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Abstract

For Internet applications like sponsored search, cau-
tions need to be taken when using machine learning
to optimize their mechanisms (e.g., auction) since self-
interested agents in these applications may change their
behaviors (and thus the data distribution) in response to
the mechanisms. To tackle this problem, a framework
called game-theoretic machine learning (GTML) was
recently proposed, which first learns a Markov behavior
model to characterize agents behaviors, and then learns
the optimal mechanism by simulating agents’ behavior
changes in response to the mechanism. While GTML
has demonstrated practical success, its generalization
analysis is challenging because the behavior data are
non-i.i.d. and dependent on the mechanism. To address
this challenge, first, we decompose the generalization
error for GTML into the behavior learning error and
the mechanism learning error; second, for the behav-
ior learning error, we obtain novel non-asymptotic error
bounds for both parametric and non-parametric behav-
ior learning methods; third, for the mechanism learn-
ing error, we derive a uniform convergence bound based
on a new concept called nested covering number of the
mechanism space and the generalization analysis tech-
niques developed for mixing sequences.

1 Introduction
Many Internet applications, such as sponsored search and
crowdsourcing, can be regarded as dynamic systems that in-
volve multi-party interactions. Specifically, users arrive at
the system at random with their particular needs; agents pro-
vide products or services that could potentially satisfy users’
needs; and the platform employs a mechanism to match
agents with users. Afterwards, users may give feedback to
the platform about their satisfactions; the platform extracts
revenue and may provide agents with some signals as their
performance indicator. Since both the information reported
by the agents and the mechanism will affect the payoff of the
agents, self-interested agents may strategically adjust their
behaviors (e.g., strategically report the information about
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their services or products) in response to the mechanism (or
more accurately the signals they receive since the mecha-
nism is invisible to them). Take sponsored search as an ex-
ample. When a user submits a query to the search engine (the
platform), the search engine runs an auction to determine a
ranked list of ads based on the bid prices reported by the ad-
vertisers (the agents). If the user clicks on (gives feedback
to) an ad, the search engine will charge the corresponding
advertiser a certain amount of money. After a few rounds of
auctions, the search engine will provide the advertisers with
some signals on the auction outcome, e.g., the average rank
positions of their ads, the numbers of clicks, and the total
payments. Based on such signals, the advertisers may adjust
their bidding behaviors to be better off in the future.

It is clear that the mechanism plays a central role in the
aforementioned dynamic system. It determines the satisfac-
tion of the users, the payoffs of the agents, and the revenue of
the platform. Therefore, how to optimize the mechanism be-
comes an important research topic. In recent years, a number
of research works (Lahaie and Pennock 2007; Radlinski et
al. 2008; Zhu et al. 2009a; 2009b; Medina and Mohri 2014;
He et al. 2014; Tian et al. 2014) have used machine learning
to optimize the mechanism. These works could be catego-
rized into three types.

• Some researchers assume that the agents are fully rational
and investigate the Nash (or dominant-strategy) equilib-
rium of the mechanism. For example, (Medina and Mohri
2014) proposes a machine learning framework to opti-
mize the second-price auction in sponsored search in the
single-slot setting. In this case, the dominant strategy for
fully rational advertisers is to truthfully reveal their valu-
ations through the bid prices and therefore their bidding
behaviors have no dynamics.

• Some researchers assume that the behaviors of the agents
are i.i.d. and independent of the mechanism, and optimize
the mechanisms based on historical behavior data. For ex-
ample, (Zhu et al. 2009a) and (Zhu et al. 2009b) apply ma-
chine learning algorithms to optimize the first-price auc-
tion based on the advertisers’ historical bidding data.

• Some other researchers believe that the behaviors of the
agents are neither fully rational nor i.i.d., instead, they
are dependent on the mechanism through a data-driven
Markov model. For example, (He et al. 2013) and (Tian
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et al. 2014) assume that the agents’ behavior change is
Markovian, i.e., dependent on their historical behaviors
and the received signals in previous time periods.

Please note that the assumption in the third type of works
is more general, and can cover the other two types as its
special cases. According to (Fudenberg 1998), Nash (and
also dominant-strategy) equilibrium in many games can be
achieved by best-response behaviors, with which an agent
determines the next action by maximizing his/her payoff
based on the current action profile and mechanism. It is
clear that the best-response behaviors are Markovian. Fur-
thermore, it is also clear that the i.i.d. behaviors are spe-
cial cases of Markov behaviors, where the Markov transition
probability is reduced to a fixed distribution independent of
the signals and the previous behaviors.

Based on the Markov assumption on agent behaviors,
(He et al. 2014) propose a new framework for mecha-
nism optimization, called game-theoretic machine learning
(GTML). The GTML framework involves a bi-level em-
pirical risk minimization (ERM): it first learns a Markov
model to characterize how agents change their behaviors,
and then optimizes the mechanism by simulating agents’ be-
havior changes in response to the mechanism based on the
learned Markov model. The GTML framework has demon-
strated promising empirical results, however, its generaliza-
tion analysis is missing in the literature1. Actually this is a
very challenging task because conventional machine learn-
ing assumes data is i.i.d. generated from an unknown but
fixed distribution (Devroye 1996; Vidyasagar 2003), while
in GTML, agents behavior data have time dependency and
may dynamically change in response to the mechanism. As a
result, conventional generalization analysis techniques could
not be directly applied.

In this paper, we present a formal analysis on the gener-
alization ability of GTML. Specifically, utilizing the stabil-
ity property of the stationary distribution of Markov chain
(Mitrophanov 2005), we decompose the generalization error
for GTML into the behavior learning error and the mech-
anism learning error. The former relates to the process of
learning a Markov behavior model from data, and the lat-
ter relates to the process of learning the optimal mecha-
nism based on the learned behavior model. For the behavior
learning error, we offer novel non-asymptotic error bounds
for both parametric and non-parametric behavior learning
methods: for parametric behavior learning method, we up-
per bound the behavior learning error by parameter learning
error; for non-parametric behavior learning method, we de-
rive a new upper bound for the gap between transition fre-
quency and transition probability of a Markov chain. After
that, we apply the Hoeffding inequality for Markov chains
to both of the upper bounds, and obtain the error bound for
both parametric and non-parametric behavior learning meth-
ods. For the mechanism learning error, we make use of a
new concept called nested covering number of the mecha-

1In (Tian et al. 2014), authors only studied the generalization
ability for behavior learning. Furthermore, their definition for be-
havior learning error is different from ours, and cannot be applied
to the generalization analysis for GTML.

nism space. Specifically, we first partition the mechanism
space into subspaces (i.e., a cover) according to the similar-
ity between the stationary distributions of the data induced
by mechanisms. In each subspace, the data distribution is
similar and therefore one can substitute the data sample as-
sociated with each mechanism by a common sample without
affecting the expected risk by much. Second, for each mech-
anism subspace, we derive a uniform convergence bound
based on its covering number (Anthony and Bartlett 2009)
by using the generalization analysis techniques developed
for mixing sequences. In the end of this paper, we apply our
generalization analysis of GTML to sponsored search, and
give theoretical guarantee to GTML in this scenario.

To the best of our knowledge, this is the first work that
performs formal generalization analysis on GTML, and we
believe the methodologies we use have their general impli-
cations to the theoretical analysis of other complicated ma-
chine learning problems as well.

2 GTML Framework
In this section, we briefly introduce the game-theoretic ma-
chine learning (GTML) framework. For ease of reference,
we summarize related notations in Table 1.

2.1 Mechanisms in Internet Applications
Internet applications such as sponsored search and crowd-
sourcing can be regarded as dynamic systems involving in-
teractions between multiple parties, e.g., users, agents, and
platform. For example, in sponsored search, the search en-
gine (platform) ranks and shows ads to users and charges the
advertisers (agents) if their ads are clicked by users, based on
the relevance degrees of the ads and the bid prices reported
by the advertisers. Similar multi-party relationship can also
be found in crowdsourcing, where the platform corresponds
to Mechanical Turk, the agents corresponds to employers.
While we can assume the behaviors of the users to be i.i.d.,
the behaviors of the agents are usually not. This is because
agents usually have clear utilities in their minds, and they
may change behaviors in order to maximize their utilities
given the understandings on the mechanism used by the plat-
form. As a result, the agents’ behaviors might be dependent
on the mechanism.

Mathematically, we denote the space of mechanisms as
A, and assume it to be compact with distance dA. We denote
the space of user need/feedback, the space of agent behav-
iors, and the space of the signals, as U , B, and H respec-
tively. We assume B andH are both finite, with size |B| and
|H|, since the behaviors and signals are usually discrete and
bounded. For a mechanism a ∈ A, at the t-th time period,
agents’ behavior profile is bat ∈ B, and a user ut ∈ U arrives
at the system. The platform matches the agents to the user
and charges them, according to mechanism a. After that, the
platform will provide some signals ht ∈ H (e.g., the num-
ber of clicks on the ads ) to the agents as an indication of
their performances. Since ht may be affected by agents’ be-
havior profile bat , mechanism a, and user data ut, we denote
ht = sig(a, bat , ut), where sig : A × B × U → H is a
function generating the signals for agents. After observing
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ht, agents will change their behavior to bat+1 to be better off
in the future.

2.2 Markov Agent Behavior Model
In order to describe how agents change their behaviors, the
authors of (He et al. 2013) and (Tian et al. 2014) proposed
a Markov behavior model. The key assumption made by the
Markov model is that any agent only has a limited mem-
ory, and his/her behavior change only depends on his/her
previous behaviors and signals in a finite number of time pe-
riods. To ease the discussion and without loss of too much
generality, they assume the behavior model to be first-order
Markovian. Formally, given the signal ht, the distribution of
agents’ next behavior profile can be written as follows,

P (bat+1|bat , ..., ba1 ;ut, ..., u1)

=P (bat+1|bat , ..., ba1 ;ht, ..., h1)

=P (bat+1|bat , ht) :=Mht(b
a
t , b

a
t+1),

where Mh is the transition probability matrix of the behav-
ior profile, given the signals h ∈ H.

As mentioned in the introduction, the Markov behavior
model is very general and can cover other types of behavior
models studied in the literature, such as the best-response
behaviors and the i.i.d. behaviors.

2.3 Bi-Level Empirical Risk Minimization
In (He et al. 2014), bi-level empirical risk minimization
(ERM) algorithm is proposed to solve the GTML problem.
The first-level ERM corresponds to behavior learning, i.e.,
learning the Markov behavior model (the transition prob-
ability matrixes Mh(·, ·), h ∈ H) from training data con-
taining signals and corresponding behavior changes. The
second-level ERM corresponds to mechanism learning, i.e.,
learning the mechanism with the minimum empirical risk
defined with both the behavior model learned at the first
level and the training data containing users’ needs/feedback.

For behavior learning, suppose we have T1 samples of
historical behaviors and signals {bt, ht}T1

t=1. The goal is to
learn the transition matrix Mh(·, ·) from these data. In (He
et al. 2014) and (Tian et al. 2014), both parametric and
non-parametric approaches were adopted for behavior learn-
ing. With the parametric approach, one assumes the transi-
tion probability to take a certain mathematical form, e.g.,
Mh(b, b

′) ∝ exp(−|b′ − Aw|2), where A := (b, h, 1) is a
matrix, and Ai,3i−2 = bi, Ai,3i−1 = hi, Ai,3i = 1, i ∈ Z+,
bi, hi respectively denote the behavior data and signal of
the i-th agent. Further, parameter w is learned by maximum
likelihood estimation. With the non-parametric approach,
one directly estimates each entry Mh(b, b

′) by counting the
frequencies of the event (bt = b, bt+1 = b′) out of the event
(bt = b) given signal h. No matter which approach is used,
we denote the learned behavior model as M̂T1

for ease of
reference.

For mechanism learning, suppose we have T2 samples
of user data {ut}T2

t=1 and a Markov behavior model M̂T1 ,
learned as above. The goal is to learn an optimal mechanism
to minimize the empirical risk (e.g., minus empirical rev-
enue/social welfare) on the user data, denoted as L(a, b, u)
where L : A × B × U → [−K, 0]. For this purpose, for

an arbitrary mechanism a ∈ A, one generates T2 samples
of behavior data {bat }

T2
t=1 in a sequential manner using the

Markov model M̂T1
and T2 samples of user data. With the

T2 samples of behavior data and user data, the empirical risk
of mechanism a can be computed. To improve the computa-
tional efficiency of mechanism learning, in (He et al. 2014),
the authors introduce a technique called δ-sample sharing.
Specifically, given δ > 0, in the optimization process, if the
distance between a new mechanism a and another mecha-
nism a′ whose behavior data is already generated is smaller
than δ (i.e., dA(a, a′) ≤ δ), then one will not generate be-
havior data for a any more, but instead reuse the behavior
data previously generated for mechanism a′. Therefore, we
denote the sample for mechanism a as {bs(a,δ)t }T2

t=1, where
s(a, δ) is equal to a itself or another mechanism satisfy-
ing dA(a, s(a, δ)) ≤ δ. Consequently, the empirical risk of
mechanism a is defined as below,

RT2(a, M̂T1 , δ) =
1

T2

T2∑
t=1

L(a, b
s(a,δ)
t , ut).

By minimizing RT2
(a, M̂T1

, δ), one can obtain an empiri-
cally optimal mechanism:

âT2 = argmin
a∈A
RT2(a, M̂T1 , δ).

While GTML and the bi-level ERM algorithm have demon-
strated their practical success (He et al. 2013), their theo-
retical properties are not yet well understood. In particular,
given that GTML is more complicated than conventional
machine learning (in GTML the behavior data are time-
dependent and mechanism-dependent), conventional gener-
alization analysis techniques cannot be directly applied and
new methodologies need to be proposed.

3 Generalization Analysis for GTML
In this section, we first give a formal definition to the gen-
eralization error of the bi-level ERM algorithm for GTML,
and then discuss how to derive a meaningful upper bound
for this generalization error. Finally, we apply our general-
ization analysis of GTML to sponsored search, and show the
GTML in this scenario has good generalization ability.

According to (Tian et al. 2014), for a behavior model M
(such as the true Markov behavior model M∗ and the model
M̂T1

obtained by the behavior learning algorithm), under
some mild conditions (e.g., is irreducible and aperiodic), the
process (bat , ut) is a uniformly ergodic Markov chain for ar-
bitrary mechanism a. Then given mechanism a and behavior
model M , there exists a stationary distribution for (bat , ut),
which we denote as π(a,M). For simplicity, we assume the
process {(bat , ut) : t ≥ 1} is stationary 2. We define the risk
for each mechanism a ∈ A as the expected loss with re-
spect to the stationary distribution of this mechanism under
the true behavior model M∗, i.e.,

R(a,M∗) = Eπ(a,M∗)L(a, b
a, u).

The optimal mechanism minimizing this risk is denoted as
a∗, i.e.,

a∗ = argmin
a∈A
R(a,M∗).

2Our results can similarly holds without this assumption.
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We consider the gap between the risk of the mechanism âT2

learned by the bi-level ERM algorithm and the risk of the
optimal mechanism a∗, i.e.,R(âT2

,M∗)−R(a∗,M∗). We
call this gap the generalization error for the bi-level ERM
algorithm, or simply the generalization error for GTML.

To ease the analysis, we utilize the stability property of the
stationary distribution of uniformly ergodic Markov Chain
and decompose the generalization error for GTML into two
parts, as shown in the following Theorem. Due to space re-
strictions, we leave all proofs in this paper to supplemental
materials.
Theorem 3.1. The generalization error of the bi-level ERM
algorithm for GTML R(âT2 ,M

∗) − R(a∗,M∗) can be
bounded as:

R(âT2 ,M
∗)−R(a∗,M∗) ≤ 2KC(M∗)||M∗ − M̂T1 ||∞
+2 sup

a∈A
|R(a, M̂T1)−RT2(a, M̂T1 , δ)|,

where K is an upper bound for loss L, and C(M∗) is a
non-negative constant depending on M∗.

For ease of reference, we call the first term ||M∗ −
M̂T1 ||∞ in the right-hand side of inequality (3.1) behavior
learning error and the second term supa∈A |R(a, M̂T1) −
RT2(a, M̂T1 , δ)| mechanism learning error. We will derive
upper bounds for both errors in the following subsections.

3.1 Error Bound for Behavior Learning
In this subsection we derive error bounds for both paramet-
ric and non-parametric behavior learning methods. Since
the behavior space and signal space are both finite, it is
shown in (Tian et al. 2014) that {bt+1, bt, ht} forms a time-
homogeneous Markov chain. Furthermore, under regular
conditions, the Markov chain is uniformly ergodic, i.e., there
exists N0, such that the elements in the N0-step transition
probability matrix of {bt+1, bt, ht} are all positive. For ease
of reference, we denote the minimum element in this ma-
trix as δ0. Since the mechanism a0 is fixed in the process of
behavior learning , we omit all the super scripts a0 in ba0t
without confusion. Please note that, in (Tian et al. 2014),
although authors studied the generalization analysis for be-
havior learning, their definition on behavior learning error
is different from ours and cannot be applied in the gener-
alization analysis for GTML. To be specific, they measure
the behavior learning error by the expected behavior predic-
tion loss of the learned behavior model with respect to the
stationary distribution under the true behavior model, while
we measure behavior learning error in a stricter way by the
infinity distance between the learned model and true model.

Parametric Behavior Learning With the parametric ap-
proach (He et al. 2014), the transition probability is propor-
tional to a truncated Gaussian function, i.e., Mh(b, b

′) ∝
exp(−|b′ − (b, h, 1)ω|2) where ω is bounded . The parame-
ter is obtained by maximizing the likelihood. We first bound
the behavior learning error by the gap between the learned
parameter and the parameter in the true model, utilizing
the property of maximum likelihood method; then we ap-
ply the Hoeffding inequality for uniformly ergodic Markov

chain (Glynn and Ormoneit 2002) and finally obtain the er-
ror bound for parametric behavior learning method as shown
in the following theorem.
Theorem 3.2. For any ε > 0, we have, for T1 >
(2C1N0)/(|B|2|H|δ0ε),

P (||M̂T1 −M
∗||∞ ≥ ε)

≤2 exp
(
−
(
T1ε|B|2|H|δ0 − 2C1N0

)2
2T1N2

0C
2
1

)
= O(exp(−T1))

where δ0, N0, C1 are positive constants.

Non-parametric Behavior Learning In the non-
parametric behavior learning, we estimate the transition
probability MHj (Bi, Bk) by the conditional frequency of
the event bt+1 = Bk given that bt = Bi and ht = Hj ,

i.e., M̂Hj (Bi, Bk) =
∑T1
t=1 1{bt+1=Bk,bt=Bi,ht=Hj}∑T1

t=1 1{bt=Bi,ht=Hj}
. The

difficulty in analyzing the error of the above estimation
comes from the sum of random variables in the denominator
of the conditional frequency. To tackle the challenge, we
first derive an upper bound for the gap between conditional
transition frequency and conditional transition probability,
which does not involve such a sum of random variables,
then apply the Hoeffding inequality for uniformly ergodic
Markov chain (Glynn and Ormoneit 2002) to this upper
bound. In this way, we manage to obtain a behavior learning
error bound, as shown in the following theorem.

Theorem 3.3. For any ε > 0, we have for T1 >
(
2N0(|B|+

1)
)
/
(
|B||H|δ0C2ε

)
,

P (||M̂T1 −M
∗||∞ ≥ ε)

≤2|H||B|2(|B|+ 1)e
−

(
C2T1δ0|B||H|ε−2N0(|B|+1)

)2
2T1N

2
0 (|B|+1)2

=O(exp(−T1))

where δ0, N0, C2 are positive constants.

3.2 Error Bound for Mechanism Learning
In this section, we bound the mechanism learning error by
using a new concept called nested covering number for the
mechanism space. We first give its definition, and then prove
a uniform convergence bound for mechanism learning on its
basis.

Nested Covering Number of Mechanism Space The
nested cover contains two layers of covers: the first-layer
cover is defined for the entire mechanism space based on
the distance between stationary distributions induced by the
mechanisms. The second-layer cover is defined for each par-
tition (subspace) obtained in the first layer based on the dis-
tance between the losses of the mechanisms projected onto
finite common data samples.

First, we construct the first-layer cover for the mecha-
nism space A. In mechanism learning, the learned Markov
behavior model M̂T1

is used to generate the behavior data
for different mechanisms. For simplicity, we denote the sta-
tionary distribution of the generated data as π(a, M̂T1

) (or
πa for simplification) and the set of stationary distributions
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for A as π(A). We define the (induced) total variance dis-
tance on A as the total variance distance on π(A), i.e., for
∀a, a′ ∈ A, dTV (a, a′) = dTV (πa, πa′). For ∀ε > 0,
the smallest ε-cover of A w.r.t. the total variance distance
is coverεTV = {gε1, · · · , gεi , · · · }, where gεi ∈ A. That is,
A ⊆ ∪iB(gεi , ε), where B(gεi , ε) is the ε-balls of gεi with re-
spect to the (induced) total variance distance. We define the
first-layer covering number as the cardinality of coverεTV ,
denoted as NTV (ε,A). Based on coverεTV , we can obtain a
partition for A, denoted as {Aεi}, where Aεi is an ε-partition
of A. When the mapping from mechanism to its station-
ary distribution is α uniformly Lipschitz continuous, then
NTV (ε,A) <∞. Because for ∀δ > 0, a and s(a, δ) belong
to the same δα-partition ofA. So, consideringA is compact,
we have NTV (δα,A) ≤ NdA(δ,A) <∞.

Second, we consider the loss functions for each mecha-
nism subspace L ◦ Aεi := {L ◦ a : B × U → [−K, 0]|L ◦
a(bat , ut) = L(a, bat , ut), a ∈ Aεi}, and define its cover-
ing number w.r.t. the T2 common samples {Xε

i,t}
T2
t=1, where

Xε
i,t = {b

gεi
t , ut} and {bg

ε
i
t }

T2
t=1 are generated by mechanism

gεi . Again, we define the second-layer cover as the small-
est ε′-cover of L ◦ Aεi |{Xεi,t}T2t=1

under the l1 distance, i.e.,

coverε
′

1 (L ◦ Aεi |{Xεi,t}T2t=1
), and define the second-layer cov-

ering number N1(ε
′, L◦Aεi , T2) as its maximum cardinality

with respect to the sample {Xε
i,t}

T2
t=1.

In summary, the nested covering numbers for a mecha-
nism space are defined as follows:
Definition 3.4. Suppose A is a mechanism space, we de-
fine its nested covering numbers as

{
NTV (ε,A), {N1(ε

′, L◦
Aεi , T2)}

}
.

Uniform Convergence Bound for Mechanism Learning
In this subsection, we derive a uniform convergence bound
for the ERM algorithm for mechanism learning. We first re-
late the uniform convergence bound for the entire mecha-
nism space to that for the subspaces constructed according
to the first-layer cover. Then considering that uniformly er-
godic Markov chains are β-mixing (Doob 1990), we make
use of the independent block technique for mixing sequences
(Yu 1994) to transform the original problem based on depen-
dent samples to that based on independent blocks. Finally,
we apply the symmetrization technique and Hoeffding in-
equality to obtain the desired bound.
Theorem 3.5. Suppose that the mapping from A to πA is
α uniformly Lipschitz continuous, and the β-mixing rate of
Markov chain {(bat , ut) : t ≥ 1} (denoted as β(a,m)) is
algebraical (i.e., β(a,m) ≤ β0m

−γ , where β0, γ ≥ 0,m ∈
Z.). For any ε > 0, we have

P (sup
a∈A
|RT2(a, M̂T1 , δ)−R(a, M̂T1)| ≥ ε)

≤NdA(δ,A) max
1≤i≤NdA (δ,A)

(
16N1((ε−Kαδ)/16, L ◦ Aδi , T2)

exp
(
− (ε− δαK)2

128K2
dT

s
1+s
2

2
e
)
+ β0dT

s−γ
1+s
2 e

)
= O

(
NdA(δ,A)

(
N1(ε, L ◦ A, T2)e

−T
s

1+s
2 + T

s−γ
1+s
2

))
,

where de denotes ceiling function, δ ∈ (0, ε/(Kα)) and
s ∈ (0, γ).

Remark 1: For space restrictions, we only present the
bound with specific mixing rate, which is simpler and easier
to understand. Without the assumption on the mixing rate,
we can also obtain a similar bound, which can be found in
Theorem C.1 in the supplemental materials.

Remark 2: Although we have to leave the proofs to the
supplementary materials due to space restrictions, we would
like to point out one particular discovery from our proofs.
While the δ-sample sharing technique was originally pro-
posed to improve efficiency, according to our proof it plays
an important role in generalization ability. Then a question is
whether this technique is necessary for generalization abil-
ity. Our answer is yes if A is infinite. Let us consider a spe-
cial case in which U = {u} and πa ≡ π,∀a ∈ A, i.e.,
the behavior model does not rely on the signals. If δ-sample
sharing is not used, for finite T ,

1− P (sup
a∈A
| 1
T

T∑
t=1

L(a, bat , ut)− EL(a, bat , ut)| ≥ ε)

=
∏
a∈A

(
1− P (| 1

T

T∑
t=1

L(a, bat , ut)− EL(a, bat , ut)| ≥ ε)
)
= 0.

This implies that mechanism learning without δ-sample
sharing does not have generalization ability.

Remark 3: An assumption made in our analysis is that the
map from A to πA is uniformly Lipschitz continuous. How-
ever, sometimes this assumption might not hold. In this case,
we propose a modification to the original δ-sample shar-
ing technique. The modification comes from the observation
that the first-layer cover is constructed based on the total
variance distance between stationary distributions of mech-
anisms. Therefore, in order to ensure a meaningful cover, we
could let two mechanisms share the same data sample if the
estimates of their induced stationary distributions (instead
of their parameters) are similar. Please refer to the supple-
mentary materials for details of this modification and a proof
showing how it can bypass the discontinuity challenge. Note
that the modified δ-sample sharing technique no longer has
efficiency advantage since it involves the generation of be-
havior data for every mechanism examined during the train-
ing process, however, it ensures the generalization ability of
the mechanism learning algorithm, which is desirable from
the theoretic perspective.

3.3 The Total Error Bound
By combining Theorem 3.1, Theorem 3.3, Theorem 3.2 and
Theorem 3.5, we obtain the total error bound for GTML as
shown in the following theorem.
Theorem 3.6. With the same assumptions in Theorem 3.5,
for bi-level ERM algorithm in GTML, for any ε > 0, we have
the following generalization error bound 3:

P (R(âT2 ,M
∗)−R(a∗,M∗) ≥ ε) ≤ O(e−T1)

+O

(
NdA(δ,A)

(
N1(ε, L ◦ A, T2)e

−T
s

1+s
2 + T

s−γ
1+s
2

))
,

3Please refer to Theorem C.3 for the total error bound without
the assumption on the mixing rate.
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where s ∈ (0, γ), and δ ∈ (0, ε/Kα).
From the above theorem, we have following observations:

1) The error bound will converge to zero when the scales of
agent behavior data T1 and user data T2 approach infinity.
2) The convergence rate w.r.t. T1 is faster than that w.r.t. T2,
indicating that one needs more user data than agent behavior
data for training. 3) The mechanism space impacts the gener-
alization ability through both its first layer covering number
(which is finite) and second layer covering number.

3.4 Application to Sponsored Search Auctions
In this section, we apply our generalization analysis for
GTML to sponsored search auctions. In sponsored search,
GSP auctions with a query-dependent reserve price are
widely used (Edelman, Ostrovsky, and Schwarz 2005;
Easley and Kleinberg 2010; Medina and Mohri 2014).

When a reserve price r ∈ R+ is used, the GSP auction
runs in the following manners. First, the search engine ranks
the ads according to their bid prices (here we follow the
common practice to absorb the click-through rate of an ad
into its bid price to ease the notations), and will show to the
users those ads whose bid prices are higher than the reserve
price. If the ad on the i-th position (denoted as adi) is clicked
by a user, the search engine will charge the corresponding
advertiser by the maximum of the bid price of adi+1 and the
reserve price r. For sake of simplicity and without loss of
generality, we will only consider two ad slots. Let the binary
vector c = {c1, c2} indicate whether ad1 and ad2 are clicked
by users. Then the user data include two components, i.e.,
u = (q, c), where q ∈ Q is the query issued by the user and
c records user’s click feedback. Denote the bid profile of the
shown ads as (b(1),q , b(2),q) (for simplicity we sometimes
omit q in the notation). We consider a query-dependent re-
serve price, i.e., the auction family is A = {a : Q → R+}.
For a mechanism a, the revenue of the search engine can be
represented as:

Rev(a, b, u) = a(q)c11{b(2)≤a(q)≤b(1)} + (b(2)c1

+a(q)c2)1{b(3)≤a(q)≤b(2)} + (b(2)c1 + b(3)c2)1{a(q)≤b(3)},

and the loss is L(a, b, u) = −Rev(a, b, u).
Since the first layer covering number is always finite and

independent of the user data size (i.e., T2), we just need to
bound the second-layer covering number for GSP auctions
space with reserve price, which is shown as below.
Theorem 3.7. For GSP auctions with reserve price, the sec-
ond layer covering number can be bounded by the pseudo-
dimension (P-dim) of the reserve price function class. To be
specific, we have: ∀T2 > 4|B|P-dim(A),

N1(ε
′, L ◦ Aεi , T2) ≤ (4eT2K/ε

′)16|B|P-dim(A).

Combine Theorem 3.6 and Theorem 3.7, we get a total er-
ror bound for GTML applied to GSP auctions with reserve
price in the following theorem, which first gives generaliza-
tion guarantees for GTML in sponsored search.
Corollary 3.8. With the same assumptions in Theorem 3.5,
for any ε > 0, for GTML applied to GSP auctions with
reserve price, we have the following generalization error
bound:

P (R(âT2 ,M
∗)−R(a∗,M∗) ≥ ε) ≤ O(exp(−T1))

+O

(
NdA(δ,A)

(
T

16|B|P-dim(A)
2 e−T

s
1+s
2 + T

s−γ
1+s
2

))
,

where s ∈ (0, γ), and δ ∈ (0, ε/Kα).

4 Conclusion and Future Work
In this paper, we have given a formal generalization analy-
sis to the game-theoretic machine learning (GTML) frame-
work, which involves a bi-level ERM learning process (i.e.,
mechanism learning and behavior learning). The challenges
of generalization analysis for GTML lies in the dependency
between the behavior data and the mechanism. To tackle the
challenge, we first bound the error of behavior learning by
leveraging the Hoeffding inequality for Markov Chains, and
then introduce a new notion called nested covering num-
ber and bound the errors of mechanism learning on its ba-
sis. Our theoretical analysis not only enriches the under-
standing on machine learning algorithms in complicated dy-
namic systems with multi-party interactions, but also pro-
vides some practical algorithmic guidance to mechanism de-
sign for these systems. As for future work, we would also
like to extend the idea of δ-sample sharing and apply it to
improve the mechanisms in other real-world applications,
such as mobile apps and social networks.

Notation Meaning
U ,B,H Spaces of user need/feedback, agent

behaviors, and signals
A, dA mechanism space and the distance on it
ut, b

a
t , ht at the t-th time period, under mech-

anism a, the users’ need/feedback,
agents’ behavior, and the signal

Mh(·, ·) transition probability matrix of agents’
behavior under signal h

M̂T1 ,M
∗ the learned behavior model and the true

behavior model
âT2 , a

∗ the learned mechanism and the optimal
mechanism

L(a, b, u) loss function
s(a, δ) a mechanism that is equal to a

or another mechanism satisfying
dA(a, s(a, δ)) ≤ δ

π(a,M) stationary distribution of the process
(bat , ut) with behavior model M

RT2(a, M̂T1 , δ) empirical risk of mechanism awith be-
havior model M̂T1 by δ-sample shar-
ing technique

R(a,M∗) expected risk of mechanism a with the
true behavior model M∗

dTV (a, a
′) (induced) total variance distance on

mechanism space A
NdA(δ,A)
NTV (ε,A)

covering number of mechanism space
A under distance dA and (induced) to-
tal variance distance dTV

Aεi the ε-partition of mechanism space A
according to its first layer cover

L ◦ Aεi the loss function class in each partition
N1(ε, L ◦ Aεi , T2) covering number for the function class

L ◦ Aεi under l1 distance
β(a,m) beta mixing rate of Markov chain

{(bat , ut) : t ≥ 1}

Table 1: Notations
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