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Abstract

In this paper, we design a distributed mechanism that is
able to create a social convention within a large conven-
tion space for multiagent systems (MAS) operating on
various topologies. Specifically, we investigate a lan-
guage coordination problem in which agents in a dy-
namic MAS construct a common lexicon in a decen-
tralized fashion. Agent interactions are modeled using
a language game where every agent repeatedly plays
with its neighbors. Each agent stochastically updates
its lexicons based on the utility values of the received
lexicons from its immediate neighbors. We present a
novel topology-aware utility computation mechanism
and equip the agents with the ability to reorganize their
neighborhood based on this utility estimate to expedite
the convention formation process. Extensive simula-
tion results indicate that our proposed mechanism is
both effective (able to converge into a large majority
convention state with more than 90% agents sharing a
high-quality lexicon) and efficient (faster) as compared
to state-of-the-art approaches for social conventions in
large convention spaces.

Introduction
Coordination of agent activities in large multiagent sys-
tems (MAS) is central to cooperative goal achievement.
A social convention is a technique for increasing coordi-
nation (DeVylder 2007; Sugawara 2011). It helps to re-
duce the overhead of coordination by simplifying agents’
decision-making process through the determination of ac-
tion choices (Walker and Wooldridge 1995). Therefore, es-
tablishing a social convention acts as a useful mechanism
for deciding the dominant coordination strategy for building
consensus in MAS. For example, in online social networks
(such as in Facebook) creation of privacy-setting policy con-
vention for third party applications could be useful for both
the users and the app developers. It could help by tailor-
ing apps based on the conventions and reduce users privacy
risks (Hasan 2013).

Online convention formation mechanisms are suitable for
large and open MAS (Delgado 2002; Pujol et al. 2005;
Villatoro, Sen, and Sabater-Mir 2009; Hasan and Raja
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2013). However, these mechanisms deal with a relatively
simple convention space in which a global convention is
chosen from two possible convention alternatives or con-
vention seeds. In large and open MAS, other challenging
issues need to be considered. First, multiple convention
seeds may exist and hence the convention space could be
complex. Second, it is possible that the existing conven-
tion seeds are not appropriate or good enough. Therefore,
agents may need to create new convention seeds as well as
form a higher-quality convention. Two significant mecha-
nisms for solving this type of convention problem are de-
scribed in (Salazar, Rodriguez-Aguilar, and Arcos 2010) and
in (Franks, Griffiths, and Jhumka 2013)1. They model the
MAS using complex small-world and scale-free networks.
SRA uses a spreading based mechanism while FGJ aug-
ments this process by using a set of privileged agents with
high-quality convention seeds. However, both approaches
assume a static agent network and are unable to form a Large
Majority Convention State (henceforth referred as LMCS for
short) in which 90% or more agents adopt a single conven-
tion in a reasonable amount of time2.

In this paper, our goal is to design a convention formation
mechanism in a dynamic MAS suitable for large convention
space that is able to overcome the limitations of SRA and
FGJ. Specifically, the intended mechanism should be (i) ef-
fective (able to converge into LMCS as well as the quality
of the most common convention is high) and (ii) efficient
(speed of reaching LMCS is fast). Similar to FGJ, in order
to validate our approach, we investigate a language coor-
dination problem that captures the challenges involved in
creating high-quality conventions in large and open MAS.

To study the relevance of our contribution to practical ap-
plications, we consider a large number of agents in the MAS
being organized as various types of networks that include
regular, random (RN), small-world (SW) and scale-free (SF)
topologies. However, we emphasize the scale-free topology
that is ubiquitous in social and artificial systems.

In our approach, every agent starts off with an internal lex-

1Henceforth these two approaches are referred as SRA and FGJ
respectively.

2In SRA as well as FGJ, the time-period for investigating the
emergence of a lexicon convention is comprised of 100,000 time-
steps of the simulation. We use this duration as a definition of a
reasonable amount of time for convergence to occur.
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icon that consists of a set of concepts and randomly assigned
word mappings. These agents engage in repeated and pair-
wise interactions with their immediate neighbors. Agents’
interactions are modeled using a language game in which
they send lexicons to their neighbors and update their lexi-
cons based on the utility values of the received lexicons. We
propose a topology-aware utility computation mechanism
that enables the agents to use contextual knowledge to ex-
pedite the convention formation process. According to this
mechanism, if agents with the largest degree in their neigh-
borhood have a high quality lexicon, they would increase
the utility of their lexicons in proportion to their degree. We
use the “mass media person” metaphor from social networks
in which influential individuals have stronger influence than
the average person (Kim et al. 2002). We enable the socially
influential high-utility-lexicon agents to bias their neighbors
towards accepting their lexicons. This “network thinking”
phenomenon significantly expedites the convention forma-
tion process.

To further augment this process, we use a socially-
inspired technique called the power of diversity. In (Page
2007), it has been shown that while diversity improves or-
ganizational productivity from a social science perspective,
not all diversity is useful. In fact, the benefits of diver-
sity rests on a certain set of criteria. Agents in our work
are equipped to bring diversity in the population through
a novel network reorganization technique that is based on
the lexicon utility. An agent stochastically removes the
smallest-lexicon-utility-neighbor from its neighborhood and
rewires with a randomly chosen neighbor of the removed
agent. This increases the chance of getting a better-lexicon-
utility-neighbor in the neighborhood and thereby improves
the quality of lexicons. We show that the topology-aware
mechanism along with link diversity expedites the emer-
gence of a stable and high-quality convention.

The main contributions of this paper are:

• Equipping agents to use “network thinking” to control the
dynamical process of convention formation suitable for a
large convention space.

• Modeling dynamic topologies through a novel network
reorganization technique.

• Forming a large majority convention much faster than
the existing state-of-the-art approaches and ensuring high
quality of the convention.

• Extensive experimental analysis verifying our topology-
aware mechanism.

The remainder of this paper is organized as follows. First,
we discuss the relevant literature in the next section and
formally frame the problem of convention emergence in
the subsequent section. Then we present our proposed ap-
proach, followed by an extensive computational study. Fi-
nally we conclude with a summary of our observations and
discussion of future work.

Related Works
A survey of existing approaches for convention formation
in normative MAS (NorMAS) is provided in (Savarimuthu

and Cranefield 2011). Most of the mechanisms presented
here are limited to two-dimensional convention space and
static topology. One exception is (Savarimuthu et al. 2009)
where the role of dynamic network topologies over norm
spreading and emergence is investigated. They used a dy-
namic network to model the agent society. Agent interac-
tions are captured using Ultimatum Game and a role model
based mechanism is used to solve the convention problem.
However, their approach is limited to just a grid topology.

A topology-aware convention selection mechanism is pre-
sented in (Hasan, Abdallah, and Raja 2014). Although this
approach is based on local information, it is implemented on
a two-dimensional convention space. In (Gkantsidis et al.
2007), a centralized algorithm is used to generate topology
awareness among the nodes. Unlike this approach, our goal
in this paper is to augment nodes with topology-awareness
based on solely local information.

Unlike the above approaches, SRA and FGJ solved the
convention problem for a larger convention space. They
have used a language coordination problem for investiga-
tion in which a group of agents tries to create a lexicon con-
vention through repeated interactions. This problem was
originally inspired by Luc Steels’ Naming Game model.
In (Steels 1995), Luc Steels focused on the formation of vo-
cabularies, i.e., a set of mappings between words and mean-
ings (for instance physical objects). In this context, each
agent develops its own vocabulary in a random private fash-
ion and then tries to align its vocabulary with others in order
to obtain the benefit of cooperating through communication.

The significance of the SRA and FGJ approaches is that
they considered a large population of agents modeled using
complex small-world and scale-free networks. In SRA, a
sophisticated agent architecture design is proposed to cre-
ate high-quality language convention. On the other hand, in
FGJ a set of privileged agents (influencer agents) equipped
with high-quality lexicons is deployed to influence and ex-
pedite the convention formation process. However, these
approaches do not consider the costs associated with the so-
phisticated agent architecture design or those for the deploy-
ment and maintenance of the influencer agents. Moreover,
the agent network is assumed to be static and do not con-
verge into LMCS within a reasonable amount of time.

In our approach, we address the above mentioned limita-
tions of the large convention space problem.

Convention Problem
First we formally define the convention problem that in-
cludes the following components: (a) the interaction model
that describes the interaction topology, (b) a language game
model that captures the agent interaction, and (c) the con-
vention space that defines the number of alternative conven-
tions. A solution to this convention problem is the one in
which the MAS converges to LMCS in a reasonable amount
of time.

The Interaction Model
The agent interactions in the MAS are purely local and are
constrained by an undirected graph G(V,E) where V is the
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set of vertices (or nodes) and E ⊆ V x V is the set of
edges. Each node corresponds to an agent3. The numbers of
nodes is referred by n. Two nodes vi and vj are neighbors
if (vi, vj) ∈ E. The neighborhood N(i) is the set of nodes
adjacent to vi. That is, N(i) = {vj |(vi, vj)} ∈ E ⊂ V and
|N(i)| is the degree of node vi. The adjacent agents (within
single-hop distance) are defined as the neighbors. The net-
work is dynamic in that the nodes change their edges (social
ties). Even if the edge from agent A to B is removed, the
edge from B to A remains.

The Language Game Model
Agent interactions are based on the FGJ language game
model which is a variation of Luc Steels’ original language
game (Steels 1999). Steels designed a paradigm that enables
artificial agents to play language games about situations they
perceive and act upon in the real world and also self-organize
communication systems from scratch. In FGJ, initially the
agents start off with randomized internal lexicons. Each lex-
icon has a set of mappings from concepts (C) to words (W).
Because of the random allocation of the concept-word map-
ping, some concepts may have more than one word. In other
words, synonymy may exist in the lexicon. The game is ini-
tialized with multiple convention alternatives or convention
seeds (as defined previously). Agents spread their conven-
tion seeds through repeated interactions. We assume that
agents are rational and hence accept conventions with high
utility values. Agents adopt high-quality conventions and
continuously create better convention seeds. Finally, one
high-quality seed emerges as the dominant convention in the
network. A high-quality lexicon is the one that has reduced
or zero synonymy.

Convention Space
We assume that the number of concepts and words are equal
(|C| = |W |). Therefore, the size of the convention space
is bounded by (|W ||C|). Similar to FGJ, we use 10 fixed
concepts and 10 words; hence the possible size of the con-
vention space is quite large (1010).

Topology Aware Convention Formation
In each round of the language game, agents perform the fol-
lowing four tasks: (i) Communication, (ii) Lexicon Spread-
ing, (iii) Lexicon Update, and (iv) Network Reorganization.
The first three steps are based on FGJ. We augment their
approach with a more informed lexicon utility computation
mechanism as well as the ability for the network to reorga-
nize. The lexicon update model is implemented as an asyn-
chronous process in which agents spread and update their
lexicons probabilistically.
(i) Communication: Every agent chooses a random neigh-
bor and sends one word mapping for a randomly selected
concept. The communication is successful if the receiving
agent uses the same mapping. The sending agent i computes
its communicative efficacy (CEi) as the proportion of suc-
cessful communications (succComm) over the last 20 time-

3Throughout the paper, we use agent and node interchangeably.

steps: CEi = #succComm/20. Similar to FGJ, we use 20
time-steps to facilitate empirical comparison.
(ii) Lexicon Spreading: An agent sends its partial lexicon to
its neighbors with a sending probability psend. Every agent
has a fixed lexicon transfer length. It sends a contiguous set
of mappings from its lexicon equal to this transfer length
starting from a randomly selected mapping. A receiving
agent that updates its lexicon using this mappings starting
from the same random point.
(iii) Lexicon Update: Each agent compares the utility of
all the received mappings and choose the mapping with the
largest utility. An agent updates its lexicon with the map-
pings received from its neighbors with an update probability
pupdate.

Utility Computation Mechanism: In FGJ, an agent com-
putes its lexicon utility by adding its communicative efficacy
with its lexicon specificity. Suppose Wc is the set of words
associated with that concept. For every concept c in the lex-
icon with Wc > 0, agents calculate lexicon specificity (Sc)
using the formula Sc = 1

|Wc| . If a concept has no words
associated with it, its Sc = 0. The specificity of a lexicon is
the average of the specificity of all concepts:

S =
∑
c∈C

Sc/|C|, |C| > 0 (1)

In this paper, we augment the computation of lexicon util-
ity by adding a topological factor. An agent i computes the
utility of its lexicon (ui) by summing up its communicative
efficacy (CEi), lexicon specificity (Si) and a the topological
factor (TFi) as follows:

ui = aCEi + bSi + cTFi (2)
where a, b and c are constants to adjust weights of these

three parameters. The topological factor is introduced as an
amplifying mechanism to expedite the convention formation
process. Agents with the largest degrees (higher social sta-
tus) in their neighborhood and better quality lexicons (high-
quality seeds) are assigned large values for their topological
parameter which increases their lexicon utility. As a conse-
quence these high-degree nodes are able to influence a large
number of agents to adopt their conventions quickly. Our
hypothesis is that within a local neighborhood, some agents
would have larger connections (higher influence capability)
and these agents could be empowered to strongly influence
their neighbors to adopt the better quality lexicons that they
have. This would significantly enhance the speed of con-
vention formation and improve the quality of the dominant
lexicon.

Algorithm 1 describes the computation of the topological
factor. Agents with the largest degree in their neighborhood
and with lexicon specificity greater than or equal to a thresh-
old value (α) set their topological factor to be the value of
their degree (Lines 1.2 - 1.3). This increases the lexicon util-
ity of the largest degree agents and thus these agents expe-
dite the convention formation process. However, it is possi-
ble that initially the largest degree agents may not have lex-
icons with high specificity. Therefore, in order to facilitate
these agents to adapt high-quality lexicons, any agent with
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Algorithm 1: Topological Factor Computation
Require: Initially Topological Factor for all agents is

zero.
1.1 for each agent i:= 1 to n do
1.2 if LargestDegreeinNeighborhood(i) AND

LexiconSpecificity(i) ≥ α then
1.3 TopologicalFactor(i) = Degree(i)
1.4 end
1.5 if LexiconSpecificity(i) ≥ λ then
1.6 TopologicalFactor(i) = µ
1.7 end
1.8 end

lexicon specificity equal to or above a threshold value (λ)
is enabled to set its topological factor to be equal to a very
large number (µ) as described in lines 1.5 - 1.6. These agents
then influence their neighbors, including the larger-degree
agents, to adapt the high-quality lexicon mappings in fewer
time-steps. Once the larger degree agents acquire a high-
quality lexicon, they start influencing their larger neighbor
base as in lines 1.2 - 1.3.
(iv) Increased Diversity through Network Reorganiza-
tion: Individual agents are capable of making rational
choices to remove and rewire a link; and thereby increase
the diversity in their neighborhood. Our assumption is that
by removing the lowest-lexicon-utility neighbors and then
by rewiring to randomly chosen neighbors beyond their
neighborhood, agents can improve the chance of increas-
ing their lexicon specificity by having neighbors with po-
tentially better quality lexicons (Perc and Szolnoki 2008;
Fu et al. 2008). In other words, this link diversity con-
tributes to the creation of better convention seeds that re-
sults in facilitating high-quality convention formation. With
a given probability, an agent removes an existing link with
a neighbor with the lowest lexicon utility. However, it will
do so only if its own lexicon utility is larger than its lowest-
lexicon-utility neighbor. This is to ensure that an agent will
not remove neighbors (including the lowest-lexicon-utility
neighbor) that happen to have better lexicons than itself.
The agent then rewires with a randomly chosen neighbor
of its removed neighbor. This conditions the diversity in the
network (unlike an unconditional random diversity). It is as-
sumed that (a) only a small number of agents would take part
in network reorganization and (b) only one neighbor would
be removed to add a new neighbor. This way the total num-
ber of links can be maintained at a constant level and the
degree-distribution of the nodes would remain unchanged.
Since the network is bi-directional, removing an edge from
agent A to B does not remove the edge from B to A.

If agent A is selected for rewiring, it chooses the edge
with its lowest lexicon quality neighbor B for removal and
to rewire with one of B’s neighbor with a probability given
by the Fermi function (Pacheco, Traulsen, and Nowak 2006)
p = [1 + e−β(uA−uB)]−1. The parameter β controls the in-
tensity of selection in that for larger values (β → ∞) the
edges of the lower lexicon-utility agents are deterministi-

cally removed and rewired to a randomly selected neighbor
of the removed agent.

Algorithm 2: Topologically Aware Algorithm
2.1 for each agent i:= 1 to n do
2.2 randomLexiconAssignment()
2.3 sendOneMappingToRandomNeighbor()
2.4 computeCommunicativeEfficacy(#succComm/20)
2.5 computeLexiconSpecificity(Equation 1)
2.6 computeTopologicalFactor(Algorithm 1)
2.7 computeLexiconUtility(Equation 2)
2.8 probabilisticLexiconSpreadingtoNeighbors()
2.9 probabilisticLexiconUpdate()

2.10 networkReorganization()
2.11 end
2.12 iterate (Lines 2.1 - 2.10)

Algorithm for Convention Formation Mechanism
Algorithm 2 describes the distributed convention formation
mechanism. This algorithm is executed by individual agents.
Initially mappings for the lexicons are randomly assigned
among the agents. Then each agent sends one random map-
ping to a randomly chosen neighbor and computes both its
communicative efficacy and lexicon specificity (Lines 2.2 -
2.5). Each agent then computes its topological factor and
lexicon utility (Lines 2.6 - 2.7). Then each agent proba-
bilistically spreads its partial lexicon and updates its lexi-
con (Lines 2.8 - 2.10). This process repeats (Lines 2.1 -
2.10) over multiple rounds and a majority lexicon conven-
tion emerges.

Simulation and Results Analysis
We conduct simulations to compare the performance of two
state-of-the-art lexicon convention formation mechanisms
(SRA & FGJ) with our topology-aware (TA) mechanism on
various types of networks including regular (Ring), small-
world (SW), random (RN) and scale-free (SF) networks

The dominant lexicon convention is defined as the one
that is shared by the largest number of agents.
The following metrics are used for comparison:
• Effectiveness: A mechanism is defined to be effective if it is

able to converge into a LMCS within a reasonable amount of
time.

• Efficiency: This parameter measures how fast a network con-
verges into a LMCS.

• Dominant Lexicon Specificity (DLS): It represents the lexicon
specificity that belongs to the dominant convention. DLS helps
to understand how lexicon specificity of the dominant conven-
tion evolves (improves) over time.

• Average Communicative Efficacy (ACE): It provides a mea-
sure of the average communicative efficacy of the system. ACE
is used to understand the level of coordination of the system at
each time-step.

Simulation Setup
We conduct experiments on four topologies: Ring, SW,
RN and SF. Watts and Strogatz small-world model is used
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(b) Small-World
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(d) Scale-Free

Figure 1: Comparison of the number of dominant lexicon agents for the topology-aware (TA) approach with SRA and FGJ.

to create SW networks (Watts and Strogatz 1998). The
rewiring probability is set to 0.1 (similar to SRA and
FGJ). SF topologies are generated using the Barabasi-Albert
model (Barabasi and Albert 1999).

Each type of network consists of 1000 agents represented
as nodes in the network. An edge between two nodes of the
network indicates that the agents can interact and play the
language game. The average node degree in these networks
are set to 20 for the purpose of comparison with the two
baseline state-of-the-art approaches.

Similar to FGJ, initially the internal lexicon of every agent
is set with 10 fixed concepts and a randomized mapping of
one or more words (from a set of 10 words) for each con-
cept. Due to random assignment of the words to the con-
cepts, some concepts initially may not have any word asso-
ciated with them. We ignore these concepts during the com-
putation of the specificity for each concept. The simulation
proceeds according to Algorithm 2. For the computation of
the lexicon utility, similar to FGJ, the three parameters of
equation 2 (CE, S & TF) are equally weighted (i.e., a = b =
c = 1). We anticipate that for larger degree nodes, the value
of TF would be very high so that having a larger weight for
CE and S would not have much effect. For smaller degree
nodes, TF is assumed to be zero; and only CE and S con-
tribute towards utility computation. The spreading and up-
dating probabilities are set to 0.01. Only 10% of the agents
are randomly selected to take part in network reorganization
using the Fermi function in which the value of β is set to 1.0.

Table 1 provides the setting of the threshold levels of the
parameters for the TA mechanism. α is set to be greater
than or equal to 0.95 and λ is equal to 1.0. It enables the
largest degree agents in any neighborhood to exert influence
(by increasing their topological factor) only when their lexi-
con specificity is equal to or above 0.95. However, any agent
(including the smaller degree agents) can increase its topo-
logical factor when its lexicon specificity is optimum. For
the calculation of the topological factor, µ is set to a large
number 1000.

For implementing FGJ mechanism, 50 influencer agents
are randomly deployed in the network, as in the original
FGJ. These agents start off with a unique lexicon in which
every concept has a single word mapping (lexicon specificity
is optimum, i.e., equal to 1.0).

All the results reported are averages over 50 realizations

for each network. Each simulation consists of 100,000 time-
steps where a time-step refers to a single run of the program.

Table 1: Parameter Values for Simulation Configuration.
α λ psend pupdate

TA ≥ 0.95 = 1.0 0.01 0.01
SRA N/A N/A 0.01 0.01
FGJ N/A N/A 0.01 0.01

Table 2: Performance Comparison: %ACC refers to % of
agents converged into a convention at timestep t. ACE &
DLS are reported at 100,000 time-step.

Ring Small-World
%ACC t ACE DLS %ACC t ACE DLS

TA 80 18757 0.94 0.88 80 1837 0.94 0.87
90 29323 0.96 0.88 90 30222 0.97 0.88

SRA 80 X N/A N/A 80 X N/A N/A
90 X N/A N/A 90 X N/A N/A

FGJ 80 X N/A N/A 80 X N/A N/A
90 X N/A N/A 90 X N/A N/A

Random Scale-Free
%ACC t ACE DLS %ACC t ACE DLS

TA 80 27549 0.94 0.89 80 24375 0.94 0.94
90 47595 0.97 0.90 90 68111 0.97 0.95

SRA 80 X N/A N/A 80 70660 0.96 0.98
90 X N/A N/A 90 X N/A N/A

FGJ 80 43961 0.92 1.0 80 35500 0.96 1.0
90 X N/A N/A 90 X N/A N/A

Simulation Results

Convergence to LMCS & Speed of Convention
Formation
Figure 1 shows how dominant convention agents evolve over
time for TA, SRA and FGJ over Ring, SW, RN and SF
topologies respectively. We observe that TA clearly outper-
forms the two state-of-the-art approaches in all four network
types. A combination of the topology-aware lexicon-utility
computation and link diversity enables 90% agents to con-
verge into a single convention much faster than SRA and
FGJ over these topologies.

Table 2 shows that SRA and FGJ fail to converge into
LMCS in RN and SF networks within 100,000 time-steps.
SRA requires as many as 70,660 rounds for 80% agents to
use the dominant lexicon in SF networks which it fails to do
in RN topologies . On the other hand, TA requires 24,375
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(b) Small-World: ACE
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(c) Random: ACE
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(d) Scale-Free: ACE
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(e) Ring: DLS
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(f) Small-World: DLS
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(g) Random: DLS
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(h) Scale-Free: DLS

Figure 2: Comparison of the evolution of average communicative efficacy (ACE) & dominant lexicon specificity (DLS) in four
topologies. The values are averaged over 50 separate instances of simulation.

time-steps to have 80% agents to use a common lexicon in
SF networks and 27,549 time-steps in RN networks. We ob-
serve similar poor performance in case of FGJ that requires
35,500 time-steps to have 80% agents to use a common lex-
icon in SF networks and 43,961 time-steps in RN networks.

The performance of SRA and FGJ is worse in Ring and
SW topologies. SRA enables less than 25 agents to form
a single convention over these two topologies; and using
FGJ less than 250 agents converge into a single convention
within 100,000 time-steps. Both in Ring and SW networks,
degree-heterogeneity is much less compared to RN and SF
networks. As a consequence the spreading based approaches
of SRA and FGJ require longer convergence time to LMCS.
On the other hand, TA mechanism enables agents to use
their social influence to bias their neighbors to adopt con-
ventions at a faster rate. Moreover, according to TA, if an
agent has perfect lexicon, it increases the utility of its lexi-
con to strongly influence their neighbors. In addition to this,
link diversity through network reorganization increases the
chance of having better-lexicon-quality-neighbors. This ex-
plains the accelerated spreading of the high quality lexicon
in the TA mechanism.

Average Communicative Efficacy (ACE) &
Dominant Lexicon Specificity (DLS)
In all four topologies, the ACE is better for TA than SRA
and FGJ (see Figure 2). It indicates the level of coordination
is high when agents use TA mechanism. We discussed pre-
viously that the TA empowers the agents with perfect lex-
icons to expedite the convention formation process. Also
link diversity helps to improve the chance of creating better

lexicons. However, the DLS in FGJ is better than TA. The
reason is that FGJ has the advantage of initializing a fraction
of the agents with the optimum quality lexicon that bias the
rest of the network to adopt their (perfect) lexicon.

Conclusion and Future Work
In this paper, our goal is to design a mechanism that is able
to create a social convention within a large convention space
for MAS operating on various types of dynamic networks.
We hypothesize that if agents are endowed with the capa-
bility of “network thinking” and are enabled to use contex-
tual knowledge for decision-making, the convention forma-
tion process becomes faster and efficient. To validate this
hypothesis, we used a language coordination problem from
FGJ for investigation. In this problem domain, a society of
agents construct a common lexicon in a decentralized fash-
ion. Similar to FGJ, agents’ interactions were modeled us-
ing a language game where agents send their lexicons to
their neighbors and update their lexicon based on the util-
ity values of the received lexicons. We presented a novel
topology-aware utility computation mechanism that enabled
the agents to reorganize their neighborhood based on this
utility estimate to expedite the convention formation pro-
cess. A key idea here is that agents with the most influence
(larger connections) in the network are harnessed to adopt
the best lexicons in the neighborhood and to quickly influ-
ence the agents in their network to adopt the high-quality
lexicons. Extensive simulation results indicate that the pro-
posed mechanism is both effective (able to converge into a
large majority convention state with more than 90% agents
sharing a high-quality lexicon) and efficient (faster) as com-
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pared to SRA and FGJ.
As future work, we plan to vary the number of hub agents

(zero to many) as well as the distance of the agents with the
best lexicon to the hub agents and investigate the effective-
ness of our approach.
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