
Multi-Robot Auctions for Allocation of Tasks with Temporal Constraints

Ernesto Nunes and Maria Gini
Department of Computer Science and Engineering

University of Minnesota
200 Union St SE, Minneapolis, MN 55455

{enunes, gini}@cs.umn.edu

Abstract

We propose an auction algorithm to allocate tasks that have
temporal constraints to cooperative robots. Temporal con-
straints are expressed as time windows, within which a task
must be executed. There are no restrictions on the time win-
dows, which are allowed to overlap. Robots model their tem-
poral constraints using a simple temporal network, enabling
them to maintain consistent schedules. When bidding on a
task, a robot takes into account its own current commitments
and an optimization objective, which is to minimize the time
of completion of the last task alone or in combination with
minimizing the distance traveled. The algorithm works both
when all the tasks are known upfront and when tasks arrive
dynamically. We show the performance of the algorithm in
simulation with different numbers of tasks and robots, and
compare it with a baseline greedy algorithm and a state-of-
the-art auction algorithm. Our algorithm is computationally
frugal and consistently allocates more tasks than the compet-
ing algorithms.

Introduction
Auctions are becoming a widely accepted method for allo-
cating tasks to cooperative robots. In an auction allocation
method, robots bid on tasks based on the amount of effort
needed to complete them. Typically, the effort depends on
the distance between the robot location and the task loca-
tion plus any additional cost for doing the task itself, such as
resources consumed (e.g., time spent) in doing the task.

So far, limited attention has been devoted to auctions for
allocation of tasks that have to be completed within a speci-
fied time window, even if in the real world many tasks have
such temporal constraints. For example, a region may need
surveillance at regular intervals, a fleet of unmanned aerial
vehicles may need to arrive to a task within seconds of each
other (Alighanbari, Kuwata, and How 2003), and repairmen
have to reach customers within specified time windows.

Time windows make task allocation difficult because the
algorithms need to take into account both the spatial and
the temporal relationships among the tasks (Kumar, Cirillo,
and Koenig 2013). Dealing with overlapping time windows
in task allocation remains an open problem (Koenig, Ke-
skinocak, and Tovey 2010).

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

This paper makes two major contributions:
1. We propose the Temporal Sequential Single-Item auction

(TeSSI) algorithm, which allocates tasks using a variant
of the sequential single-item auction algorithm. The main
cost function used in TeSSI is the makespan (i.e., the time
the last robot finishes its final task), but we also use (TeS-
SIduo) a combination of makespan and total distance trav-
eled. Each robot maintains temporal consistency of its
allocated tasks using a simple temporal network (STN).
TeSSI produces more compact schedules than other al-
gorithms because each robot finds the optimal place in
its schedule for each new task before bidding on it. The
makespan of the resulting simple temporal network is
used to bid. The proposed algorithm supports both offline
allocation of tasks, when all the tasks are known upfront,
and online allocation, when tasks arrive dynamically.

2. We analyze the algorithm’s complexity, and show exper-
imentally that it outperforms a baseline greedy algorithm
and the consensus-based bundle auction (CBBA) in ex-
periments with synthetic data and with datasets from vehi-
cle routing problems with time windows (Solomon 1987).

Related Work
Methods for multi-robot task allocation can be broadly cat-
egorized into centralized, decentralized, and hybrid; and de-
pending on the optimality of the solution, exact or heuristic.
A recent example of a centralized method uses an efficient
mixed-integer linear programming approach for multi-robot
scheduling with spatial constraints (Gombolay, Wilcox, and
Shah 2013). Centralized methods can achieve optimal re-
sults, but are not suitable for field operations where commu-
nication can be limited and unreliable, and faults are com-
mon. Hence, we choose a decentralized approach.

Among decentralized approaches, auctions have enjoyed
popularity as a multi-robot coordination method (Dias et
al. 2006; Korsah et al. 2010). Auctions move the bur-
den of computation onto individual robots and are robust
to local changes or failures, since the auction can pro-
ceed with the remaining robots when some robots malfunc-
tion (Nanjanath and Gini 2010). In sequential single-item
auctions (Lagoudakis et al. 2005; Koenig et al. 2006) one
task is allocated at a time, so robots can account for previous
commitments while bidding. The auction is cleared in poly-
nomial time producing solutions that are a provable factor

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

2110

away from the optimum for common optimization criteria.
Similar guarantees exist for CBBA (Choi, Brunet, and How
2009), which avoids the need for an auctioneer by using a
distributed consensus phase.

Auction algorithms have been extended to allocate tasks
with temporal constraints. Melvin and colleagues (2007)
studied scenarios where tasks have to be completed within
a specified time window, but with no overlapping time win-
dows. Assuming that time windows are pairwise disjoint al-
lows robots to choose any order of tasks as long as the robot
can reach the next task in time. In our case, such a strict
ordering of tasks is not possible, because tasks might have
overlapping time windows. Sequential auctions for tasks
with overlapping time-windows have been proposed both as
single-item (Nunes, Nanjanath, and Gini 2012) and multi-
item auctions (Ponda et al. 2010).

Ponda et al. (2010) extended CBBA to tasks with time
windows. Time window constraints are accounted for in the
robot’s bidding function, which is dependent on the robot
arrival time. Robots are penalized for arriving late to a task.
CBBA has convergence guarantees assuming that the scor-
ing function abides by the principle of diminishing marginal
gains. However, this requires the algorithm to not change the
start time of the tasks once they are allocated, and thus re-
duces the number of tasks that the algorithm allocates. Our
work overcomes this limitation by allowing tasks’ start times
to change which results in higher allocation rates.

Problem Definition
We investigate how to allocate tasks with temporal con-
straints to a group of robots to produce an allocation that
satisfies the temporal constraints, and minimizes a cost func-
tion. The specific cost function we use is the makespan (i.e.,
the time the last robot finishes its final task), but we also use
a combination of makespan and total distance covered.

We assume a nonempty set of robots R and a nonempty
set of tasks T . We consider the case when all the tasks are
known upfront, and the case when tasks arrive dynamically.

Each t ∈ T has an earliest start time, ESt, which is the
earliest time t can be executed, a latest start time, LSt, with
ESt ≤ LSt, and a latest finish timeLFt, the time by which t
has to be completed. A task also has a duration DURt, with
LSt +DURt = LFt. [ES,LF] defines the time-window in
which the task has to be done.

We use an auctioneer, which communicates the tasks to
the robots, receives bids from them, decides the allocations,
and communicates them to the robots. While the auctioneer
can be a single point of failure, it simplifies communication
among robots, and can maintain a global view of the individ-
ual allocations. Compared to centralized allocation methods,
auctions have the advantage of distributing the computation
of bids to robots, which allows progression of tasks when a
robot becomes disabled or looses communication.

Robots act as bidders. Each robot computes the cost
of performing each task according to its private schedule.
Hence, the underlying optimization function is solved in a
decentralized manner by decomposing it into problems that
robots solve independently.

TeSSI Algorithm
The auction (Algorithm 1) starts when the auctioneer an-
nounces the tasks available for bidding. The auctioneer re-
ceives a bid vector from each robot (using the receiveBid
function). The auctioneer selects the task with the minimum
bid among all the bids and allocates that task to the robot
that submitted the corresponding bid. The auctioneer noti-
fies all the robots of the winner, ensuring that they all know
what tasks have been assigned. Tasks that no robot can do
are added to the unallocated tasks set (Tunalloc). Then the
auction restarts with the remaining tasks and continues until
the set of tasks is empty.

Algorithm 1: TeSSI algorithm for the auctioneer
Input: set of robots R, set of unallocated tasks T .

1 Tunalloc = ∅ ;
2 while T 6= ∅ do
3 for r ∈ R do
4 sendTasks(r, T);
5 for r ∈ R do
6 Qr

T = receiveBid(r);
7 (winner, tmin,minBidOverall) = (null,null,∞);
8 for r ∈ R do
9 minBidr, t = argmin

r,t
Qr

T ;

10 if minBidr < minBidOverall then
11 winner = r; tmin = t;
12 minBidOverall = minBidr;
13 else if tmin == null then
14 tmin = t;

15 if winner 6= null then
16 sendWinner(R,winner, tmin);
17 else
18 Tunalloc = Tunalloc ∪ {tmin};
19 T = T − {tmin} ;

Algorithm 2: TeSSI algorithm for robot r to bid
Input: set of unallocated tasks T , partial schedule of

tasks T̄r for robot r
1 br

T =

{. . . , δtr, . . .} ∀t ∈ T , where δtr = computeBid(t, T̄r);
2 sendBid(br

T);
3 receiveWinner(R,winner, tmin);
4 if winner == r then
5 r inserts tmin in its schedule T̄r;

When each robot receives the list of tasks (Algorithm 2),
it computes the cost (for instance, makespan) for each task
using the computeBid function (Algorithm 3) and taking into
account its current schedule, which it keeps as a STN. Robot
r adds the bid for each task to its vector of bids (br

T) and
sends it to the auctioneer using sendBid. When a robot is
notified it won a task, it adds that task to its STN and updates
it to keep it consistent.

2111

Managing Schedules
We model the temporal constraints on the tasks as a sim-
ple temporal problem (Dechter, Meiri, and Pearl 1991). This
model provides a polynomial way for robots to maintain
consistent schedules when adding new tasks.

A simple temporal network (STN) is generated as follows:
each task is represented by the St and Ft time points (illus-
trated for tasks t1,t2 and t3 in Figure 1). An origin time point
is added to the STN, which serves as a reference starting
point, and it is assigned a value of zero. We omit the origin
point in our graphical representation, instead, we use self-
loop arrows to represent the earliest and latest start times,
and earliest and latest finish times. These give the absolute
time when tasks must be executed. Thus, start and finish time
points must be executed within the intervals [ESt, LSt] and
[ESt +DURt, LSt +DURt], respectively.

1t1t t2F
2t

S

t3
S

3t

,LSES[] ,LFEF][2 t2 t

EF ,LF[]

DUR ,inf) DUR[,inf)

DUR ,[inf)

TT , inf) t1

,EF][

 t1 2 t2

2 t2 t

inf t
,[TT)

23
,[TT inf) t1 3

,ES[LS]3 t t

 t3

3 t 3 t

1 t 1 t

[

,LSES[t11 t

[

3

 t t

 t

LF

F

]

S

F

Figure 1: Example of an STN for the tasks assigned to a
robot. The STN has the time points, duration and travel time
constraints for three tasks assigned to the robot.

We consider two types of constraints between pairs of
time points: duration and travel time constraints. Duration
constraints are imposed if the time points belong to the same
task. Travel time constraints are imposed when one time
point is the end of a task and the other is the start of the next
task. Both types of constraints induce an ordering of events.
The start of a task cannot occur after its finish time (Ft−St ∈
[DURt,∞)); and a robot reaches its next task t only after
finishing its previous task t′ (St−Ft′ ∈ [TTt′,t,∞)), where
TT is the travel time between the two locations.

Algorithm 3 computes a bid for a task by trying to insert
the task in each available time segment in the robot schedule
and selecting the place that minimizes the makespan without
causing temporal conflicts. The algorithm assumes that each
robot keeps a working copy of its STN, which is used while
bidding, and the final STN that holds the temporal informa-
tion of the tasks is assigned to the robot.

When a new task t′′ is to be added to a robot schedule, the
start and finish time points for t′′ are added to the working
STN, along with the duration and travel time constraints. If
t′′ is the first task in a robot’s schedule, we solve the STN by
assigning max(TTr,t′′ , ESt′′) to the task’s start time point
(St′′) if St′′ ≤ LSt′′ . If the robot’s schedule contains other
tasks, to schedule t′′ the algorithm needs to find a place to
fit t′′ without making the STN inconsistent. When there are
multiple places a task can be inserted, all insertion points are
tried and the one that minimizes the makespan is returned.

The time points of a task are associated with two con-
straints, one between its start time and the finish time point
of the previous task, and the other from its finish time point

Algorithm 3: Task Scheduling Algorithm

Input: Robot location rloc, robot schedule T̄r, task to
insert tins, STN for r.

Output: Index indicating the task insertion position in
the robot schedule and the makespan that is
used for bidding.

1 index i = −1;
2 if T̄r = null then
3 makespan = computeMakespan;
4 return 0,makespan;
5 else
6 for

i = 0, ...,m where m is the number of tasks in STN
do

7 Insert tins at position i in T̄r;
8 Add task time points and all constraints to STN;
9 Propagate the STN using Floyd-Warshall;

10 if STN is consistent then
11 makespan = computeMakespan;
12 if makespan is smallest so far then
13 save i,makespan;

14 reset STN to the copy prior to inserting task i;

15 if i=-1 then
16 return − 1,∞ ;
17 else
18 return i,makespan ;

and the start time point of the next task in the schedule. Once
these are added, the STN is propagated using the Floyd-
Warshall algorithm. If no negative cycles occur, the network
is consistent. The makespan of the schedule is computed by
finding the STN solution with the smallest makespan.

The STN is reset before trying each insertion point to en-
sure only the tasks allocated to the robot are included. The
final STN is updated only when the robot wins a task.

Bidding Rules
We consider two team objectives: to minimize the makespan
(equivalent to MiniMAX (Lagoudakis et al. 2005)) and to
minimize a combination of makespan and distance traveled.
Since we assume the robots have the same speed, distance is
transformed into travel time. To prevent conflicting assign-
ments all the robots use the same bidding rule.

Bid with Makespan. Robots bid using the makespan of
their schedules computed with Algorithm 3.
Bid with Combined Makespan and Distance. The bid
value for a task is a linear combination of the makespan and
the distance traveled, as in (Solomon 1987): αMr

max + (1−
α)[

∑
t,t̂∈T̄r∪t′ TTt,t̂ −

∑
t,t̂∈T̄r

TTt,t̂], where α ∈ [0, 1] is a
weighting factor and Mr

max is the maximum makespan for
r. In our experiments we set α = 0.5. We call this bidding
rule the dual objective heuristic (duo) and the TeSSI version
that uses it TeSSIduo.

2112

TeSSI Algorithm Analysis
TeSSI produces a total of n × m bids in each iteration,
for a total of m iterations, producing an O(nm2) complex-
ity. The scheduling algorithm requires at most O(|T̄r|2) to
build the schedule for each robot. The worst-case complex-
ity is O(m2), which occurs when one robot is assigned all
the tasks. The complexity of propagation of the STN is the
same as the complexity for the Floyd-Warshall algorithm,
which is is O(m3) in the worst-case. The makespan compu-
tation is linear in the number of tasks. The algorithm simply
walks through the vector of time points once. TeSSIduo adds
O(|T̄r|) extra distance computations to TeSSI.

The auctioneer uses n priority queues to compute the win-
ners of the auction resulting in a O(nlog2m) complexity.
The communication complexity is O(nm) since the auction
hasm iterations and n robots send one message per iteration.

When tasks are not allocated, they are removed from the
list of tasks to be auctioned, hence the list of tasks available
for auctioning becomes empty after m iterations. TeSSI and
TeSSIDuo always terminate, but are not complete and do not
guarantee an optimal solution, due to the use of sequential
single item auctions. The number of robots may need to be
increased to allocate all the tasks. This practice is common
in the vehicle routing (VRP) literature (Toth and Vigo 2002).

TeSSI Auction Example

1r

r2

1t

t3

t2

t1
t3

r1

10 155 200

2t
t4

r2

t4

Initial Temporal Distribution of tasks

Schedules for the robots

TeSSI

(0,0) (7,0)

(7,4)(0,4)

Optimal Makespan

Time

Figure 2: Allocations for the example scenario.

Here we give a brief example on how the algorithm works.
We use a simple scenario (see Figure 2) with two robots and
four tasks. The time windows for the tasks are shown with
rectangles, where the color shaded areas indicate task du-
rations. Tasks durations are 2, 3, 5, 5 for tasks 1-4, respec-
tively. The time windows are [0,12], [5,18], [2,18] and [0,20]
for tasks 1-4, respectively. Tasks’ locations are (0,0), (7,0),
(0,4) and (7,4) for tasks 1-4, respectively. Robot locations
are (4,0) for r1 and (4,4) for r2. We use Cartesian distances.
We assume that r1 and r2 move 1 grid element per time unit.

In the first iteration, to bid on task t1 robot r1 com-
putes the makespan if t1 is added to its schedule as fol-
lows: max(4, 0) + 2 = 6, where 4 is the travel time from
r1 to t1, 0 is the earliest start time for t1 and 2 is t1’s
duration. Observe that the max(4, 0) < 10, where 10 is
the latest start time for t1 which is computed from its lat-
est finish time as (LSt1 = LFt1 − DURt1). Hence the
robot can reach the task and perform it without violating

t1’s temporal constraints. The bids for the other tasks are
computed in a similar way. The bid vectors in the first itera-
tion are for r1 [(t1,6), (t2, 8), (t3, 10.7), (t4, 10)] and for r2

[(t1, 7.7), (t2, 8), (t3, 9), (t4, 8)]. Task t1 has the minimum
bid, the auctioneer picks t1 and allocates it to r1, then re-
moves t1 from the task list.

In the next iteration, r2 bids remain the same for the re-
maining tasks (t2, t3, t4) because it did not win any tasks in
the previous iteration. However, the bids for r1 change. For
example, when bidding on t2, r1 attempts to insert t2 both
before and after t1. If t2 is inserted before t1 the computa-
tion returns 17 (3 travel to t2 + 2 wait for early start of t2
+ 3 duration of t2’s + 7 travel to t1 + 2 duration of t1). If
instead t2 is inserted after t1, the computation returns 16 (6
previous bid for t1 + 7 travel time from t1 to t2 + 3 dura-
tion of t2’s). Hence the bid where t2 is after t1 has a lower
makespan and it is the one submitted for t2. The remaining
bids are computed in the same way.

The overall makespan TeSSI returns (15) is the same as
the optimal makespan. TeSSIduo returns the same alloca-
tion. Note, however, that TeSSI and TeSSIDuo do not guar-
antee an optimal allocation due to the fact that sequential
single item auctions do not make such guarantee.

TeSSI Experiments and Results
We evaluate our algorithm in simulation in three experi-
ments. In the first, all the tasks are known upfront, while
in the second the tasks arrive dynamically. The third experi-
ment uses a dataset from the VRP with time windows litera-
ture. We compare the performance of our algorithm against
a version of CBBA (Ponda et al. 2010) that handles time
windows and a greedy algorithm. The greedy algorithm iter-
ates through the list of tasks once, and for each task iterates
through the list of robots searching for the robot which can
do that task and attain the lowest makespan. Each robot uses
Algorithm 3 on each single task to compute its makespan.

Data Generation
Experiment 1. We generated two datasets according to the
random task generator proposed by Ponda et al. (2010) on
a 60 by 60 2D grid. The tasks in both datasets have a fixed
duration (15 time units). The time windows are randomly
generated with earliest start times uniformly drawn from
[0,100]. Latest start times are computed by adding to the
earliest start times a random number drawn from the range
[1, duration of the task]. The tasks’ locations in datasets 1
and dataset 2 are generated uniformly over the 2D grid. In
dataset 1 there are 20-100 tasks (in 10 task increments), and
10 robots. In dataset 2, there are 100 tasks and a variable
number of robots (5 to 40 in 5 robot increments, and 50).
The datasets have varying degrees of difficulty with respect
to the tightness of the time windows.

Experiment 2. For the dynamic task arrival case, we used
the data for 100 tasks and 10 robots from Experiment 1. For
this simulation, we used the JADE (Bellifemine, Poggi, and
Rimassa 1999) multi-agent platform. Each robot is a JADE
agent, and there is an auctioneer agent. In this setup, tasks
arrive in batches of sizes 1, 5, 10, and increments of 10 up

2113

20 40 60 80 100
Number of tasks

10

20

30

40

50

60

70

Nu
m
be

r o
f a

llo
ca
te
d
ta
sk
s

TeSSI CBBA Greedy

0 10 20 30 40 50
Number of robots

20

40

60

80

100

120

Nu
m
be

r o
f a

llo
ca
te
d
ta
sk
s

TeSSI CBBA Greedy

Figure 3: Experiment 1: Number of tasks allocated (left) for dataset 1 (having
20-100 tasks with 10 robots), and (right) for dataset 2 (having 100 tasks with
5-50 robots).

0 20 40 60 80 100
Percentage of Tasks Available for Auction

30

40

50

60

Nu
m
be
r o

f a
llo
ca
te
d
ta
sk
s

TeSSI Greedy

Figure 4: Experiment 2: Number of tasks
allocated to 10 robots. 100 tasks arrive dy-
namically in batches of 1,5,10-100.

0 20 40 60 80 100
x-axis

0

20

40

60

80

100

y-
ax

is

R1
R2
R3
R4
R5
R6
R7
R8
R9
R10

0 20 40 60 80 100
x-axis

0

20

40

60

80

100

y-
ax

is

R1
R2
R3
R4
R5
R6
R7
R8
R9
R10

0 20 40 60 80 100
x-axis

0

20

40

60

80

100

y-
ax

is

R1
R2
R3
R4
R5
R6
R7
R8
R9
R10

Figure 5: Experiment 3: Allocations done by TeSSI (left), CBBA (mid) and Greedy (right) on Solomon’s instance C101.

to 100. Tasks are added at the beginning of each iteration
of the auction algorithm. An auction iteration ends when the
list of tasks available for bidding is empty. If the system is
idle, due to the lack of available tasks, a new arrival triggers
another auction iteration.

Experiment 3. We used the spatial and temporal data in
the Solomon’s dataset (Solomon 1987), a standard dataset
used for VRP with time windows. To simplify our analy-
sis we do not use the capacity and scheduling horizon data.
The dataset includes six types of problems, with different
locations: R (distributed randomly), C (clustered), and RC
(mixed random and clustered) problem types, which refer
to different spatial distributions of tasks. For each of the R,
C and RC types there are two types of datasets depending
on the time windows. Type 1 datasets have narrow time-
windows, while type 2 datasets have large time-windows.
Each of the six datasets, R1, C1, RC1, R2, C2 and RC2, con-
tains 8–12 different time-window and task location configu-
rations. Each configuration includes 100 tasks and 10 robots.

The algorithms were run on 30 instances for each number
of tasks in dataset 1 and each number of robots in dataset 2
for Experiment 1, 30 for Experiment 2, and 8–12 instances
for Experiment 3. For Experiments 1 and 2 both bidding
rules for TeSSI perform similarly. Hence, we only report re-
sults when robots bid using makespan. We report the total
number of tasks allocated in Experiments 1 and 2 (Figures
3 and 4), and, in addition, the makespan and distance infor-
mation for Experiment 3 (Table 1).

Results and Analysis
In comparing TeSSI to CBBA and the greedy algorithm, we
found that TeSSI outperforms both in terms of the number
of tasks allocated and the number of robots used. TeSSI al-
locates more tasks on average than CBBA and the greedy
algorithm for both datasets in Experiment 1 (see Figure 3).

We found that TeSSI uses fewer robots to allocate the
same number of tasks compared to the other algorithms
when using dataset 2 in Experiment 1. TeSSI uses 30 robots
to completely allocate the 100 tasks, while CBBA and the
greedy algorithm use 40 and 50, respectively. We also found
that the makespan TeSSI obtains is competitive with CBBA
(both with average makespan=114) when both algorithms
are able to allocate all of the tasks. This is shown in Ex-
periment 1 using 40 robots and 100 tasks in dataset 2. We do
not report further comparisons of makespan and the distance
covered by the robots for Experiment 1, since this is relevant
only when the algorithms allocate the same number of tasks.

TeSSI allocates more tasks than CBBA because in the
makespan minimization process it allows the already allo-
cated tasks to move around to accommodate the insertion of
new tasks. This enables robots to pack more tasks into their
schedules. Conversely, CBBA allocates fewer tasks because
it needs to obey the principle of diminishing marginal gains.
Since the scoring function used depends on the time a robot
arrives at a task, CBBA assumes that the addition of a new
task does not change the order nor the arrival times for tasks
already allocated. However, this is very restrictive. For ex-

2114

TeSSI TeSSIduo CBBA Greedy
Data Makespan Distance # Tasks Makespan Distance # Tasks Makespan Distance # Tasks Makespan Distance # Tasks

R1
µ 201.75 915.07 82.33 204 838.39 82.33 182.25 1051.52 52.25 181.83 902.47 42.25
σ 8.30 49.70 8.17 6.66 35.98 7.22 3.33 239.63 8.36 14.65 254.47 14.96

C1
µ 1115.89 1265.03 92.89 1110.00 1003.31 96.22 1039.11 1351.50 57.89 1041.67 1234.09 56.22
σ 49.83 315.06 5.44 56.77 373.77 4.52 90.63 201.08 11.34 66.05 597.82 22.65

RC1
µ 207.13 948.33 100.00 204.13 843.81 100.00 182.00 1027.13 47.25 164.75 750.51 25.13
σ 31.20 53.65 0.00 7.74 37.43 0.00 31.20 156.93 7.96 14.81 150.49 3.31

R2
µ 774.00 2218.59 100.00 775.64 1338.69 100.00 772.36 2171.70 75.91 773.82 2562.36 100.00
σ 106.72 367.95 0.00 104.98 122.17 0.00 111.22 754.41 23.30 107.221 217.93 0.00

C2
µ 3088.88 1954.31 100.00 3093.75 1081.95 100.00 3088.88 1820.70 82.62 3088.88 2289.87 100.00
σ 157.60 891.93 0.00 162.38 369.83 0.00 157.60 805.70 24.58 157.60 204.96 0.00

RC2
µ 759.00 2859.58 100.00 761.00 1493.56 100.00 753.38 2522.26 80.75 757.25 2981.72 100.00
σ 126.32 384.23 0.00 126.67 139.65 0.00 139.65 844.40 23.43 130.90 240.47 0.00

Table 1: Experiment 3: Mean (µ) and standard deviation (σ) values for makespan, total distance traveled, and number of tasks
allocated obtained by TeSSI (both bidding rules), CBBA, and Greedy using Solomon’s data instances.

ample, suppose a vehicle first gets a task with a large dura-
tion and a large time window. If it sets its arrival time at the
start of the time window, then any smaller task with a tight
window that the robot could have done before the long task
will not be allocated to that robot. This is a missed oppor-
tunity. Our work overcomes this by using bidding functions
that rely on makespan instead of individual arrival times.

In Experiment 2, where tasks arrive dynamically, the per-
formance of TeSSI is the same as for the greedy algorithm
(see Figure 4) in cases when the number of tasks available
is too low to leverage the synergies among tasks. However,
the performance of the algorithm improves quickly when
5 or more (out of 100) tasks arrive in each iteration of the
auction. The improvement is produced by the availability of
more tasks at once, which increases the ability of the robots
to produce a higher quality solution. This shows that the al-
gorithm does not require large numbers of tasks to improve
its allocations. This is advantageous in real life situations
where tasks may not arrive in large batches.

In Experiment 3, TeSSI and TeSSIduo allocate more tasks
when task locations are clustered than when they are ran-
domly distributed (Solomon’s type 1 data in Table 1). The
main reason is that robots are distributed to different clusters
of tasks, and travel less often to tasks outside their clusters.
This is evidenced in Figure 5 where in many cases each robot
route for TeSSI visits only one cluster (same for TeSSIduo).
The other algorithms do not take full advantage of the spa-
tial relationships among tasks and produce allocations that
result in lower numbers of tasks allocated.

The makespan and number of tasks allocated are very
similar for both bidding heuristics for TeSSI when using
Solomon’s type 2 data in Experiment 3. However, the dual
objective heuristic consistently generates paths of lower total
length than the heuristic that bids only with makespan (see
Table 1). This emphasizes the advantage of using distance
(or travel time) when computing bids. TeSSIduo outper-
forms all the other methods when distances are considered,
and it does so without dramatically increasing the makespan.

Moreover, TeSSI, TeSSIduo and the greedy algorithm are
able to allocate all the tasks with similar makespans for the

type 2 data. This is because the temporal constraints in these
datasets are much looser than the ones for type 1 data. The
greedy algorithm, normally the worst performing method,
is still able to allocate all tasks because it takes advantage
of the type 2 problems’ looser constraints and moves tasks
around in a robot’s schedule.

TeSSI’s computation time is two orders of magnitude
smaller than that of CBBA in all datasets for Experiment
3, and is competitive with that of the greedy algorithm. For
example, it takes CBBA an average of 98.9 seconds when al-
locating 100 tasks to 10 robots using C2 data, while it takes
TeSSI only 0.43 seconds on the same dataset. We also found
that TeSSI (same for TeSSIduo) spends twice the amount of
time when using type 2 data than when using type 1 data for
Experiment 3. The main reason is that the larger temporal
flexibility in type 2 generates more insertion points for new
tasks and the algorithm tries all insertion points to find the
one that minimizes the makespan of a robot’s schedule.

Overall, if the total distance robots travel is a concern (for
example, robots working in large areas), TeSSIDuo is a clear
choice. If time to finish is more important than distance (for
example, robots working in small areas), then TeSSI is a bet-
ter choice because on average it is twice as fast as TeSSIDuo.

Conclusions and Future Work
We presented the TeSSI algorithm, which allocates tasks
with time windows to cooperative robots. The main features
of the algorithm are a fast and systematic processing of tem-
poral constraints and two bidding methods that optimize ei-
ther completion time, or a combination of completion time
and distance. Results show that TeSSI’s computation times
are efficient, and that it completes more tasks than other
methods on randomly generated data and on datasets used
for VRP. Future work involves studying task execution un-
certainties, introducing auction and schedule repair mecha-
nisms, which we hope will further improve the performance,
and allow use in more dynamic environments.

Acknowledgment: Partial support is gratefully acknowl-
edged from NSF grant IIS-1208413.

2115

References
Alighanbari, M.; Kuwata, Y.; and How, J. P. 2003. Coordi-
nation and control of multiple UAVs with timing constraints
and loitering. In American Control Conf., 5311–5316.
Bellifemine, F.; Poggi, A.; and Rimassa, G. 1999. JADE - A
FIPA-compliant agent framework. The Practical Application
Company Ltd. 97–108.
Choi, H.-L.; Brunet, L.; and How, J. 2009. Consensus-
based decentralized auctions for robust task allocation. IEEE
Trans. on Robotics 25(4):912 –926.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial Intelligence Journal 49(1-3):61–
95.
Dias, M. B.; Zlot, R.; Kalra, N.; and Stentz, A. 2006.
Market-based multirobot coordination: A survey and anal-
ysis. Proceedings of the IEEE 94(7):1257–1270.
Gombolay, M.; Wilcox, R.; and Shah, J. 2013. Fast schedul-
ing of multi-robot teams with temporospatial constraints. In
Robotics: Science and Systems (RSS).
Koenig, S.; Tovey, C.; Lagoudakis, M.; Markakis, V.;
Kempe, D.; Keskinocak, P.; Kleywegt, A.; Meyerson, A.;
and Jain, S. 2006. The power of sequential single-item auc-
tions for agent coordination. In Proc. Nat’l Conf. on Artifi-
cial Intelligence, 1625–1629.
Koenig, S.; Keskinocak, P.; and Tovey, C. A. 2010. Progress
on agent coordination with cooperative auctions. In Proc.
Nat’l Conf. on Artificial Intelligence, 1713–1717.
Korsah, G. A.; Kannan, B.; Fanaswala, I. A.; and Dias, M. B.
2010. Enhancing market-based task allocation with optimal
seed schedules. In Proc. of the Int’l Conf. on Intelligent
Autonomous Systems, 249 – 258.
Kumar, T. S.; Cirillo, M.; and Koenig, S. 2013. On the trav-
eling salesman problem with simple temporal constraints. In
Proc. the 10th Symposium on Abstraction, Reformulation,
and Approximation (SARA).
Lagoudakis, M. G.; Markakis, E.; Kempe, D.; Keskinocak,
P.; Kleywegt, A.; Koenig, S.; Tovey, C.; Meyerson, A.; and
Jain, S. 2005. Auction-based multi-robot routing. In
Robotics: Science and Systems (RSS), 343–350.
Melvin, J.; Keskinocak, P.; Koenig, S.; Tovey, C. A.; and
Ozkaya, B. Y. 2007. Multi-robot routing with rewards and
disjoint time windows. In Proc. IEEE/RSJ Int. Conf. on In-
telligent Robots and Systems, 2332–2337.
Nanjanath, M., and Gini, M. 2010. Repeated auctions for
robust task execution by a robot team. Robotics and Au-
tonomous Systems 58(7):900–909.
Nunes, E.; Nanjanath, M.; and Gini, M. 2012. Auctioning
robotic tasks with overlapping time windows. In Int’l Conf.
on Autonomous Agents and Multi-Agent Systems, 1211–
1212.
Ponda, S. S.; Redding, J.; Choi, H.-L.; How, J.; Vavrina, M.;
and Vian, J. 2010. Decentralized planning for complex mis-
sions with dynamic communication constraints. In Ameri-
can Control Conf., 3998 –4003.

Solomon, M. M. 1987. Algorithms for the vehicle rout-
ing and scheduling problems with time window constraints.
Operations Research 35(2):254–265.
Toth, P., and Vigo, D., eds. 2002. The vehicle routing
problem. Philadelphia, PA: SIAM Monographs on Discrete
Mathematics and Applications.

2116

