤ s−1, the term i+ϕk appears in both C(i, t)
andC(ω, u). For the terms i+ϕs ∈ C(i, t) and ω ∈ C(ω, u)
we have already seen that i + ϕs = i + n − ts−1 − 1 is
congruent modulo n with i− ts−1−1 = ω. This establishes
the claim of the Lemma.

Lemma 5.2 shows that IAs belonging to the same equiva-
lence class of ≈ generate exactly the same set of coalitions.
Our next two results establish that this is the only way in
which two distinct IAs can produce the same coalition.
Lemma 5.3. Let C = {x1, x2, ... , xi, ... , xs} and C =
C(xi, t) with xi < xi+1 for all 1 ≤ i < s. There is an
IA u, for which t ≈ u and C(x1, u) generates C in strictly
increasing ordering of xi, i.e. ∀ 2 ≤ i ≤ s:

xi ∈

{
x1 +

i−2∑
k=0

ui + i− 1, x1 +
i−2∑
k=0

ui + i− 1− n

}
Proof. Given t, suppose:

C(xi, t) = {x1, x2, ... , xi, ... , xs}

First observe that the terms

xi +
r−2∑
k=0

tk + r − 1 = xi + ϕr

are strictly increasing. It follows that if xi 6= x1 there must
be a unique index, p, for which:

xi + ϕr is
{
≤ n if r < p
> n if r ≥ p

In consequence, x1 = xi + ϕp − n otherwise we cannot
have x1 ∈ C(xi, t). More generally, it must hold that:

xk = xi + ϕp+k−1 − n ∀ 1 ≤ k ≤ s− p+ 1
xk = xi + ϕp−(s−k)−1 ∀ s− p+ 2 ≤ k ≤ s

This, however, corresponds to the behaviour of the IA u,
whose definition is:

u = 〈tp+1, tp+2, ... , tp+k, ... , ts, t0, ... , tp〉

Clearly u ≈ t and C(x1, u) = C(xi, t) as claimed.

As a consequence of Lemma 5.3 we obtain:

Lemma 5.4. Let t and u be IAs for which t 6≈ u, then:
n⋃

i=1

{C(i, t)}
⋂ n⋃

i=1

{C(i, u)} = ∅

Proof. Suppose the contrary and that C = {x1, ... , xs} can
be generated by C(xi, t) and C(xj , u) for choices of t and
u of different equivalence classes of≈. As a consequence of
Lemma 5.3 we know that there are IAs, t′ and u′ for which:

t ≈ t′, u ≈ u′ and
C(x1, t

′) = C(xi, t) = C(xj , u) = C(x1, u
′)

Furthermore, C(x1, t′) and C(x1, u′) produce the elements
of C in increasing ordering of xi ∈ C. This, however, is
only possible if

xi = x1 +
i−2∑
k=0

t′k + i− 1 = x1 +
i−2∑
k=0

u′k + i− 1

that is, t′i = u′i for each 0 ≤ i ≤ s−1. This, however, implies
that t ≈ u, in contradiction to our starting premise.

Finally, the following Theorem states that each IA chosen
by the DCG algorithm is required to be used r times.

Theorem 5.5. For any IA t, and for all 1 ≤ i ≤ j ≤ n,

C(i, t) = C(j, t)⇔

∃ 0 ≤ r ≤ (n− i)s
nπ(t)

: j = i+ r

(
nπ(t)

s

)
Proof. We show that if and only if j = i + (rnπ(t)/s) for
r in the range stated, then C(i, t) and C(j, t) are identical.
This is completed using the previously introduced Lemmas.
The proof is omitted for brevity.

6 Comparison to Related Work
Table 2 shows that unlike related approaches (Section 2), the
DCG algorithm satisfies all of the following properties:

i Communication is eliminated as the algorithm deter-
mines the allocation of coalitions to each agent. Thus,
no further coordination between the agents is necessary.

ii The inclusion of the balance pointer ensures that agents
calculate approximately equal shares of coalitions, as it
minimises the maximum difference between the size of
any two agents’ shares (to one).

iii Redundancy is eliminated as: (a) only one IA of each
equivalence class is used; (b) each IA of a new equiva-
lence class is used only r times; and (c) IAs of different
equivalence classes cannot generate the same coalition.

2122

Property SK DCVC VBFR DCG
Eliminates Comms. No Yes Yes Yes
Approx. Equal Shares No Yes No Yes
Eliminates Redundancy No Yes Yes Yes
Equal Operations No No No Yes
Coalition Self Assessed Yes No Yes Yes

Table 2: A comparison of the properties of the DCG algo-
rithm and the three related algorithms (Section 2).

iv An equal number of operations will be performed by
agents that are allocated equal sized shares, as each IA
requires the exact same number of operations of addi-
tions to find the corresponding coalition.

v Every coalition is assessed by one of its member agents
as the first agent generated for each coalition in agent i’s
allocated share is agent i itself.

The DCG algorithm is better suited for adversarial en-
vironments compared to the related approaches, as one of
the agents in each coalition will be allocated that coali-
tion’s value calculation, while DCG additionally balances
the value calculations efficiently across the community of
agents in a manner that incurs no communication overheads.

7 Future Work
There are many intriguing avenues for future work. The
DCG algorithm could be exploited by distributed coalition
structure generation (CSG) algorithms to find the optimal
coalition structure. The first such algorithm for solving the
CSG problem optimally was D-IP (Michalak et al. 2010),
which used the DCVC algorithm (Rahwan and Jennings
2007) as input. Using DCG as input to a distributed CSG al-
gorithm could result in new and interesting properties com-
pared to D-IP.

In competitive or adversarial environments, there is a pos-
sibility that self-interested agents may attempt to deceive
others to gain an advantage. Within our DCG algorithm,
an agent may benefit by artificially increasing the value of
one (or more) of its coalition value calculations; however,
we considered deception out of scope for this paper, and fo-
cussed instead on the properties of the DCG algorithm itself.
An interesting line of research would be to investigate how
to make DCG incentive compatible2 or near-incentive com-
patible3 (Blankenburg et al. 2005).

Finally, an investigation is underway to determine an opti-
mal approach (in terms of efficiency) for the black box build
function that is used within DCG. Preliminary results sug-
gest that the optimal approach will run in time according to
the number of equivalence classes of IAs and with storage
requirements according to the number of agents.

8 Conclusions
In this paper, the Distributed Coalition Generation Algo-
rithm was presented that distributes the coalition value cal-
culations across a community of agents. This algorithm is

2Where the agents fare best when they are truthful.
3Where the agents cannot determine how to lie profitably.

based on a mechanism that exploits integer partitions to gen-
erate increment arrays that represent the difference between
agent IDs when a coalition is represented in an ordered se-
quence. The algorithm has been evaluated theoretically, re-
sulting in the proofs that: (a) all coalitions are assigned; and
(b) each coalition is assigned once and only once.

9 Acknowledgements
Luke Riley is grateful for support from the EPSRC. We also
thank the anonymous reviewers for their useful comments.

References
Blankenburg, B.; Dash, R. K.; Ramchurn, S. D.; Klusch, M.;
and Jennings, N. R. 2005. Trusted kernel-based coalition
formation. In Proceedings of the 4th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS), 989–996.
Cesco, J. C. 1998. A convergent transfer scheme to the core
of a TU-game. Revista de Matematicas Aplicadas 19:23–35.
Chalkiadakis, G.; Elkind, E.; and Wooldridge, M. 2011.
Computational Aspects of Cooperative Game Theory. Mor-
gan & Claypool Publishers.
Michalak, T.; Sroka, J.; Rahwan, T.; Wooldridge, M.;
McBurney, P.; and Jennings, N. R. 2010. A distributed al-
gorithm for anytime coalition structure generation. In Pro-
ceedings of the 9th International Conference on Autonomous
Agents and Multiagent System (AAMAS), 1007–1014.
Osbourne, M. J., and Rubinstein, A. 1994. A Course in
Game Theory. MIT Press.
Rahwan, T., and Jennings, N. R. 2007. An algorithm for
distributing coalition value calculations among cooperating
agents. Artificial Intelligence 171:535–567.
Sandholm, T. W., and Lesser, V. R. 1997. Coalitions
among computationally bounded agents. Artificial Intelli-
gence 94:99–137.
Sandholm, T. W.; Larson, K.; Andersson, M.; Shehory, O.;
and Tohme, F. 1999. Coalition structure generation with
worst case guarantees. Artificial Intelligence 111:209–238.
Shehory, O., and Kraus, S. 1995. Task allocation via coali-
tion formation among autonomous-agents. In Proceedings
of the 14th International Joint Conference on Artificial In-
telligence (IJCAI), 655–661.
Shehory, O., and Kraus, S. 1996. Formation of overlap-
ping coalitions for precedence-order task-execution among
autonomous agents. In Proceedings of the 2nd International
Conference on Multiagent Systems (ICMAS), 330–337.
Shehory, O., and Kraus, S. 1998. Methods for task allo-
cation via agent coalition formation. Artificial Intelligence
101:165–200.
Vinyals, M.; Bistaffa, F.; Farinelli, A.; and Rogers, A. 2012.
Coalitional energy purchasing in the smart grid. In Proceed-
ings of the IEEE International Energy Conference & Exhi-
bition (ENERGYCON), 848–853.
Wu, L. S.-Y. 1977. A dynamic theory for the class of games
with nonempty cores. SIAM Journal on Applied Mathemat-
ics 32:328–338.

2123

