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Abstract

Understanding the nature of strategic voting is the holy grail
of social choice theory, where game-theory, social science
and recently computational approaches are all applied in or-
der to model the incentives and behavior of voters. In a recent
paper, Meir et al. (2014) made another step in this direction,
by suggesting a behavioral game-theoretic model for voters
under uncertainty. For a specific variation of best-response
heuristics, they proved initial existence and convergence re-
sults in the Plurality voting system.
This paper extends the model in multiple directions, consid-
ering voters with different uncertainty levels, simultaneous
strategic decisions, and a more permissive notion of best-
response. It is proved that a voting equilibrium exists even
in the most general case. Further, any society voting in an
iterative setting is guaranteed to converge to an equilibrium.
An alternative behavior is analyzed, where voters try to mini-
mize their worst-case regret. As it turns out, the two behaviors
coincide in the simple setting of Meir et al. (2014), but not in
the general case.

Introduction

Suppose that ALICE, BOB, and CHARLIE run for office. A
and B are currently leading the polls with 45% and 40%,
respectively. Your favorite candidate C is currently trailing
behind with 15% (see Fig. 1, left).

A game-theorist advice in such a case might be to “vote
strategically,” by supporting your next-preferred candidate
(say, B). Indeed, desertion of candidates that seem to lose
height on polls in common in the real world, even if they are
still perceived as suitable.

However, there is no consensus whatsoever regarding how
to generalize this straight-forward compromise to an arbi-
trary situation: should you leave C if he has 25% of the
votes? and what if there are three or more candidates that
are more popular than your favorite? does the source of the
poll matter? and so on.

This lack of a conclusive notion for strategic voting is
partly due to the fact that there are many ways to describe
the information voters have, as well as their beliefs over
other voters’ preferences and actions when casting their
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vote. Moreover, even for a given belief there may be sev-
eral different actions that can be justified as rational. Hence
any model of voting behavior and equilibrium must state ex-
plicitly its epistemic and behavioral assumptions.

A simple starting point would be to apply some “stan-
dard” assumptions from game-theory, for example that vot-
ers play a Nash equilibrium of the game induced by their
preferences. However, such a prediction turns out to be very
uninformative: a single voter can rarely affect the outcome,
and thus almost any way the voters vote is a Nash equilib-
rium (including, for example, when all voters vote for their
least preferred candidate). It is therefore natural to consider
the role of uncertainty in voters’ decisions.

Probabilistic and strict uncertainty A classical eco-
nomic approach is to assume that voters maximize some ex-
pected utility, given some prior distribution on other voters’
preferences and actions (see e.g. the MW model in Related
Work). However the assumption that voters have access to an
accurate, or even approximate, distribution of this sort seems
hard to justify. Furthermore, studies in behavioral psychol-
ogy show, human decision makers often ignore probabilis-
tic information even when it is given, employing various
heuristics instead (Tversky and Kahneman 1974). It is thus
unlikely that people are able to represent complex distribu-
tions, or to compute and optimize their own expected utility,
let alone the equilibria of such games.

In a recent effort to reconcile well-founded decision mak-
ing approaches with a formal game-theoretic analysis, Meir
et al. (2014) suggested a model for Plurality voting rely-
ing on strict uncertainty and local dominance. Informally,
voters’ beliefs can be described by a single vector of candi-
dates’ scores. This prospective score vector may be the result
of a poll, derived from acquaintance with the other voters,
from the outcome of a previous round of voting, etc. Each
voter has a single uncertainty level, reflecting how sure she
is in the correctness of the prospective scores—higher uncer-
tainty means the voter considers a larger range of outcomes
(score vectors) as “possible.”

In the example introduced above, a voter with an interme-
diate uncertainty level will consider a tie between A and B
as “possible,” but will reject any outcome where C wins as
impossible.

Given this uncertain, non-probabilistic view, it is not a-
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priori clear how a voter should act. Meir et al. adopted one
of the classic approaches to decision making under strict un-
certainty, assuming that a voter i will refrain from voting for
a candidate ai that is locally dominated by another candidate
a′i. Intuitively, a′i locally-dominates ai if it is always at least
as good, and sometimes strictly better, to vote for a′i than for
ai (taking into account all outcomes that voter i considers
possible). A voting equilibrium is simply a state where no
voter votes for a locally-dominated candidate according to
her beliefs. Going back to our example, our voter will con-
sider candidate c as locally-dominated by candidate b, and
will thus strategize by voting for b.

Informally, Meir et al. (2014) proved that if all voters have
the same uncertainty level, start by voting truthfully, and
play one at a time, then they always converge to a voting
equilibrium. In the special case of zero uncertainty, this sim-
ply means that the best-response dynamics converges to a
Nash equilibrium (which is known from (Meir et al. 2010)).

However, these assumptions are rather restrictive. Some
voters may be less informed than others, or simply more
“stubborn” (e.g., require even fewer votes to C in order to
be convinced he cannot win). Also, there is no reason to be-
lieve that voters initially vote for their most preferred candi-
date, or that only one voter changes her vote after each poll
or voting round (see, e.g., (Reijngoud and Endriss 2012)).
Meir et al. (2014) showed empirically that convergence oc-
curs even without those assumptions, and conjectured that
at least some of the assumptions could be relaxed. However
they provided no formal guarantee for such convergence.

Research goals The main purpose of this work is to close
this gap, and to prove equilibrium existence and convergence
under conditions that are as broad as possible.

While we adopt the model of Meir et al. at large, we study
a non-atomic variation of it, where the effect of any single
voter is negligible. This simplifies the model, and allows us
to prove stronger results. We modify the distance function
used to determine the possible ranges of candidates’ scores,
to one that is better justified by psychological studies (for
details see Footnote 4).

In addition, we are interested whether the behavioral as-
sumptions can be weakened, or, alternatively, be replaced
with a more nuanced way to select among several undom-
inated candidates. To that end, we define a variation of the
model where voters are aiming to minimize their worst-case
regret over all states they believe possible, and compare this
behavior to voting under local dominance.

Our contribution

Our main result is proving that voters with local dominance
behavior always converge to an equilibrium. This holds for
any population of voters with different preferences and un-
certainty levels, for any initial voting profile, and for any or-
der of moves (including moves of arbitrary subsets of voters,
and suboptimal moves).

We then turn to study voters minimizing worst-case re-
gret. When voters have the same uncertainty level and start
from the truthful profile, we show that regret minimization

coincides with local dominance. However if these require-
ments are relaxed then the behaviors may significantly dif-
fer, and even the existence of equilibrium is not guaranteed.

Due to space constraints, some of the proofs were omitted,
and are available in the full version of this paper.1 In the full
version we also show that all of our results hold in the finite
case, for voters that move one-at-a-time.

The Formal Model

Basic notations Where possible, we follow the notations
and definitions of (Meir, Lev, and Rosenschein 2014). We
denote [x] = {1, 2, . . . , x} for all x ∈ N. For a finite set A,
Δ(A) denotes the set of all probability distributions over A
(all non-negative vectors of size |A| that sum to 1).

The set of candidates is denoted by M , where m = |M |.
Let Q = π(M) be the set of all strict orders (permutations)
over M . We encode all the information on a voter, including
her preferences, in her type,2 where the set of all types is
denoted by V .

Specifically, a voter of type v ∈ V has preferences Qv ∈
Q, where Qv(a) ∈ [m] is the rank of candidate a ∈ M
(lower is better), and qv = Q−1

v (1) is her most-preferred
candidate. We denote a �v b if Qv(a) < Qv(b).

There is no finite set of voters. Rather, a preference profile
Q ∈ Δ(Q) is a distribution over preferences, specifying the
fraction of voters with each preference order. A population
V ∈ Δ(V) is a distribution over types, that is, a preference
profile aggregated with any additional information specified
by voters’ types (e.g., their beliefs and behaviors).

Under the Plurality rule, every voter selects a single can-
didate. A given action profile should specify how many
voters of each type vote for every candidate. Formally, an
action profile (also called state) a is a refinement of V,
where a(v, c) ∈ R+ denotes the fraction of voters of type
v who vote for c ∈ M . Intuitively, the winner under state
a is the candidate c getting at most votes, i.e., maximizing∑

v a(v, c).
Our next definitions are intended to enable easier nota-

tions and analysis. We treat the voter set as if it is partitioned
to subsets whose size is ε, for some arbitrarily small ε > 0.3
We denote by I the collection of these 1/ε sets, and refer to
an arbitrary voter in the set i ∈ I as “voter i.” W.l.o.g. all
voters in set i ∈ I are indistinguishable: they have the same
type vi and the same action ai in any profile a (otherwise we
just further split set i to smaller uniform subsets).

Score vectors and tie-breaking The outcome of the Plu-
rality rule in state a, denoted f(a) ∈ M , only depends on
the total number of votes for each candidate. We thus de-
fine the score vector sa induced by action profile a. That is,
sa(c) = |{i ∈ I : ai = c}|ε =

∑
v∈V a(v, c). We will use

a and sa interchangeably, sometimes omitting the subscript
a. We denote by S = R

m
+ the set of all score vectors. We

1http://arxiv.org/abs/1411.4949
2We later extend the definition of a type to also include the be-

lief structure and behavior of the voter.
3This is not a restrictive assumption. We further discuss its im-

plications in the full version.
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also sometimes refer to score vectors as states, although s
may not be attained from an actual action profile. E.g., it is
possible that

∑
c∈M s(c) �= 1. Note that we may only use

the aggregate scores s in a context where voters’ identifiers
are not important.

Every score vector s implicitly contains an arbitrary “tie-
breaker” Q+

s ∈ Q. The winner f(s) is the candidate c ∈ M
whose score s(c) is maximal. If there is more than one can-
didate with maximal score, we break ties according to Q+

s .
Formally, f(s) = argminc∈argmax s(c′) Q

+
s (c). Note that the

outcome is well defined even for score vectors that are not
derived from valid action profiles.

Dynamics and equilibria We describe the behavior of a
voter of type v ∈ V by a response function gv : M × S →
2M \ ∅. That is, a mapping from the current state (only tak-
ing into account aggregate scores) and current action, to a
subset of actions. Together, Qv and gv completely define the
type v. For an identified voter i ∈ I , we write gi(s) instead
of gvi

(ai, s). We also write gi(a) as a shorthand for gi(sa).
Intuitively, this means that a voter i ∈ I may choose any
action in gi(a).

Definition 1. A voting equilibrium for population V is a
state a, where gi(a) = {ai} for all i ∈ I .

For example, if gi is the best-response function (gi(a) =
{c ∈ M : c maximizes the utility of i in a} for all i), then
a voting equilibria coincides with the Nash equilibria of
the game. We emphasize that classic results on existence of
equilibria in nonatomic games (e.g., (Schmeidler 1973)) do
not apply, since even if we assign cardinal utilities to voters,
those would be highly discontinuous in the action profile.
Note that we do not assume that voters with the same type,
or even the same identifier, are coordinated.

Even in cases where an equilibrium exists, players may
or may not reach one, depending on their initial state and
the order in which they play. We are therefore interested in
sufficient conditions under which the game is acyclic, i.e.
there are no finite cycles of moves by groups of any size.

Uncertainty and Strategic Voting

The most important part of the model is of course the way
we define the behavior, which is the response function gi.
This behavior depends on voters’ preferences, and also on
their beliefs about the current state. We assume voters derive
their beliefs using a distance-based strict uncertainty model,
following (Meir, Lev, and Rosenschein 2014).

Distance-based uncertainty

Suppose we have some distance measure for score vectors,
denoted by δ : S × S → R+. For any s, let S(s, x) = {s′ :
δ(s, s′) ≤ x} be the set of vectors that are at distance at
most x from s. A distance function δ is candidate-wise if it
can be written as δ(s, s′) = maxc∈M δ̂(s(c), s′(c)) for some
monotone function δ̂ (meaning that for a fixed s, δ̂(s, s′) is
nondecreasing in |s − s′|). Thus s′ ∈ S(s, x) if only if the
score of every candidate in s′ is sufficiently close to its score
in s, see Fig. 1.

A B C

s(A) = 0.45

s(B) = 0.4

s(C) = 0.15

A B C

Figure 1: On the left figure we see a given state s, which can
be thought of as the result of a poll, or of the current vot-
ing round. On the right we depict the set of possible states
S(s, r) for r = 0.15. Any s′ is a possible state as long as the
score of each candidate is in the marked range. The dashed
line marks the threshold above which a candidate is consid-
ered a possible winner.

In (Meir, Lev, and Rosenschein 2014), several metrics
have been suggested for the function δ, including various
�d norms. Among those the multiplicative distance (where
δ̂(s, s′) = max{s′/s, s/s′} − 1) and the �∞ metric (where
δ̂(s, s′) = |s− s′|) are candidate-wise.

While all of our results apply for any candidate-wise
distance (see full version), for concreteness we assume
throughout the paper the multiplicative distance. Note that
the multiplicative distance is independent of the amount
of voters, i.e. δ(s, s′) = δ(αs, αs′) for all α > 0. This
is consistent with findings on how people perceive uncer-
tainty over numerical values (Kahneman and Tversky 1974;
Tversky and Kahneman 1974).4

The intensity of probabilistic uncertainty is typically cap-
tured by some variance. The intensity of the agent’s uncer-
tainty in our non-probabilistic model is captured by the un-
certainty parameter rv ∈ R+, which is part of the agent’s
type. Given a profile a, voter i ∈ I believes that the actual
state may be any s′ ∈ S(sa, ri), where ri = rvi

.
A voter facing strict uncertainty may use various heuris-

tics when selecting a strategy. In this work we follow two
standard approaches: avoiding dominated strategies (Au-
mann 1999), and minimizing worst-case regret (Savage
1951; Hyafil and Boutilier 2004).

4For example, the studies show that if the average number of
girls born daily in a hospital is s, then people believe that the prob-
ability that on a given day the number is within [(1−r)s, (1+r)s]
is fixed and does not depend on s. Kahneman and Tversky high-
light that this reasoning stands in contrast to the scientific truth in
this case, where the range r is proportional to 1/

√
s. In our case

we can think of the score of a candidate as the limit of a Poisson
variable (rather than Binomial in the hospital example), and thus
the range [s/(1 + r), s(1 + r)] is more appropriate.
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Voter influence In the nonatomic case, every voter has
negligible influence, yet they still prefer some actions over
others. How does the outcome change when a voter votes
for some candidate c? To solve this discrepancy, we assume
that a voter considers herself as pivotal only if she happens
to break an exact tie. Formally, we define f(s, c) = c if c has
maximal score in s (overriding the default tie-breaker Q+

s ),
and f(s, c) = f(s) otherwise.

Local dominance

The first approach we consider follows (Conitzer, Walsh,
and Xia 2011; Meir, Lev, and Rosenschein 2014), where vot-
ing dynamics is determined by local dominance relations.

Consider a particular voter i = 〈vi, ai〉. Let S = S(s, ri).
We say that action ai S-beats bi if there is at least one s′ ∈ S
s.t. f(s′, ai) �i f(s′, bi). That is where i strictly prefers
f(s′, ai) over f(s′, bi). Action ai S-dominates bi if (I) ai
S-beats bi; and (II) bi does not S-beat ai.

We next define the response function that strategic vot-
ers apply under the local dominance behavioral model. Con-
sider a voter i, where vi = 〈Qi, ri〉.
Definition 2 (Strategic move under local dominance
(LD)). Let D ⊆ M be the set of candidates that S(a, ri)-
dominate ai, and that are not S(a, ri)-dominated. If D = ∅
then gi(a) = {ai}. Otherwise:
• For a weak LD voter, gi(a) = D.
• For a strict LD voter, gi(a) = argmind∈D Qi(d).

In other words, a strict LD voter votes the most preferred
candidate that locally-dominates her current choice (if such
exists). The definition of a weak LD voter is much more per-
missive, and does not restrict the voter to select the most
preferred candidate in D. A higher value of ri may either
indicate that the voter is less informed, or simply that she
requires stronger evidence that a move will be beneficial, a
tendency we can interpret as stronger loss aversion (Kahne-
man, Knetsch, and Thaler 1991).

The following observation is immediate from Defini-
tions 1 and 2.
Proposition 1. Let V be a population of LD voters. A profile
a is a voting equilibrium iff ∀i ∈ I, !∃a′i ∈ M, such that a′i
S(a, ri)-dominates ai. I.e., if no voter votes for a locally
dominated candidate.

Convergence with LD Voters

We say that candidate c is a possible winner for i in state s
if there is a possible state where c wins. Formally, Wi(s) =
{c ∈ M : ∃s′ ∈ S(s, ri) s.t. f(s′, c) = c}. Also denote
W0(s) = {c ∈ M : f(s, c) = c} = Wi(s) for ri = 0, and
Wi(s) = Wi(sa).

It is easy to see that under the multiplicative distance
c ∈ Wi(s) iff s(c) ≥ (1 + ri)

−2s(f(s)), and that similar
thresholds exist for other metrics, see (Meir, Lev, and Rosen-
schein 2014) and the full version of this paper. The next key
lemma, however, holds only for candidate-wise distances,
which means that the possible scores of the different candi-
dates are calculated independently (it is the only place in the
paper where the candidate-wise assumption is used).

Lemma 2. Every pair of possible winners are tied for vic-
tory in some possible state. Formally, for every b, c ∈ Wi(s),
there is s′ ∈ S(s, ri) s.t. b, c ∈ W0(s

′).

Proof. Consider some b, c ∈ Wi(s). Let the score of all
candidates except b, c be s′(a) = s(a)/(1 + ri), and set
s′(b) = s′(c) = min{s(b), s(c)}(1+ri). Then s′ ∈ S(s, ri),
and s′(b) = s′(c) ≥ s′(a) for all a ∈ M .

In the example depicted in Fig. 1, A is a possible winner
for any r. B is a possible winner for voters for which 0.4(1+
ri) ≥ 0.45/(1 + ri), which means ri ≥ 0.06. Only voters
whose uncertainty ri is above 0.73 consider C as a possible
winner, as otherwise 0.15(1 + ri) < 0.45/(1 + ri).

We denote by ai
i→ a′i valid local dominance steps where

a′i ∈ gi(a) and a′i �= ai. The next two lemmas characterize
such LD moves.
Lemma 3. Consider an LD move ai

i→ a′i. Then either (a)
ai /∈ Wi(s); or (b) ai ≺i b for all b ∈ Wi(s); or (c) ri = 0,
{ai, a′i} ⊆ W0(s) and a′i �i ai.

Proof. Suppose that ai, b ∈ Wi(a), and ai �i b (i.e., (a) and
(b) are violated). Assume first that a′i /∈ W0(s). By Lemma 2
there is a state s′ ∈ S(s, ri) where ai, b have maximal score
(possibly with other candidates), strictly above a′i. W.l.o.g.
Q+

s′(b) < Q+
s′(ai), as the tie-breaker does not affect the dis-

tance. Thus f(s′, ai) = ai, f(s
′, a′i) = b. Since ai �i b,

then we have that ai S(a, ri)-beats a′i. The remaining case
is where a′i ∈ W0(s) and ai �i a

′
i. Then in the state s′ where

ai, a
′
i are tied it is better to vote for ai. In either case we get

that a′i /∈ D, which is a contradiction.

Lemma 4. Consider an LD move ai
i→ a′i. Then

1. a′i ∈ Wi(s), and there is some c ∈ Wi(s) s.t. a′i �i c.
2. For a strict LD move, a′i = argminc∈Wi(a) Qi(c).
3. If ai /∈ Wi(s), then |gi(s)| = 1.

Part 1 is the only thing we need for our later conver-
gence results, and its proof is immediate: Consider a∗i =
argminc∈Wi(a) Qi(c). Clearly a∗i locally dominates any
candidate not in Wi(a), thus a′i ∈ Wi(s). If there is only
one possible winner, no action dominates any other action.

Beyond the fact that the above lemmas are required for
our main result, they show that a strict LD move boils down
to a simple heuristics: vote for the most preferred candidate
among those whose score is above the threshold. For a weak
LD move, any candidate above the threshold except the least
preferred can be selected.

Existence of equilibrium and convergence

Suppose that voters start at some arbitrary state a0, and play
repeatedly. We get a sequence of states a0,a1, . . . where in
every iteration some arbitrary subset of voters may change
their vote. That is, for any t ∈ N and any i ∈ I , either
at+1
i ∈ gi(a

t), or at+1
i = ati. Our primary result states that

voters always converge in the nonatomic model.5

5We assume strict preference orders for consistency with most
of the social-choice literature. However we note that the theorem
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Theorem 5. Any sequence of weak LD moves is finite.

Proof. We only need to show that no valid sequence may
contain a cycle. Assume, toward a contradiction, that there
is a cyclic path (at)Tt=0, and denote by R ⊆ M all candidates
that are part of the cycle. Let s∗ be the lowest score of any
candidate in R during the cycle, w.l.o.g. candidate a∗ ∈ R at
time t∗. Thus s∗ = st

∗
(a∗) ≤ st(c) for all c ∈ R for every

time t ≤ T . Consider the next step where some voters join
a∗ (w.l.o.g. at step t∗), and pick an arbitrary voter j ∈ I s.t.
a∗ = at

∗+1
j �= at

∗
j . Thus at step t∗ there is a move aj

j→ a∗

where aj = at+1
j ∈ R.

By Lemma 4, a∗ is a possible winner for voter j, i.e., a∗ ∈
Wj(s

t∗). Since st
∗
(c) ≥ st

∗
(a∗) for all c ∈ R, we have

R ⊆ Wj(a
t∗), and in particular aj ∈ Wj(a

t∗).
By Lemma 3, either aj is the least-preferred candidate

for j in Wj(s
t∗) (Cases I and II below), or the third cat-

egory of the lemma holds. We treat the latter case sepa-
rately (Case III), so assume aj is indeed the least-preferred
in Wj(s

t∗). Since R ⊆ Wj(a
t∗), aj is the least-preferred in

R as well.
There must be some step t∗∗ in the cycle where a voter

of type vj moves to aj (w.l.o.g. voter j). So in st
∗∗

, aj is
preferred by j to some other possible winner z by Lemma 4.
Since aj is the least-preferred in R, and aj �j z, we have
that z ∈ Wj(s

t∗∗)\R. Denote the (fixed) score of z by s(z).
Case I: s(z) ≥ s∗. Consider again step t∗. Since s(z) ≥

s∗, we have z ∈ Wj(s
t∗). Since aj is the least preferred

possible winner in t∗, we have that z �j aj , which is a
contradiction.

Case II: s(z) < s∗. Denote d = at
∗∗
j , and consider the

step d
j→ aj at time t∗∗. Since d ∈ R then st

∗∗
(d) ≥ s∗ >

s(z), and thus d ∈ Wj(s
t∗∗). By Lemma 3 (category (b) or

(c)), we have that aj �j d. This is a contradiction since aj
is the least-preferred in R.

Case III: The remaining case is when there is b ∈ Wj(s
t∗)

s.t. aj �j b. Then by Lemma 3, a∗ ∈ W0(s
t∗). However

since a∗ has minimal score, this means that R ⊆ W0(s
t∗),

i.e., all candidates in the cycle have the same score s∗ at time
t∗. Then all of R must have the same score at every time t,
since if the score of some candidates goes up, the score of
others must go down below the minimum s∗. This means
that all of the moves in the cycle fall under categories (b) or
(c) of Lemma 3. Thus voters only vote for more preferred
candidates, which contradicts a cycle.

One can argue that the uncertainty level of a voter may not
remain the same throughout the game. For example, there
may be less uncertainty as the game advances. We note that
Theorem 5 holds even if Wj(s

t∗) and Wj(s
t∗∗) are obtained

via different values of rj .
The above theorem proves convergence under very broad

conditions, but does not provide much intuition as to what

applies also under weak preferences. Indeed, introducing indiffer-
ence in the preference relation only eliminate LD moves, and there-
fore never creates a cycle.

happens along the converging path. Our next result shows
that when all voters have the same uncertainty level, conver-
gence is much more structured. Our result extends a similar
result in (Meir, Lev, and Rosenschein 2014) for the finite
model, but note that in our model convergence is guaranteed
even when subsets of voters move simultaneously.

Conveniently, when all voters has the same uncertainty r,
at any state at there is just one agreed set of possible win-
ners, denoted by W t = W (at). We say that a move ai

i→ a′i
is an opportunity move if a′i �i ai, and otherwise it is a
compromise move.

Proposition 6. Consider any non-atomic Plurality voting
game with weak LD moves, where all voters have the same
uncertainty level r. If a0 is the truthful state, then for all
t: (A) W t+1 ⊆ W t; (B) the score of the winner is non-
decreasing; (C) there are only compromise moves; and (D)
any ati is either the most preferred candidate for i in W t, or
it is not in W t.

The proposition still holds if the uncertainty level r de-
creases over time.

Regret Minimization

The local dominance approach is appropriate to describe
voters who are reluctant to change their vote, unless they
know it cannot hurt them, a behavior that is consistent with
loss aversion. A different approach to decision making un-
der strict uncertainty is minimization of worst case regret,
explained by risk aversion (Bell 1982). Intuitively, such a
voter wants to avoid situations where she could have gained
much, but failed to vote for the right candidate.

On one hand, regret minimization is simpler than local
dominance since it does not depend on the current vote. Thus
we can write gv(s),Wv(s) rather than gi(s),Wi(s). On the
other hand, regret may depend on cardinal utilities, rather
than ordinal preferences.

A cardinal utility scale is a generic function u : M → R,
meaning that u(a) �= u(b) for all a �= b. A cardinal utility
scale u fits order Q ∈ π(M), if u(a) > u(b) whenever
Q(a) < Q(b). We thus augment the definition of a type v
with a cardinal utility scale uv that fits Qv .

Formally, the regret of a type v voter for voting b in state s′
is REGv(s

′, b) = maxc∈M u(f(s′, c)) − u(f(s′, b)). Note
that REGv(s

′, b) ≥ 0.
The worst case regret (WCR) of a type v voter for voting

b in s is WCRv(s, b) = maxs′∈S(s,rv) REGv(s
′, b).

Definition 3 (Strategic move under regret minimization).
A WCR voter of type v in profile a votes for a candidate b
minimizing WCRv(sa, b).

We first characterize WCR moves. Under a candidate-
wise distance, we can effectively ignore the cardinal utility
scale, as only the preference order affects the vote.

Lemma 7. Either |Wv(s)| = 1 (in which case all regrets
are 0); or the unique candidate minimizing WCRv(s, c) is
a∗ = argminc∈Wv(s) Qi(c).
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From Lemmas 4 and 7, we get that regret provides a partial
justification for strict LD moves.

Corollary 8. Let ai
i→ a′i be a strict LD move in state s, then

a′i is the WCR response of type vi, i.e., the unique candidate
c minimizing WCRvi(s, c).

Thus this mean that the WCR dynamics and the strict LD
dynamics coincide? The answer is no, since the entailment
is only in one direction: any strict LD move is also a WCR
move, but there may be an WCR move ai

i→ a′i even when
ai is not locally dominated. This may occur for example
when both of ai, a

′
i are possible winners. Thus under the

WCR dynamics voters have less tendency to stay where they
are, and therefore cycles are more likely to form.

It is an open question whether cycles exist when all voters
have the same r, yet if we add a restriction on the initial state
then convergence is guaranteed.

Proposition 9. Consider any non-atomic Plurality voting
game, where all voters have the same uncertainty level r. If
a0 is the truthful state (and |Wr(a

0)| ≥ 2), then for every
time t and any i ∈ I , the WCR move and the strict LD move
of i coincide. In particular, the WCR dynamics converges to
an equilibrium.

Proof. Consider any voter i ∈ I . By property (D) of Propo-
sition 6, we have that either ati /∈ Wr(s

t), or ati is the best
possible winner. In the first case, by Lemma 4, there is a
strict LD move, and by Corollary 8, this move coincides with
the WCR move. In the latter case, there is no LD move for
i (so at+1

i = ati under LD), and by Lemma 7, ati minimizes
worst case regret (so at+1

i = ati under WCR).
Finally, since the LD dynamics converges, we get that un-

der the conditions of the proposition (same r, truthful initial
state), WCR converges as well.

Diverse population For the local dominance dynamics,
Theorem 5 shows that any game is acyclic. Since under re-
gret minimization voters are more likely to have a strategic
move, it is also more likely that cycles emerge, and even the
existence of an equilibrium is not guaranteed.

Proposition 10. There is a voting game where no voting
equilibrium exists under WCR dynamics.

Discussion and Related Work

We highlight some of the ideas and results in the paper, and
how they compare with existing literature.

Uncertainty and regret Voting behavior based on re-
gret minimization was considered by Ferejohn and Fio-
rina (1974). However their model (like probability-based
models) heavily relies on voters having cardinal utilities.
Also, they take an extreme approach where voters do not
use any available information, and thus all states are con-
sidered possible. Another regret-based model was suggested
in (Merrill 1982), which also ignores any available informa-
tion. Merrill shows that under the Plurality rule uncertain

voters should be truthful, which stands in sharp contrast to
behavior observed in the real world.

One of the most prominent models for voting under (prob-
abilistic) uncertainty was suggested by Myerson and We-
ber (1993), where voters preferences are sampled from a
known prior distribution. An equilibrium according to the
MW model is a mapping from preferences to a distribution
over votes, such that each voter maximizes her expected util-
ity w.r.t. this distribution. Myerson and Weber prove via a
fixed-point argument that an equilibrium always exists for
every positional scoring rule, and in particular for Plurality.

We see our regret minimization model as a non-
probabilistic variation of the MW model. Specifically, in the
MW model the voter considers the probability of each tie to
conclude her expected utility. In our WCR model the voter
focuses on the most significant possible tie, which greatly
facilitates the decision making process.

Some voting experiments suggest that human voting be-
havior is consistent with regret minimization (Blais et al.
1995; Krueger and Acevedo 2008), though voters may not
see themselves as such. We should note that these stud-
ies have limited relevance to our work since they concern
the decision whether to vote (voter turnout), rather than the
strategic decision what to vote. Thus more experimentation
is required to test the validity of such models.

A related approach is iterated regret minimiza-
tion (Halpern and Pass 2012), which was recently applied
to voting (Emery and Wilson 2014). This approach assumes
that voters know exactly both the preferences and the
decision making process of the other voters, whereas both
of these assumptions are avoided in the models we studied.

Local Dominance Concepts that are similar or equivalent
to local dominance have been recently introduced in the vot-
ing literature, notably Π-manipulation (Conitzer, Walsh, and
Xia 2011; Reijngoud and Endriss 2012) and ’de re’ manipu-
lation (van Ditmarsch, Lang, and Saffidine 2012). However
these papers did not consider distance metrics and did not
present any results on equilibrium existence or convergence.

For further background, we refer the reader to (Meir,
Lev, and Rosenschein 2014), which surveyed many game-
theoretic models of voting equilibrium, in particular w.r.t.
various approaches to uncertainty, dominance, and iterative
voting procedures. In addition, Meir et al. showed via ex-
tensive simulations that the equilibria reached by LD voters
(especially with diverse uncertainty levels) reproduce pat-
terns observed in the real world. In particular, in equilibrium
most voters vote for only two prominent candidates, a phe-
nomenon known as Duverger’s Law (Duverger 1954).

Consider the assumption made in (Meir, Lev, and Rosen-
schein 2014), that among all candidates dominating her cur-
rent action, a voter will always select the one that is most
preferred. Our paper tackles this assumption in two ways.
First, we show that it is not required for convergence, and
can thus be relaxed (among the other restrictions we relax).
Second, we show that this assumption can be justified on the
grounds that it minimizes the worst case regret of the voter.
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Implications for general games A recent result on mem-
oryless dynamics in atomic games, suggests that in any
game with more than one pure equilibrium, cycles must
occur if arbitrary groups of agents can move simultane-
ously (Jaggard, Schapira, and Wright 2011). Our result
shows that this is no longer true in nonatomic games, and
in fact there is a large class of games where convergence is
guaranteed despite the existence of multiple equilibria.

Conclusion and Future Directions

We showed that in the Plurality voting system, voters who
avoid locally-dominated candidates will always converge to
an equilibrium, and that this result is robust to the uncer-
tainty levels in the populations, the initial state, and the order
in which voters or groups of voters play.

In finite games without uncertainty, it is known that con-
vergence must occur in polynomial time in the number of
voters and candidates. The speed of convergence in non-
atomic games is not easily defined. For example voters
can just move in smaller and smaller masses in an infinite
(acyclic) path. However one can ask if there is a bound on
the maximal number of times a single voter can move. For
example under the conditions of Prop. 6, any voter can move
at most m−1 times, so we can say that convergence is “fast.”
Our general convergence proof does not provide a bound of
such sort, but we believe it is an interesting open question
for future research. We conjecture that no agent should move
more than a polynomial (in m) number of times until con-
vergence occurs.

The ultimate test for any scientific theory is in the accu-
racy of its predictions. An advantage of the theory studied in
this paper is that it is possible to test its epistemic assump-
tions (distance-based uncertainty) and behavioral assump-
tions (local dominance/WCR minimization) almost inde-
pendently. We intend to check whether empirical and exper-
imental evidence (e.g. from (Van der Straeten et al. 2010))
support the theory, and if so, what can we say about actual
uncertainty levels in real populations.

While the definition of weak LD voters naturally extends
to many other voting rules (as do the definitions in (Conitzer,
Walsh, and Xia 2011; Reijngoud and Endriss 2012; van Dit-
marsch, Lang, and Saffidine 2012)), the action space in most
rules contains all permutations of M , and there may be many
actions that dominate a particular action. Thus the mere def-
initions are not very instructive as to how a voter would
act. We hope the (local) worst-case regret minimization ap-
proach will be useful in defining reasonable voting behaviors
under uncertainty for other voting rules. Finally, distance
based uncertainty may prove useful in other games where
there is a natural metric over action profiles.

Acknowledgments

The author would like to thank Omer Lev, David Parkes
and Maria Polukarov for insightful discussions and for com-
menting on drafts of this paper, and Harvard CRCS for
the support. Some of the future directions and clarifications
were pointed out by anonymous referees.

References

Aumann, R. J. 1999. Interactive epistemology i: knowledge. In-
ternational Journal of Game Theory 28(3):263–300.
Bell, D. E. 1982. Regret in decision making under uncertainty.
Operations research 30(5):961–981.
Blais, A.; Young, R.; Fleury, C.; and Lapp, M. 1995. Do people
vote on the basis of minimax regret? Political Research Quarterly
48(4):827–836.
Conitzer, V.; Walsh, T.; and Xia, L. 2011. Dominating manipula-
tions in voting with partial information. In AAAI’11, 638–643.
Duverger, M. 1954. Political Parties: Their Organization and Ac-
tivity in the Modern State. New York: John Wiley. Y.
Emery, M., and Wilson, M. C. 2014. Iterated regret minimization
in voting games. In COMSOC’14.
Ferejohn, J. A., and Fiorina, M. P. 1974. The paradox of not vot-
ing: A decision theoretic analysis. The American political science
review 525–536.
Halpern, J. Y., and Pass, R. 2012. Iterated regret minimization: A
new solution concept. Games and Economic Behavior 74(1):184–
207.
Hyafil, N., and Boutilier, C. 2004. Regret minimizing equilibria
and mechanisms for games with strict type uncertainty. In UAI’04,
268–277.
Jaggard, A. D.; Schapira, M.; and Wright, R. N. 2011. Distributed
computing with adaptive heuristics. In ITCS’11.
Kahneman, D., and Tversky, A. 1974. Subjective probability: A
judgment of representativeness. In The Concept of Probability in
Psychological Experiments. Springer. 25–48.
Kahneman, D.; Knetsch, J. L.; and Thaler, R. H. 1991. Anoma-
lies: The endowment effect, loss aversion, and status quo bias. The
journal of economic perspectives 193–206.
Krueger, J. I., and Acevedo, M. 2008. A game-theoretic view of
voting. Journal of Social Issues 64(3):467–485.
Meir, R.; Polukarov, M.; Rosenschein, J. S.; and Jennings, N. R.
2010. Convergence to equilibria in plurality voting. In AAAI’10,
823–828.
Meir, R.; Lev, O.; and Rosenschein, J. S. 2014. A local-dominance
theory of voting equilibria. In ACM-EC’14, 313–330.
Merrill, S. 1982. Strategic voting in multicandidate elections under
uncertainty and under risk. In Power, voting, and voting power.
Springer. 179–187.
Myerson, R. B., and Weber, R. J. 1993. A theory of voting equi-
libria. The American Political Science Review 87(1):102–114.
Reijngoud, A., and Endriss, U. 2012. Voter response to iterated
poll information. In AAMAS’12, 635–644.
Savage, L. J. 1951. The theory of statistical decision. Journal of
the American Statistical association 46(253):55–67.
Schmeidler, D. 1973. Equilibrium points of nonatomic games.
Journal of Statistical Physics 7(4):295–300.
Tversky, A., and Kahneman, D. 1974. Judgment under uncertainty:
Heuristics and biases. science 185(4157):1124–1131.
Van der Straeten, K.; Laslier, J.-F.; Sauger, N.; and Blais, A. 2010.
Strategic, sincere, and heuristic voting under four election rules: an
experimental study. Social Choice and Welfare 35(3):435–472.
van Ditmarsch, H.; Lang, J.; and Saffidine, A. 2012. Strategic
voting and the logic of knowledge. In AAMAS’12, 1247–1248.

2109


