
Verifying and Synthesising Multi-Agent Systems
against One-Goal Strategy Logic Specifications

Petr Čermák and Alessio Lomuscio
Imperial College London, UK

Aniello Murano
Università degli Studi di Napoli Federico II, Italy

Abstract
Strategy Logic (SL) has recently come to the fore as a useful
specification language to reason about multi-agent systems.
Its one-goal fragment, or SL[1G], is of particular interest as
it strictly subsumes widely used logics such as ATL*, while
maintaining attractive complexity features. In this paper we
put forward an automata-based methodology for verifying
and synthesising multi-agent systems against specifications
given in SL[1G]. We show that the algorithm is sound and
optimal from a computational point of view. A key feature
of the approach is that all data structures and operations on
them can be performed on BDDs. We report on a BDD-based
model checker implementing the algorithm and evaluate its
performance on the fair process scheduler synthesis.

1 Introduction
A concern in the deployment of autonomous multi-agent
systems (MAS) is the limited availability of efficient tech-
niques and toolkits for their verification. The problem is
compounded by the fact that MAS require ad-hoc techniques
and tools. This is because, while reactive systems are typi-
cally specified purely by temporal properties, MAS are in-
stead described by statements expressing a number of typ-
ical AI concepts including knowledge, beliefs, intentions,
and abilities.

Some progress in this direction has been achieved in the
past decade. For example, several efficient techniques are
now available for the verification of MAS against temporal-
epistemic languages (Meyden and Shilov 1999; Raimondi
and Lomuscio 2005; Kouvaros and Lomuscio 2013; Meski
et al. 2014). Some of these have been implemented into
fully-fledged model checkers (Gammie and van der Meyden
2004; Kacprzak et al. 2008; Lomuscio, Qu, and Raimondi
2009).

Less attention has so far been given to the verification
of properties expressing cooperation and enforcement (Lo-
muscio and Raimondi 2006; Kacprzak and Penczek 2005).
While the underlying logics have been thoroughly investi-
gated at theoretical level (Bulling and Jamroga 2014), tool
support is more sketchy and typically limited to alternating-
time temporal logic (ATL) (Alur, Henzinger, and Kupfer-
man 2002). A number of recent papers (Chatterjee, Hen-

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

zinger, and Piterman 2010; Mogavero, Murano, and Vardi
2010) have however pointed out significant limitations of
ATL when used in a MAS setting. One of these is the syn-
tactic impossibility of referring explicitly to what particular
strategies a group of agents ought to use when evaluating the
realisability of temporal properties in a MAS. Being able to
do so would enable us to express typical MAS properties, in-
cluding strategic game-theoretic considerations for a group
of agents in a cooperative or adversarial setting.

In response to this shortcoming, Strategy logic (SL), a
strict extension of any logic in the ATL hierarchy, has re-
cently been put forward (Mogavero, Murano, and Vardi
2010). In SL, strategies are explicitly referred to by using
first-order quantifiers and bindings to agents. Sophisticated
concepts such as Nash equilibria, which cannot be expressed
in ATL, can naturally be encoded in SL.

Given this, a natural and compelling question that arises is
whether automatic and efficient verification methodologies
for MAS against SL specifications can be devised. The an-
swer to this is negative in general: model checking systems
against SL specifications is NONELEMENTARYSPACE-
HARD (Mogavero et al. 2014), thereby hindering any con-
crete application on large systems. It is therefore of interest
to investigate whether computationally attractive method-
ologies can be put forward for fragments of SL. The only
contributions we are aware of in this regard are (Čermák et
al. 2014; Huang and Meyden 2014), where model checking
MAS against a memoryless fragment of SL combined with
epistemic modalities was studied. Although a tool was re-
leased, memoryless strategies severely constrain the expres-
sivity of the formalism.

To overcome this difficulty, we here put forward a tech-
nique for the verification and synthesis of MAS against spec-
ifications given in One-Goal Strategy Logic, or SL[1G], an
expressive variant of SL. We claim there are several advan-
tages of choosing this setting. Firstly, and differently from
full SL, strategies in SL[1G] are behavioural (Mogavero et
al. 2014). A consequence of this is that they can be syn-
thesised automatically, as we show later. Secondly, SL[1G],
in the perfect recall setting we here consider, retains con-
siderable expressiveness and is strictly more expressive than
any ATL variant, including ATL*. Thirdly, the complexity
of the model checking problem is the same as that for ATL*,
thereby making its verification attractive.

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

2038

The rest of the paper is organised as follows. In Section 2
we recall the logic SL[1G], introduce the model checking
and synthesis problems and a few related concepts. In Sec-
tion 3 we put forward practical algorithms for the model
checking and synthesis of MAS against SL[1G] specifica-
tions. We also show that these are provably optimal when
considered against the theoretical complexity known for
the problem. In Section 4 we show that the algorithms are
amenable to symbolic implementation with binary-decision
diagrams and present an experimental model checker imple-
menting the algorithms discussed. We evaluate its perfor-
mance on the fair process scheduler synthesis. We conclude
in Section 5 where we also point to further work.

2 One-Goal Strategy Logic
In this section we introduce some basic concepts and re-
call SL[1G], a syntactic fragment of SL, introduced in (Mo-
gavero et al. 2014).

Underlying Framework. Differently from other treat-
ments of SL, which were originally defined on concurrent
game structures, we here use interpreted systems, which
are commonly used to reason about knowledge and strate-
gies in multi-agent systems (Fagin et al. 1995; Lomuscio
and Raimondi 2006). An interpreted system is a tuple I =
〈(Li,Act i, Pi, ti)i∈Agt , I, h〉, where each agent i ∈ Agt is
modelled in terms of its set of local states Li, set of actions
Act i, protocol Pi : Li → 2Acti specifying what actions can
be performed at a given local state, and evolution function
ti : Li × Act → Li returning the next local state given the
current local state and a joint action for all agents.

The set of global states G of the whole system consists
of tuples of local states for all agents. As a special subset G
contains the set I of initial global states. The labelling func-
tion h maps each atomic proposition p ∈ AP to the set of
global states h(p) ⊆ G in which it is true. Joint actions Act
are tuples of local actions for all the agents in the system;
shared actions in the set ActA ,

⋂
i∈AAct i are actions for

the agents A ⊆ Agt ; The global protocol P : G → 2Act

and global evolution function t : G × Act → G, which are
composed of their local counterparts Pi and ti, complete the
description of the evolution of the entire system.

Syntax of SL[1G]. SL has been introduced as a pow-
erful formalism to reason about sophisticated cooperation
concepts in multi-agent systems (Mogavero, Murano, and
Vardi 2010). Formally, it is defined as a syntactic extension
of the logic LTL by means of an existential strategy quanti-
fier 〈〈x〉〉ϕ, a universal strategy quantifier [[x]]ϕ, and an agent
binding operator (a, x)ϕ. Intuitively, 〈〈x〉〉ϕ is read as “there
exists a strategy x such that ϕ holds”, [[x]]ϕ is its dual, and
(a, x)ϕ stands for “bind agent a to the strategy associated
with the variable x in ϕ”. In SL[1G], these three new con-
structs are merged into one rule ℘[ϕ, where ℘ is a quantifica-
tion prefix over strategies (e.g. [[x]]〈〈y〉〉[[z]]) and [is a binding
prefix (e.g. (a, x)(b, y)(c, x)). As this limits the use of strat-
egy quantifiers and bindings in SL, SL[1G] is less expressive
than SL (Mogavero et al. 2014). Nevertheless, it still strictly
subsumes commonly considered logics for strategic reason-
ing such as ATL*. Additionally, several attractive features

of ATL* hold in SL[1G], including the fact that satisfiability
and model checking are 2EXPTIME-COMPLETE (Mogavero
et al. 2014). Crucially, SL[1G] can be said to be behavioural,
that is the choice of a strategy for a group of agents at a
given state depends only on the history of the game and the
actions performed by other agents. This is in contrast with
the non-behavioural aspects of SL in which strategy choices
depend on other agents’ actions in the future or in coun-
terfactual games. In summary, SL[1G] is strictly more ex-
pressive than ATL*, whereas it retains ATL*’s elementary
complexity of key decision problems, including the strategy
synthesis problem.

To define formally the syntax of SL[1G], we first in-
troduce the concepts of a quantification and binding pre-
fix (Mogavero et al. 2014).

A quantification prefix over a set of variables V ⊆ Var

is a finite word ℘ ∈ {〈〈x〉〉 , [[x]] | x ∈ V }|V | of length |V |
such that each variable x ∈ V occurs in ℘ exactly once.
QPreV denotes the set of all quantification prefixes over V .
QPre =

⋃
V⊆Var QPreV is the set of all quantification pre-

fixes. A binding prefix over a set of variables V ⊆ Var is
a finite word [∈ {(i, x) | i ∈ Agt ∧ x ∈ V }|Agt| of length
|Agt | such that each agent i ∈ Agt occurs in [exactly
once. BPreV denotes the set of all binding prefixes over
V . BPre =

⋃
V⊆Var BPreV is the set of all binding pre-

fixes. Similarly to first-order languages, we also use free(ϕ)
to represent the free agents and variables in a formula ϕ.
Formally, free(ϕ) ⊆ Agt ∪ Var contains (i) all agents hav-
ing no binding after the occurrence of a temporal operator
and (ii) all variables having a binding but no quantification.
Definition 1 (SL[1G] Syntax). SL[1G] formulas are built
inductively from the set of atomic propositions AP , strategy
variables Var , agents Agt , quantification prefixes QPre,
and binding prefixes BPre, by using the following grammar,
with p ∈ AP , x ∈ Var , a ∈ Agt , [∈ BPre, and ℘ ∈ QPre:

ϕ ::= p |>|¬ϕ |ϕ ∧ ϕ |ϕ ∨ ϕ |Xϕ |Fϕ |Gϕ |ϕUϕ |℘[ϕ
where ℘ ∈ QPre free([ϕ).

The conditions on ℘ and [ensure that ℘[ϕ is an SL[1G]
sentence, i.e. , it does not have any free agents or variables.

Semantics of SL[1G]. We assume perfect recall and
complete information. So agents have full memory of the
past and complete information of the global state they are
in. Note that allowing incomplete information would make
the logic undecidable (Dima and Tiplea 2011), whereas
SL[1G] with incomplete information and imperfect recall is
equivalent to a fragment of the logic SLK already studied
in (Čermák et al. 2014).

To establish the truth of a formula, the set of strategies
over which a variable can range needs to be determined. For
this purpose we introduce the set sharing(ϕ, x) represent-
ing the agents sharing the variable x within the formula ϕ.
Also, we make use of the general concepts of path, track,
play, strategy, and assignment for agents and variables. We
refer to (Mogavero et al. 2014) for a detailed presentation.
Intuitively, a strategy identifies paths in the model on which
a formula needs to be checked. So, for each track (i.e. a fi-
nite prefix of a path), a strategy determines which action has

2039

to be performed by a variable, possibly shared by a set of
agents. More formally, given an SL[1G] formula ϕ, for each
variable x in ϕ, the strategy f : Trk ⇀ Act sharing(ϕ,x) de-
termines the action to be taken by agents in sharing(ϕ, x).

Given an interpreted system I having a set of global states
G, a global state g ∈ G, and an assignment χ defined on
free(ϕ), we write I, χ, g |= ϕ to represent that the SL[1G]
formula ϕ holds at g in I under χ. The satisfaction rela-
tion for SL[1G] formulas is inductively defined by using
the usual LTL interpretation for the atomic propositions, the
Boolean connectives ¬ and ∧, as well as the temporal op-
erators X, F, G, and U. The inductive cases for the strategy
quantification 〈〈x〉〉 and the agent binding (a, x) are given as
follows. The cases for universal quantification [[x]] are omit-
ted as they can be given as the dual of the existential ones.

• I, χ, g |= 〈〈x〉〉ϕ iff there is a strategy f for the agents
in sharing(ϕ, x) such that I, χ[x 7→ f], g |= ϕ where
χ[x 7→ f] is the assignment equal to χ except for the vari-
able x, for which it assumes the value f .

• I, χ, g |= (x, a)ϕ iff I, χ[a 7→ χ(x)], g |= ϕ, where
χ[a 7→ χ(x)] denotes the assignment χ in which agent a
is bound to the strategy χ(x).

Model Checking and Strategy Synthesis. The model
checking problem is about deciding whether an SL[1G] for-
mula holds in a certain model. Precisely, given an interpreted
system I, an initial global state g0, an SL[1G] formula ϕ
and an assignment χ defined on free(ϕ), the model checking
problem concerns determining whether I, χ, g0 |= ϕ.

Synthesis can be further used as a witness for the model
checking problem as it allows to construct the strategies
the agents need to perform to make the formula true. This
amounts to deciding which action has to be taken by each
shared variable. More formally, let I be an interpreted sys-
tem and ϕ an SL[1G] formula. W.l.o.g., assume ϕ to be a
so called principal sentence1 of the form ℘[ψ, with ℘ ∈
QPre free([ψ), ℘ = ℘(0) ·℘(1) · · ·℘(|℘| − 1), and [∈ BPre.
Additionally assume that there exists an integer 0 ≤ k < |℘|
such that for each 0 ≤ j < k there exists a strategy fj
for variable ℘v(j) shared by agents in sharing([ψ, ℘v(j)).
Then, strategy synthesis amounts to defining the strategy
fk : Trk ⇀ Act sharing([ψ,℘v(k)) for variable ℘v(k) such that
if I, χ, g |= ℘≥k[ψ, then I, χ[℘v(k) 7→ fk], g |= ℘>k[ψ,
where χ is an assignment defined on {℘v(j) | 0 ≤ j < k}
such that for all 0 ≤ j < k we have χ(℘v(j)) , fj , ℘≥k ,
℘(k) · · ·℘(|℘| − 1), and ℘>k , ℘(k + 1) · · ·℘(|℘| − 1).

3 Symbolic Model Checking SL[1G]
We now introduce a novel algorithm for model checking an
interpreted system I against an arbitrary SL[1G] sentence
ϕ. For simplicity we assume that ϕ is a principal sentence
of the form ℘[ψ.

Our aim is to find the set of all global reachable states
‖ϕ‖I ⊆ G at which the SL[1G] sentence ϕ holds, i.e.

1If this is not the case, one can simply add one quantifier and
agent binding for each agent without changing the semantics as ϕ
is a sentence.

‖ϕ‖I , {g ∈ G | I, ∅, g |= ϕ}. We proceed in a recur-
sive manner over the structure of ϕ: According to SL[1G]
syntax, ψ is a formula which combines atoms AP and di-
rect principal subsentences of the form ϕ′ = ℘′[′ψ′ us-
ing only Boolean and temporal connectives. Since ϕ′ is also
an SL[1G] principal sentence, we can recursively calculate
‖ϕ′‖I ; then replace ϕ′ in ϕ with a new atom pϕ′ ∈ AP ; and
finally update the assignment with h(pϕ′) , ‖ϕ′‖I . This al-
lows us to consider the simpler problem of model checking
an SL[1G] basic principal sentence ϕ = ℘[ψ where ψ is an
LTL formula. Our general procedure is as follows:

1. We construct a deterministic parity automaton Pψ
I equiv-

alent to the LTL formula ψ.

2. We construct a two-player formula arena A℘[I represent-
ing the global state space G and the interdependency of
strategies in the prefix ℘[.

3. We combine A℘[I and Pψ
I into an infinite two-player par-

ity game G℘[ψI . Solving the parity game yields its winning
regions and strategies, which can in turn be used to calcu-
late ‖ϕ‖I and the strategies in ℘.

We shall now expand on each of the steps above.
Formula automaton. The first step of our algorithm is

the standard construction of a deterministic parity automa-
ton Pψ

I equivalent to the underlying LTL formula ψ. This
is usually performed in three steps: (i) ψ is converted to
a non-deterministic generalised Büchi automaton AψI via
standard translation (Schneider 2004); (ii) AψI is translated
to an equivalent non-deterministic Büchi automaton Bψ

I by
adding a counter for fairness constraints (Schneider 2004);
(iii) Bψ

I is transformed into a deterministic parity automa-
ton Pψ

I = (S, sI , δ, c) with a non-empty set of states S, an
initial state sI ∈ S, a transition function δ : S×G→ S, and
a colouring function c : S → N. While the third step is typ-
ically done using Safra’s construction (Safra 1988), we per-
form the determinisation using a recently put forward pro-
cedure (Morgenstern and Schneider 2008) instead, which is
amenable to a symbolic implementation. It is worth pointing
out that the recursive step (replacing direct principal subsen-
tences ϕ′ with atoms pϕ′) can be incorporated as an extra
case of the standard translation in the first step.

As an example, consider the simple interpreted system
IRPS in Figure 1a with agents Agt , {1, 2} representing the
Rock-Paper-Scissors game. The global states of the system
are G , {gg, g1, g2} meaning “game”, “player 1 won”, and
“player 2 won”, respectively. The actions available to both
players are: Act1 , Act2 , {r,p, s, i} meaning “rock”,
“paper”, “scissors”, and “idle”. Finally, the atoms p1 and p2
encode that player 1 and player 2 won, respectively. The as-
signment is defined as h(p1) , {g1} and h(p2) , {g2}.
Furthermore, consider the SL[1G] basic principal sentence
γ , [[x]]〈〈y〉〉(1, x)(2, y)G [¬p1 ∧ ¬p2] which expresses that
“Whichever action player 1 performs, there exists an action
for player 2 such that neither player will ever win”. The
corresponding deterministic parity automaton Pγ

IRPS
con-

2040

structed using the three-step procedure described in the pre-
vious paragraph is shown in Figure 1b.

Formula arena. The second step of the algorithm
involves building a two-player formula arena A℘[I =
(V0, V1, E), which encodes the state space of the interpreted
system I and the interdependency of strategies in the prefix
℘[. The vertices V of A℘[I are pairs (g, d) ∈ G × Dec℘[I of
global reachable states and lists of actions such that for all
0 ≤ k < |d| we have d(k) ∈

⋂
i∈sharing([>,℘v(k)) Pi(li(g)),

where Dec℘[I ,
⋃|℘|
`=0

∏`−1
k=0 Act sharing([>,℘v(k)) and li(g) is

the local state of agent i in g. The existential player vertices
V0 ⊆ V are vertices (g, d) ∈ V such that |d| < |℘| and
℘(|d|) is an existential strategy quantifier. Conversely, the
universal player vertices are V1 = V \ V0. The edge relation
E ⊆ V × V is defined as:

E , {((g, d) , (g, d · a)) ∈ V × V | |d| < |℘|} ∪{(
(g, d) ,

(
t(g, dAct), []

))
∈ V × V

∣∣ |d| = |℘|}
where dAct ∈ Act is a joint action such that for all 0 ≤ k <
|℘| and i ∈ sharing([>, ℘v(k)) we have acti(d

Act) = d(k).
Intuitively, the existential (universal) player represents

all existential (universal) quantifiers in the quantification
prefix ℘. Equivalently, the two players correspond to the
existential-universal partition of Agt . The game starts in
some vertex (g, []). The players take turns to select actions
d(0), . . . , d(|℘|−1) for the quantifiers ℘(0), . . . , ℘(|℘|−1).
The decision d then determines the joint action of all agents
dAct and a temporal transition to

(
t(g, dAct), []

)
is per-

formed. This pattern is repeated forever. The formula arena
AγIRPS

of the Rock-Paper-Scissors game interpreted system
IRPS for the SL[1G] formula γ introduced earlier is shown
in Figure 1d. Observe that the three grey blobs in AγIRPS

correspond to the three global reachable states in Figure 1a.
We now consider a pseudo-LTL game L℘[ψI based on the

arena A℘[I . We define an infinite path π ∈ V ω in L℘[ψI to
be winning for the existential player iff the LTL formula ψ
holds along the underlying infinite path πI ∈ Gω in I.
Lemma 1. An SL[1G] principal sentence ℘[ψ holds at a
global state g ∈ G in an interpreted system I iff the ver-
tex (g, []) ∈ V is winning for the existential player in the
pseudo-LTL game L℘[ψI defined above.

Proof. This follows from the fact that SL[1G] model check-
ing can be reduced to solving a so-called dependence-
vs-valuation game (Mogavero et al. 2014) in which
the existential player chooses a dependence map θ :(
[[℘]]→

⋃
i∈Agt Act i

)
→
(
℘→

⋃
i∈Agt Act i

)
for ℘ over

actions in the current global state g ∈ G and then the univer-
sal player chooses a valuation v : [[℘]] →

⋃
i∈Agt Act i. The

combination θ(v) : ℘ →
⋃
i∈Agt Act i assigns actions to all

variables and determines the next state g′ ∈ G. Instead of
choosing the whole dependence map and valuation at once,
the players in L℘[ψI assign actions to strategies one by one
for each quantifier. Furthermore, the order of the players’
moves in L℘[ψI game ensures that the independence con-
straints of θ are satisfied. Hence, our claim follows.

gg
∅

g1
{p1}

g2
{p2}

rs, pr, sp rp, ps, sr

rr, pp, ss
ii ii

(a) Interpreted system IRPS.

sI
1

s1
0

s2
1

ggg1, g2

g1, g2
gg∗

(b) Deterministic parity automaton Pγ
IRPS

.

(sI , 0)
1

(sI , 1)
1

(sI , 2)
1∗ ∗

(s1, 0)
0

(s1, 1)
0

(s1, 2)
0

∗∗(s2, 0)
1

(s2, 1)
1

(s2, 2)
1

∗∗

gg
g1, g2

g1, g2

gg∗

(c) Delayed automaton Dγ
IRPS

.

gg

[]

[r]

[p]

[s]

[r, r]

[r, p]

[r, s]

[p, r]

[p,p]

[p, s]

[s, r]

[s,p]

[s, s]

g1

[]

[i]

[i, i]

g2

[]

[i]

[i, i]

(d) Formula arena AγIRPS
. The existential and universal player

states are represented by squares and circles respectively.

Figure 1: Interpreted system IRPS, parity automaton Pγ
IRPS

,
delayed automaton Dγ

IRPS
, and formula arena AγIRPS

of the
Rock-Paper-Scissors game and the SL[1G] basic principal
sentence γ , [[x]]〈〈y〉〉(1, x)(2, y)G [¬p1 ∧ ¬p2].

2041

We shall next explain how this pseudo-LTL game can be
converted to a standard parity game.

Combined game. In order to construct the combined par-
ity game, the solving of which is equivalent to model check-
ing the basic principal sentence ℘[ψ, we need to combine
the formula automaton Pψ

I and the formula arena A℘[I be-
cause Pψ

I represents the winning condition of the pseudo-
LTL game L℘[ψI . However, we cannot simply take their prod-
uct because, informally, they work at different, albeit con-
stant, “speeds”. While Pψ

I performs a temporal transition at
every step, it takes exactly |℘| + 1 turns before a different
underlying global state (grey blob in Figure 1d) is reached
byA℘[I . To cater for this asynchrony, we can make the parity
automaton “wait” for |℘|+1 steps before each actual transi-
tion. We do this by extending the state of Pψ

I with a simple
counter from 0 to |℘|. The resulting delayed (deterministic
parity) automaton Dγ

IRPS
for the basic principal sentence γ

introduced earlier is shown in Figure 1c.
The delayed automaton D℘ψ

I accepts precisely those
paths in the formula arena A℘[I which are winning for
the existential player. Hence, by combining the two struc-
tures, we obtain the combined parity game G℘[ψI ,
((V0 × S, V1 × S,EG) , cG) with edge relation and colour-
ing function defined as EG , {((g, d, s) , (g′, d′, s′)) ∈
(V × S) × (V × S) | E((g, d) , (g, d)) ∧ δD((s, |d|) , g)}
and cG((g, d, s)) , c(s) respectively, where δD is the tran-
sition function of the delayed automaton.

Model Checking. Model checking of an SL[1G] princi-
pal sentence can finally be performed by solving the corre-
sponding combined parity game (e.g. using Zielonka’s al-
gorithm (Zielonka 1998)) as formalised by the following
lemma:

Lemma 2. Let ℘[ψ be an SL[1G] principal sentence, g ∈ G
a global state in an interpreted system I, and (W0,W1) the
winning regions of the combined parity game G℘[ψI . ℘[ψ
holds at g (i.e. I, ∅, g |= ℘[ψ) iff the vertex (g, [] , sI) is in
the winning region of the existential player (i.e. (g, [] , sI) ∈
W0).

Proof. Our claim follows directly from Lemma 1 and the
correctness of the determinisation procedure.

Strategy Synthesis. The formula arena encodes the ef-
fects and interdependency of agents’ actions. Therefore, the
solution, i.e., the winning strategies, of the combined parity
game can be used for strategy synthesis.

Lemma 3. Let ℘[ψ be an SL[1G] principal sentence, I an
interpreted system, (w0, w1) the winning strategies of the
combined parity game G℘ψ[I , 0 ≤ k < |℘| an integer, and
f0, . . . , fk−1 strategies for variables ℘v(0), . . . , ℘v(k − 1).
Then the strategy fk : Trk → Act sharing([ψ,℘v(k))
is defined for all tracks π ∈ Trk implicitly as
ŵ((last(π), [f0(π), . . . , fk−1(π)], δ(sI , π≤|π|−2))) =
(last(π), [f0(π), . . . , fk−1(π), fk(π)], δ(sI , π≤|π|−2))

where δ(sI , π≤|π|−2) , δ(. . . δ(sI , π(0)) . . . , π(|π| − 2))
and ŵ : V → V is a total function such that w0 ∪ w1 ⊆ ŵ.

Proof. The correctness follows from the structure of the for-
mula arena A℘[I . See (Čermák 2014) for more details.

Optimality. The theoretical complexity of SL[1G] model
checking is 2EXPTIME-COMPLETE with respect to the size
of the formula and P-COMPLETE with respect to the size of
the model (Mogavero et al. 2014). Given this, we show that
our algorithm has optimal time complexity:

Lemma 4. Let ϕ be an arbitrary SL[1G] sentence and I an
interpreted system. Our algorithm calculates the set of all
global states ‖ϕ‖I ⊆ G satisfying ϕ in time |I|2

O(|ϕ|)
.

Proof. Let us first consider an arbitrary SL[1G] basic prin-
cipal sentence ℘[ψ. The automata AψI , Bψ

I , Pψ
I , and D℘ψ

I
have O(2|ψ|), 2O(|ψ|), 22

O(|ψ|)
, and |℘| × 22

O(|ψ|)
states.

Moreover, both parity automata have 2O(|ψ|) colours. The
arena A[℘I and game G℘[ψI have O(|I||℘|) and |I||℘| ×
22
O(|ψ|)

states. Given the number of states and colours, the
game can be solved in time |I|2

O(|℘[ψ|)
(Jurdziński 2000).

We model check ϕ in a recursive bottom-up manner as
explained earlier. Hence, at most |ϕ| SL[1G] basic principal
sentences of size at most |ϕ| need to be checked. If ϕ is
not a principal sentence, it must be a Boolean combination
of principal sentences, the results of which we can combine
using set operations. Thus, the model checking time is |ϕ|×
|I|2

O(|ϕ|)
+ |ϕ|× |I| = |I|2

O(|ϕ|)
and our claim follows.

Note that SL[1G] subsumes ATL*, which has the same
model checking complexity (Laroussinie, Markey, and Or-
eiby 2007). Hence, our algorithm is also optimal for ATL*
model checking. Moreover, the same complexity result ap-
plies to SL[1G] and, consequently, ATL* strategy synthesis.

4 Implementation and Experimental Results
We implemented the algorithm presented in the previous
section as part of the new experimental model checker
MCMAS-SL[1G]. The tool, available from (MCMAS-
SL[1G]), takes as input the system in the form of an ISPL
file (Lomuscio, Qu, and Raimondi 2009) describing the
agents in the system, their local states, actions, protocols,
and evolution functions as well as the SL[1G] specifica-
tions to be verified. Upon invocation MCMAS-SL[1G] cal-
culates the set of reachable states, encoded as BDDs, and
then checks whether each specification holds in the sys-
tem. If requested, all quantified strategies in all formu-
las are synthesised (together with their interdependencies).
While MCMAS-SL[1G] is built from the existing open-
source model checker MCMAS (Lomuscio, Qu, and Rai-
mondi 2009) and shares some of its algorithms, it necessar-
ily differs from MCMAS in several key components, includ-
ing a more complex encoding of the model, as described in
the previous section, as well as the novel procedure for com-
puting the sets of states satisfying SL[1G] formulas.

Evaluation. To evaluate the proposed approach, we
present the experimental results obtained for the problem of
fair process scheduler synthesis. The experiments were run
on an Intel R© CoreTM i7-3770 CPU 3.40GHz machine with

2042

algo. processes
n

possible
states

reachable
states

reachability
time

model checking time (s) memory
(MB)total automaton arena game solve

un
op

tim
is

ed 2 72 9 0.00 0.09 0.00 0.00 0.02 0.06 4.44
3 432 21 0.00 10.11 0.01 0.02 1.06 9.02 15.14
4 2592 49 0.01 631.11 0.33 0.26 86.47 544.04 41.80
5 15552 113 0.02 29593.56 5.86 2.61 4323.81 25261.15 2792.22
6 93312 257 0.02 out of memory

op
tim

is
ed

2 72 9 0.00 0.12 0.00 0.00 0.02 0.10 4.52
3 432 21 0.00 6.39 0.00 0.01 0.65 5.72 14.54
4 2592 49 0.01 338.16 0.00 0.24 23.33 314.57 40.70
5 15552 113 0.02 6131.43 0.00 2.65 444.06 5684.69 306.41
6 93312 257 0.02 85976.57 0.00 38.27 8012.11 77925.96 2688.93

Table 1: Verification results for the fair process scheduler synthesis.

16GB RAM running Linux kernel version 3.8.0-35-generic.
Table 1 reports the performance observed when synthesising
a process scheduler satisfying the following SL[1G] specifi-
cation which asserts absence of starvation (Mogavero, Mu-
rano, and Sauro 2013):

φ , ξ
n∧
i=1

G (〈wt, i〉 → F¬ 〈wt, i〉)

where ξ , 〈〈x〉〉[[y1]] · · · [[yn]](Sched, x)(1, y1) · · · (n, yn) is
a prefix and 〈wt, i〉 denotes that process 1 ≤ i ≤ n is waiting
for the resource.

We ran the experiments with two different versions of
the SL[1G] model checking algorithm: an unoptimised
one (described in the previous section) and an optimised
one. Given an SL[1G] principal sentence of the form
℘[(ψ0 ∧ ψ1 ∧ · · · ∧ ψn−1), the optimised algorithm deter-
minises each conjunct ψi with 0 ≤ i < n separately, i.e. it
constructs the delayed automata D℘ψ0

I ,D℘ψ1

I , . . . ,D
℘ψn−1

I .
The resulting combined game S℘[ψ

I , A℘[I ×
∏n−1
i=0 D℘ψi

I is
a generalised parity game (Chatterjee, Henzinger, and Piter-
man 2006). The reasoning behind this optimisation is that
the size of the deterministic automata is doubly exponential
in the size of the LTL formulas. Hence, separate determini-
sation may lead to much smaller combined games.

In the experiments, MCMAS-SL[1G] synthesised correct
strategies using both versions of the algorithm. The results
show that the main performance bottlenecks are the con-
struction and solution of the combined parity game; this is
in line with the theoretical complexity results reported in the
proof of Lemma 4. We can observe that separate determin-
isation has indeed a significant impact on performance in
terms of both time and memory footprint, thereby allow-
ing us to reason about more processes. Note that the relative
speedup increases with the number of processes with gains
quickly reaching an order of magnitude and more.

We tested the tool on various other scalable scenarios
(Čermák 2014). When verifying a fixed-size formula, the
tool has efficiently handled systems with 105 reachable
global states. This is approximately an order of magnitude
worse than the MCMAS’s performance on plain ATL spec-
ifications. This is because the expressiveness of SL[1G] re-
quires a richer encoding for the models, as discussed ear-
lier. We are not aware of any other tool capable of verifying

specifications richer than plain ATL under the assumptions
of perfect recall. Therefore, we cannot compare our results
to any other in the literature.

5 Conclusions
Most approaches put forward over the past ten years for the
verification of MAS are concerned with temporal-epistemic
properties so to assess the evolution of the knowledge of
the agents over time. Considerably less attention has been
devoted so far to the problem of establishing what strate-
gic properties agents in a system have. We are aware of
two lines of research concerning this. The first concerns the
verification of MAS against ATL specifications (Alur et al.
2001; Lomuscio and Raimondi 2006; Kacprzak and Penczek
2005); the second pertains to the verification of systems
against an observational fragment of SL to which epistemic
modalities are added (Čermák et al. 2014; Huang and Mey-
den 2014). As argued in the literature, the first line is limited
by the fact that ATL specifications are not sufficiently rich
to refer to strategies explicitly. The second direction suffers
from the weakness of the observational fragments analysed
as they cannot account for the perfect recall abilities nor-
mally assumed in a strategic setting.

In this paper we attempted to overcome both difficulties
above and put forward a fully symbolic approach to the ver-
ification of MAS against specifications in SL[1G], a rich be-
haviourally fragment of SL. We showed the algorithm de-
veloped is provably optimal and built a BDD-based checker
to support it. The experimental results obtained point to the
feasibility of the practical verification problem for MAS
against SL[1G] specifications. Since SL[1G] strictly sub-
sumes ATL*, an important byproduct of the work presented
is the fact that it also constitutes the first verification toolkit
for ATL*. A further key innovative feature of our approach
is that it does not only support verification, but also strat-
egy synthesis. This enables us to use the synthesis engine
for developing controllers or automatic planners in a MAS
context. We leave this to further work.

Acknowledgments. The research described in this pa-
per was partly supported by the EPSRC Research Project
“Trusted Autonomous Systems” (grant No. EP/I00520X/1)
and FP7 EU project 600958-SHERPA).

2043

References
Alur, R.; de Alfaro, L.; Grosu, R.; Henzinger, T. A.; Kang,
M.; Kirsch, C. M.; Majumdar, R.; Mang, F.; and Wang, B.-Y.
2001. jMocha: A model checking tool that exploits design
structure. In Proceedings of the 23rd International Confer-
ence on Software Engineering (ICSE’01), 835–836. IEEE.
Alur, R.; Henzinger, T. A.; and Kupferman, O. 2002.
Alternating-time temporal logic. Journal of the ACM
49(5):672–713.
Bulling, N., and Jamroga, W. 2014. Comparing variants
of strategic ability: how uncertainty and memory influence
general properties of games. Autonomous Agents and Multi-
Agent Systems 28(3):474–518.
Čermák, P.; Lomuscio, A.; Mogavero, F.; and Murano, A.
2014. MCMAS-SLK: A model checker for the verifica-
tion of strategy logic specifications. In Proceedings of the
26th International Conference on Computer Aided Verifica-
tion (CAV’14), LNCS 8559, 524–531. Springer.
Čermák, P. 2014. A model checker for strategy logic.
Master’s thesis, Department of Computing, Imperial College
London, UK.
Chatterjee, K.; Henzinger, T.; and Piterman, N. 2006. Gen-
eralized parity games. Technical Report UCB/EECS-2006-
144, University of California, Berkeley.
Chatterjee, K.; Henzinger, T. A.; and Piterman, N. 2010.
Strategy logic. Inf. Comput. 208(6):677–693.
Dima, C., and Tiplea, F. L. 2011. Model-checking ATL
under imperfect information and perfect recall semantics is
undecidable. CoRR abs/1102.4225.
Fagin, R.; Halpern, J. Y.; Moses, Y.; and Vardi, M. Y. 1995.
Reasoning about Knowledge. Cambridge: MIT Press.
Gammie, P., and van der Meyden, R. 2004. MCK: Model
checking the logic of knowledge. In Proceedings of 16th
International Conference on Computer Aided Verification
(CAV’04), LNCS 3114, 479–483. Springer.
Huang, X., and Meyden, R. v. 2014. Symbolic model
checking epistemic strategy logic. In Proceedings of the
28th AAAI Conference on Artificial Intelligence (AAAI’14),
1426–1432. AAAI Press.
Jurdziński, M. 2000. Small progress measures for solving
parity games. In Proceedings of the 17th Symposium on The-
oretical Aspects of Computer Science (STACS’00), LNCS
1770. Springer. 290–301.
Kacprzak, M., and Penczek, W. 2005. Fully sym-
bolic unbounded model checking for alternating-time tem-
poral logic. Autonomous Agents and Multi-Agent Systems
11(1):69–89.
Kacprzak, M.; Nabialek, W.; Niewiadomski, A.; Penczek,
W.; Pólrola, A.; Szreter, M.; Wozna, B.; and Zbrzezny, A.
2008. Verics 2007 - a model checker for knowledge and
real-time. Fundamenta Informaticae 85(1-4):313–328.
Kouvaros, P., and Lomuscio, A. 2013. A cutoff technique for
the verification of parameterised interpreted systems with
parameterised environments. In Proceedings of the 23rd In-
ternational Joint Conference on Artificial Intelligence (IJ-
CAI’13), 2013–2019. AAAI Press.

Laroussinie, F.; Markey, N.; and Oreiby, G. 2007. On the
expressiveness and complexity of ATL. In Proceedings of
the 10th International Conference on Foundations of Soft-
ware Science and Computational Structures (FOSSACS’07),
LNCS 4423. Springer. 243–257.
Lomuscio, A., and Raimondi, F. 2006. Model checking
knowledge, strategies, and games in multi-agent systems. In
Proceedings of the 5th international joint conference on Au-
tonomous agents and multiagent systems (AAMAS’06), 161–
168. ACM Press.
Lomuscio, A.; Qu, H.; and Raimondi, F. 2009. MCMAS: A
model checker for the verification of multi-agent systems. In
Proceedings of the 21th International Conference on Com-
puter Aided Verification (CAV’09), LNCS 5643, 682–688.
Springer.
MCMAS-SL[1G] – a model checker for the ver-
ification of one-goal strategy logic specifications.
http://vas.doc.ic.ac.uk/software/tools/, 2014.
Meski, A.; Penczek, W.; Szreter, M.; Wozna-Szczesniak, B.;
and Zbrzezny, A. 2014. BDD versus SAT-based bounded
model checking for the existential fragment of linear tempo-
ral logic with knowledge: algorithms and their performance.
Autonomous Agents and Multi-Agent Systems 28(4):558–
604.
Meyden, R. v., and Shilov, H. 1999. Model checking knowl-
edge and time in systems with perfect recall. In Proceedings
of the 19th Conference on Foundations of Software Technol-
ogy and Theoretical Computer Science (FSTTCS’99), LNCS
1738, 432–445.
Mogavero, F.; Murano, A.; Perelli, G.; and Vardi, M. Y.
2014. Reasoning about strategies: On the model-checking
problem. ACM Trans. Comput. Logic 15(4):1–47.
Mogavero, F.; Murano, A.; and Sauro, L. 2013. On the
boundary of behavioral strategies. In Proceedings of the
28th Annual IEEE/ACM Symposium on Logic in Computer
Science (LICS’13), 263–272. IEEE.
Mogavero, F.; Murano, A.; and Vardi, M. Y. 2010. Rea-
soning about strategies. In Proceedings of the 30th Confer-
ence on Foundations of Software Technology and Theoreti-
cal Computer Science (FSTTCS’10), LIPIcs 8, 133–144.
Morgenstern, A., and Schneider, K. 2008. From LTL to
symbolically represented deterministic automata. In Pro-
ceedings of the 9th International Conference on Verification,
Model Checking, and Abstract Interpretation (VMCAI’08),
LNCS 4905. Springer. 279–293.
Raimondi, F., and Lomuscio, A. 2005. Automatic verifica-
tion of multi-agent systems by model checking via OBDDs.
Journal of Applied Logic Vol 5(2):235–251.
Safra, S. 1988. On the complexity of ω-automata. In Foun-
dations of Computer Science, 1988., 29th Annual Sympo-
sium on, 319–327.
Schneider, K. 2004. Verification of Reactive Systems. Texts
in Theoretical Computer Science. Springer.
Zielonka, W. 1998. Infinite games on finitely coloured
graphs with applications to automata on infinite trees. The-
oretical Computer Science 200(1–2):135–183.

2044

