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Abstract

We propose a novel online learning method for mini-
mizing regret in large extensive-form games. The ap-
proach learns a function approximator online to esti-
mate the regret for choosing a particular action. A no-
regret algorithm uses these estimates in place of the true
regrets to define a sequence of policies.
We prove the approach sound by providing a bound re-
lating the quality of the function approximation and re-
gret of the algorithm. A corollary being that the method
is guaranteed to converge to a Nash equilibrium in self-
play so long as the regrets are ultimately realizable by
the function approximator. Our technique can be under-
stood as a principled generalization of existing work
on abstraction in large games; in our work, both the
abstraction as well as the equilibrium are learned dur-
ing self-play. We demonstrate empirically the method
achieves higher quality strategies than state-of-the-art
abstraction techniques given the same resources.

Introduction
Online learning in sequential decision-making scenarios has
wide ranging applications (e.g., online path planning (Awer-
buch and Kleinberg 2004), opponent exploitation (Southey,
Hoehn, and Holte 2009), and portfolio optimization (Hazan
et al. 2006)). While many such applications have consid-
erable structure, often this structure is lost when formulat-
ing the application into a traditional problem specification
such as a multi-armed bandit or extensive-form game. Since
regret-minimizing algorithms usually require computational
resources and learning time that grows with the problem
representation size, losing this structure often makes the re-
sulting problem intractable. Currently, the remedy is for the
practitioner to abstract the original domain based on struc-
tural features into a problem with a tractable representation
size (e.g., using domain knowledge to preselect a small num-
ber of likely-orthogonal choices in a multi-armed bandit).

Consider the popular testbed of poker. The human-played
game is highly-structured with a compact set of rules. Its
unstructured extensive-form game representation, however,
with nodes in the game tree for every possible sequence
of states is anything but compact (viz., two-player, no-limit
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Texas hold’em has 8.2 · 10160 such sequences (Johanson
2013, p. 12)). Even specialized equilibrium-finding algo-
rithms have no hope of solving this game in its extensive-
form representation. Here, much of the recent progress has
employed abstraction, grouping together similar situations
and actions based on domain knowledge (Gilpin, Sandholm,
and Sorensen 2007; Johanson 2007).

Using abstraction as a preliminary step to capture all of
the possible structure of the domain is unsatisfying. It can
place limitations on how structural features are exploited,
e.g., in extensive-form games the resulting abstraction must
be discrete and result in perfect recall. Furthermore, it re-
quires the practitioner to have foresight as to what the learner
might face when it is actually making decisions.

In this paper, we present a new algorithm for online learn-
ing in adversarial sequential decision-making scenarios that
makes use of structural features of the domain during learn-
ing. In particular, we employ an online regressor from do-
main features to approximate regrets incurred by the regret
minimizing online algorithm. This simple change allows the
algorithm to employ more general forms of abstraction, and
can change and tune the abstraction to both the game and
its solution. We prove a bound on our approach relating the
accuracy of the regressor to the regret of the algorithm and
demonstrate its efficacy in a simplified poker game.

Regression Regret-Matching
Let us begin by presenting a new, yet simple, algorithm for
the standard online learning framework. Let A be the set
of N actions or experts. On each time step t ∈ [T ] ≡
{1, . . . , T}, the online algorithm chooses xt ∈ ∆A, a distri-
bution over the experts, then observes ut, a bounded reward
vector where ‖ut‖∞ ≤ L2. The algorithm receives reward
(xt · ut) and then updates its prediction.

An algorithm’s external regret compares its performance
to the best expert in hindsight. To be no-regret is to have
regret grow sublinearly in T ,

Rext = max
x∗∈∆A

T∑
t=1

(x∗ · ut)− (xt · ut) ∈ o(T ).

That is, its average regret goes to zero in the worst-case.
A simple algorithm with this property is regret-matching.
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Algorithm 1 Regret-matching with Regret Regression
X ← [], y ← []
for t ∈ [T ] do

f ← TRAINREGRESSOR(X, y)
for a ∈ A do

z(a)← f(ϕ(a))
end for
xt ∝ max{0, zt}
Observe ut
for a ∈ A do

X ← X ∪ ϕ(a)
y ← y ∪ (ut(a)− (xt · ut))

end for
end for

Definition 1 (Regret-matching). Define the vector of cu-
mulative regret as

RT ≡
T∑
t=1

ut − (xt · ut)e

where e is the vector of all ones. Choose xt ∝
max{0, Rt−1}.
Theorem 1 (from Hart & Mas-Colell (2000)). Regret-
matching is no-regret. In particular, Rext ≤

√
LNT .

We often have structure between the available actions,
e.g., when an action corresponds to betting a particular
amount or choosing an acceleration. It is common to model
such situations by discretizing the range of available actions
and using a single action per interval. In this case, the struc-
ture linking actions is completely lost after this abstraction.

In more complicated stateful settings, we can describe
each action a ∈ A with a feature vector, ϕ(a) ∈ X . In
poker, there are numerous ways to quantify the strength of a
particular hand. For example, its expected value against dif-
ferent possible opponent holdings as well as potential-aware
statistics, like the variance of the expected value. Current
techniques use eight to ten such statistics to describe the por-
tion of the state space representing the player’s hand.

To reduce the action space in these settings, prior work
uses unsupervised clustering techniques on the actions in
feature space. This can essentially be thought of as an in-
formed discretization of the space. The hope is that actions
with similar features can be collapsed, or made indistin-
guishable, without incurring too much loss (Shi and Littman
2002). We use this feature vector to retain the structure dur-
ing learning. To reduce to the standard framework, we can
simply use an indicator feature for each action.

Algorithm 1 contains the pseudocode for our approach.
It employs an arbitrary mean-squared-error minimizing re-
gressor to estimate the cumulative regret. In particular,
the training procedure is expected to produce f where
f(ϕ(a)) ≈ Rt(a)/t, or equivalently, the algorithm’s regret
estimate is R̃t(a) = tf(ϕ(a)).

We consider the error of our regressor with the l2 distance
between the approximate and true cumulative regret vectors:

‖Rt − R̃t‖2. Note that this quantity is related to the repre-
sentational power and recall of the regressor. In particular,
if we cannot represent the true cumulative regret then it will
be non-zero due to this bias. The regret of Algorithm 1 can
then be bounded in terms of this representational power.

Theorem 2. If for each t ∈ [T ], ‖Rt − R̃t‖2 ≤ ε,
then regression regret-matching has regret bounded by√
TNL+ 2T

√
Lε.

The proof is in the appendix in the supplemental material.
This is a worst-case bound. That is, so long as ε is

small regression regret-matching cannot be much worse than
normal regret-matching. It is possible that there are cases
where regression regret-matching can do better than regret-
matching if the structure is favorable.

The first subtlety we must note is that the regressor mini-
mizes the mean-squared error of the immediate regrets, i.e.{(

ϕ(a), ui(a)− ui · xi
)
| ∀a ∈ A, i ∈ [t]

}
forms the training set. If the hypothesis class can represent
the regrets, then tf(ϕ(a)) = Rt(a) obtains the minimum
mean-squared error. Note that this error is likely not zero
even in the realizable case!

In words, the theorem states that if the error of the re-
gressor decreases like O(1/T ) then the algorithm obtains a
O(
√
T ) regret bound. Note that the cumulative regret can

grow like O(T ), so a fixed ε across time implies a decreas-
ing error rate. The algorithm remains no-regret so long as the
bias goes to zero and recall goes to one, i.e., it is asymptoti-
cally unbiased. If the bias is constant then there is a constant
term in the regret bound. When solving a game, this constant
term constitutes the error introduced by a lossy abstraction.

Note that it is sufficient to make the estimator asymptot-
ically unbiased by including indicator features for each ac-
tion with proper regularization. In a sense, this allows the
algorithm to move from an estimate of the true regrets as
time increases, i.e., as the true regrets stabilize.

Next, we aim to use our algorithm for sequential decision-
making and to relate it to current abstraction techniques. Be-
fore we can accomplish this, we must review the extensive-
form game framework.

Extensive-form Games
A two-player zero-sum extensive-form game is a tuple
Γ = (H, p, σc, I, u) (Osborne and Rubinstein 1994). The
set of histories, H, form a tree rooted at φ ∈ H, the empty
history. A(h) is the set of actions available at h ∈ H and
ha ∈ H is a child of h. The subset Z ⊆ H is the set of
terminal histories, i.e., if z ∈ Z then A(z) is empty. p :
H \ Z → {1, 2, c} is the player choice function that deter-
mines if nature or a player is to act at any given history. For
all histories h ∈ H where chance acts (that is, all h where
p(h) = c), σc(·|h) ∈ ∆A(h) is a probability distribution over
available chance actions that defines nature’s strategy. The
information partition, I = I1∪I2, separates histories into
information sets such that all histories in an information set
are indistinguishable to the acting player and have the same
set of actions. Finally, u : Z → R is the game’s utility
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function. At a terminal history, z ∈ Z , u1(z) = u(z) is the
reward to the first player and u2(z) = −u(z) the reward to
the second. That is, the gains of one player are the loses to
the other and the rewards sum to zero.

A behavioral strategy for player i, σi ∈ Σi, defines a
probability distribution at all information sets where player
i acts. That is, if I ∈ Ii, then σi(·|I) ∈ ∆A(I). We call a tu-
ple of strategies (σ1, σ2) a strategy profile. Let πσ(z) be the
probability of reaching z by traversing the tree using σ from
the root. Let πσ−i(z) be the probability of reaching z using σ
assuming player i takes actions to reach z with probability
one. Finally, let πσ(h, z) be the probability of reaching z us-
ing σ while starting at history h instead of the root (πσ(h, z)
is zero if h is not an ancestor of z). With these definitions we
can write the expected utility to player i under profile σ as
ui(σ) =

∑
z∈Z π

σ(z)ui(z).
A strategy profile is an ε-Nash equilibrium if

u1(σ1, σ2) + ε ≥ u1(σ′1, σ2), and ∀σ′1 ∈ Σ1

u2(σ1, σ2) + ε ≥ u2(σ1, σ
′
2). ∀σ′2 ∈ Σ2

That is, if neither player can benefit by more than ε by devi-
ating from σ unilaterally. In a two-player zero-sum game, a
strategy belonging to a Nash equilibrium is minimax optimal
so it attains the highest utility against an optimal opponent.
Thus, it is safe to play an equilibrium strategy.

Counterfactual Regret Minimization
Counterfactual regret minimization (CFR) is an algo-
rithm for computing an ε-equilibrium in extensive-form
games (Zinkevich et al. 2008). It employs multiple no-regret
online learners, customarily instances of regret-matching,
minimizing counterfactual regret at every information set.

The counterfactual utility for taking action a ∈ A(I)
from information set I ∈ Ii at time t is defined as

uti(a|I) =
∑
h∈I

∑
z∈Z

πt−i(h)πt(ha, z)ui(z).

In words, it is the expected utility for player i taking action
a at information set I assuming they play to reach I , take
action a, and then follow their current policy thereafter.

Using counterfactual utility, we define immediate coun-
terfactual regret and cumulative counterfactual regret as

rti(a|I) = uti(a|I)−
∑

a′∈A(I)

σti(a
′|I)uti(a

′|I), and

RTi (a|I) =
T∑
t=1

rti(a|I),

respectively. Each information set is equipped with its own
no-regret learner that updates and maintains its cumulative
regret. It is the cumulative regret from time t that defines the
player’s strategy at time t+ 1.

Typically, regret-matching is the no-regret learner of
choice with CFR. It defines the player’s policy at time t as

σti(a|I) ∝ max{0, Rt−1
i (a|I)}.

The following two theorems show counterfactual regret
minimization in self-play converges to an equilibrium.

Theorem 3. If two no-regret algorithms in self-play each
have no more than ε external regret, RT,ext

i ≤ ε, then the
average of their strategies form a 2ε/T -Nash equilibrium.
Theorem 4 (from Zinkevich et al. (2008)). If regret-
matching minimizes counterfactual regret at each informa-
tion set for T iterations, then RT,ext

i ≤ |Ii|
√
LNT , where

L2 is the maximum possible utility and N is the maximum
number of actions at any information set.

Counterfactual regret minimization is the large-scale
equilibrium-finding algorithm of choice. Though other al-
gorithms boast better asymptotic rates (Gilpin et al. 2007),
CFR more rapidly converges to an acceptable solution in
practice. Furthermore, it is simple, highly parallelizable and
amenable to sampling techniques (Lanctot et al. 2009) that
dramatically reduce computational requirements.

Regression CFR
We are now ready to put the pieces together to form our
new regret algorithm for sequential decision-making sce-
narios: Regression CFR (RCFR). The algorithm is simple.
We will minimize counterfactual regret at every information
set using estimates of the counterfactual regret that comes
from a single common regressor shared across all informa-
tion sets. The common regressor uses features, ϕ(I, a), that
are a function of the information-set/action pair. This allows
the regressor to generalize over similar actions and similar
situations in building its regret estimates.

As with CFR, we can derive a regret bound, which in turn
implies a worst-case bound on the quality of an approximate
equilibrium resulting from self-play.
Theorem 5. If for each t ∈ [T ] at every information set
I ∈ Ii, ‖Rt(·|I) − R̃t(·|I)‖2 ≤ ε, then RCFR has external
regret bounded by |Ii|

√
TNL+ 2T

√
Lε.

The proof combines Theorem 2 together with the CFR
convergence proof of Zinkevich et al. (2008).

Now that we have presented RCFR, let us examine how it
relates to modern abstraction techniques.

Relationship to Abstraction
As noted in the introduction, often the problem we wish
to solve, when viewed without any structure, is intractably
large. For example, representing a behavioral strategy profile
in no-limit Texas Hold’em1 requires 8.2 · 10160 entries (Jo-
hanson 2013, p. 12). To surmount this, we typically first dis-
till the game to a tractably-sized abstract game. Then, after
solving it, we map its solution into the full game. The hope
is that the abstract game and its solution roughly maintain
the important strategic aspects of the full game. Though this
turns out to be false (Waugh et al. 2008), it appears to not oc-
cur with any significance in the large games of interest (Jo-
hanson et al. 2011; Bard et al. 2013).

The common way to abstract a game is to simply group
together similar information sets (Gilpin, Sandholm, and
Sorensen 2007; Johanson 2007). That is, we take situations

1We consider the game with 50-100 blinds with 20,000 chip
stacks as played in the Annual Computer Poker Competition.
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in the full game that the player can differentiate and make
them indistinguishable in the abstract game. If the two situ-
ations have similar behavior in equilibrium, then at the very
least we have not lost representational power in doing so.
This form of abstraction provides a function f mapping full
game information sets to abstract game information sets.

To create such an abstraction requires some notion of sim-
ilarity and compatibility of information sets, and a clustering
algorithm, like k-means. Ultimately, the size of the abstract
game is a function of the number of clusters—how the in-
formation sets collapse together. Let us assume that we have
a function ϕ : I ×A→ X that maps information-set/action
pairs to domain-specific features in space X . We can use
such a function to define the similarity of compatible infor-
mation sets I and I ′ by, for example, the cumulative inner
product,

∑
a∈A 〈ϕ(I, a), ϕ(I ′, a)〉, which can be passed to

k-means to cluster the information sets (often subject to con-
straints such as preserving perfect recall).

In order to compare the approach to RCFR, consider a
single iteration of the counterfactual regret update in both
the original game and the abstract game where the players’
strategies are fixed. In particular, we have

r̃ti(a|Iabstract) =
∑

I full∈f−1(Iabstract)

rti(a|I full).

That is, the regret at information set Iabstract in the abstract
game, r̃ti(·|Iabstract) is the sum of the regrets in the full game
of all information sets that map to it, f−1(Iabstract). Tak-
ing this view-point in reverse, using CFR on the abstract
game is operationally equivalent to solving the full game
where we maintain and update the regrets r̃ti(·|f(I full)), i.e.,
we approximate the true regrets with a tabular regressor
rti(a|I full) ≈ r̃ti(a|f(I full)). Thus, abstraction can be thought
of as a special-case of RCFR with a particular choice for
how to approximate the cumulative counterfactual regret.

RCFR is, of course, not restricted to tabular regressors and
so can capture structure that goes beyond traditional abstrac-
tion. For example, using linear or kernel regression provides
a sort of “soft” abstraction. That is, the regret of two dis-
tinct (in feature space) actions can effect one another with-
out making the two completely indistinguishable, which is
the only option available to traditional “hard” abstraction.

Unlike traditional abstraction where f is chosen a pri-
ori, RCFR is also able to learn the structure of the abstrac-
tion online upon seeing actual data. And since the regres-
sor is trained after each time step, RCFR can effectively
re-abstract the game on-the-fly as necessary. Furthermore,
the abstraction is informed by the game in a way that is
compatible with the learner. Imperfect information games
have an interesting property in that portions of the game
that are never reached in optimal play have strategic effects.
For example, if one player was to behave suboptimally, the
other might benefit by deviating into an otherwise undesir-
able space. Without the possibility of deviating there may be
no way to punish the poor play. Practically, this presents as
a rather annoying hurdle for abstraction designers. In par-
ticular, seemingly ideal abstractions tailored perfectly to the
structure of an equilibrium may actually lead to poor solu-
tions due to missing important, but seemingly unnecessary,

parts of the strategy space. RCFR avoids all of this as the
regressor tunes the abstraction to the current policy, not the
solution.

Experimental Results
In order to illustrate the practicality of RCFR, we test its
performance in Leduc Hold’em, a simplified poker game.
Our goal is to compare the strategies found by RCFR with
varying regressors to strategies generated with conventional
abstraction techniques. In addition, we examine the iterative
behaviour of RCFR compared to CFR.

Leduc Hold’em
Leduc Hold’em is a poker game based on Kuhn
poker (Southey et al. 2005). It provides a good testbed
as common operations, like best response and equilibrium
computations, are tractable and exact.

The game has two betting rounds, the preflop and flop. At
the beginning of the game both players ante a single chip
into the pot and are dealt a single private card from a shuf-
fled deck of six cards—two jacks, two queens and two kings.
Then begins the preflop betting round where the first player
can either check or bet. If the first player checks, passing
their turn, then the second player can end the betting round
by checking as well, or continue by betting. When facing a
bet; the player can raise by placing two chips into the pot;
call by matching the bet in the pot and ending the round; or
fold by forfeiting the pot to the opponent. There is a max-
imum of two wagers per round, i.e., one bet and one raise.
A single public card is dealt face up for both players to see
at the beginning flop. If the flop betting ends without either
player folding, a showdown occurs and the player with the
best hand takes the pot. A player that pairs, i.e., their card
matches the public card, always has the best hand no matter
the rank of the paired card or the opponent’s card. If neither
player pairs, the one with the highest rank card wins. In the
event of a tie, the pot is split. The size of a wager preflop is
two chips, and is doubled to four chips on the flop.

Leduc Hold’em has 672 sequences. At equilibrium, the
first player is expected to lose 0.08 chips per hand. We show
results in milliblinds/antes per hand (mb/h), a thousandth of
a chip, i.e., optimally the first player loses 80 mb/h.

Features and Implementation
We use a regression tree aiming to minimize mean-squared
error as our regressor. When training, we examine all candi-
date splits on a single feature and choose the one that results
in the best immediate error reduction. The data is then par-
titioned according to this split and we recursively train both
sets. If the error improvement at a node is less than a thresh-
old, or no improvement can be made by any split, a leaf is in-
serted that predicts the average. It is this error threshold that
we manipulate to control the complexity of the regressor—
the size of the tree. All the training data is kept between
iterations, as in Algorithm 1.

Eight features were chosen such that the set of features
would be small, thus allowing fast regression tree training,
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which is done on every RCFR iteration, but still descrip-
tive enough to have a unique feature expansion for every
sequence: 1) the expected hand strength (E[HS]), or the
probability of winning the hand given the available informa-
tion, and marginalized over a uniform distribution of oppo-
nent hands and possible future board card; 2) the rank of the
board card, or zero on the preflop; 3) the pot size; 4) the pot
relative size of the wager being faced, or zero if not facing a
wager; 5) the number of actions this hand; 6) the number of
wagers this hand; 7) an indicator on whether or not the next
action would be a fold action; and 8) the pot relative size of
the wager that would be made by taking the next action, or
zero if the next action would be a check or call.

Features (1) and (2) refer to private and public card infor-
mation, (3) through (6) are public chip and action informa-
tion, while (7) and (8) fully describe the next potential action
in the sequence2.

Experiments
We evaluate the empirical performance of RCFR here ac-
cording to three metrics: 1) convergence properties, 2) ex-
ploitability, and 3) one-on-one competitions.

Strategies were computing using RCFR and four different
error threshold values. Each threshold was chosen so that
RCFR’s regressor would have similar complexity to that of
a conventional abstraction, or that of the full game. In Leduc
Hold’em, a typical abstraction is one that groups together
cards on the preflop and only distinguishes between pair-
ing and non-pairing board cards on the flop. These hand-
crafted abstractions are analogous to the E[HS] based ab-
stractions commonly used in Texas Hold’em. Abstractions
are denoted, for example, J.QK to describe the abstraction
that can distinguish between a jack and a queen or king, but
cannot distinguish between a queen and king. The remain-
ing three abstractions are then JQK, JQ.K, and J.Q.K. One
may also note that J.Q.K is a strict refinement of the other
three abstractions, and J.QK and JQ.K both are strict re-
finements of JQK. To generate strategies, chance sampling
CFR (Zinkevich et al. 2007) was run for 100000 iterations
to solve each abstract game.

Each different RCFR strategy is denoted, for example,
RCFR-22%, to describe RCFR using a regressor 22% the
size of a strategy in the full game. RCFR-22%, RCFR-47%,
and RCFR-66% correspond to JQK, J.QK/JQ.K, and
J.Q.K, respectively, in terms of complexity. RCFR-96%
corresponds to FULL, which denotes no abstraction, and it
was made by setting the error threshold to zero, so the re-
gressor was free to split on every feature and become as large
as the full game. RCFR and CFR were run for 100000 iter-
ations to generate the set of RCFR strategies and a FULL
strategy, respectively.

Convergence Figure 1 shows that all RCFR strategies im-
prove at the same rate as an unabstracted CFR strategy
(FULL) until a plateau is reached, the height of which is

2No explicit check/call feature is necessary because it is im-
plicitly encoded by features (7) and (8) in combination. The action
would be a check/call if and only if both are zero (the action would
not be a fold nor a wager, and the game has only three action types).
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Figure 1: Convergence of RCFR using various error thresh-
olds (complexity limitations) compared with CFR on the un-
abstracted game (FULL).

determined by the error threshold parameter of that RCFR
instance. These plateaus are essentially the exploitability
cost incurred by estimating regrets instead of computing and
storing them explicitly. Larger thresholds, reducing regres-
sor complexity, incur a greater cost and thus have a higher
plateau. As expected, when the error threshold is set to zero,
as in the case of RCFR-96%, RCFR’s progression mimics
unabstracted CFR for the full set of 100000 iterations.
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Figure 2: Exploitability of final strategies after 100000 iter-
ations of RCFR, unabstracted CFR (FULL), or chance sam-
pling CFR (JQK, J.QK, JQ.K, and J.Q.K). The horizontal
axis shows the complexity of the solution method as a per-
centage of the size of the unabstracted game. RCFR’s com-
plexity is the size of the regression tree while the complexity
of a conventional abstraction is the size of its abstract game.

Exploitability Figure 2 shows that RCFR, given com-
plexity restrictions equivalent to those of conventional ab-
stractions, finds significantly less exploitable strategies.
RCFR-66%’s regressor is 2% smaller than the size of the
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RCFR-22% JQK RCFR-47% J.QK JQ.K RCFR-66% J.Q.K RCFR-96% FULL Mean

RCFR-22% 319.50± 1.81 −97.61± 1.31 58.25± 1.45 −100.70± 1.26 −123.70± 1.30 −88.90± 1.34 −135.89± 1.34 −139.90± 1.33 −38.62± 1.39

JQK −319.50± 1.81 −453.35± 1.85 −405.96± 1.97 −363.66± 1.70 −452.82± 1.85 −369.79± 1.83 −495.46± 1.85 −486.06± 1.86 −418.33± 1.84

RCFR-47% 97.61± 1.31 453.35± 1.85 140.32± 1.44 14.19± 1.27 −34.91± 1.26 18.07± 1.29 −44.91± 1.26 −47.98± 1.27 74.47± 1.37

J.QK −58.25± 1.45 405.96± 1.97 −140.32± 1.44 −107.66± 1.35 −147.86± 1.42 −94.31± 1.45 −149.31± 1.41 −156.26± 1.43 −56.00± 1.49

JQ.K 100.70± 1.26 363.66± 1.70 −14.19± 1.27 107.66± 1.35 −46.71± 1.26 −33.16± 1.30 −53.90± 1.27 −56.77± 1.27 45.91± 1.33

RCFR-66% 123.70± 1.30 452.82± 1.85 34.91± 1.26 147.86± 1.42 46.71± 1.26 33.65± 1.26 −10.17± 1.25 −9.41± 1.24 102.51± 1.35

J.Q.K 88.90± 1.34 369.79± 1.83 −18.07± 1.29 94.31± 1.45 33.16± 1.30 −33.65± 1.26 −36.82± 1.26 −37.69± 1.25 57.49± 1.37

RCFR-96% 135.89± 1.34 495.46± 1.85 44.91± 1.26 149.31± 1.41 53.90± 1.27 10.17± 1.25 36.82± 1.26 0.00± 1.25 115.81± 1.36

FULL 139.90± 1.33 486.06± 1.86 47.98± 1.27 156.26± 1.43 56.77± 1.27 9.41± 1.24 37.69± 1.25 0.00± 1.25 116.76± 1.36

Table 1: One-on-one competition crosstable. Each cell is the bankroll for the row player in mb/h and 95% confidence interval
of playing the row agent against the column agent for 30000000 hands where the starting player was changed after every hand.
The table is partitioned according to abstraction or regressor complexity.

J.Q.K abstract game, yet J.Q.K is sixteen times more ex-
ploitable! The closest corresponding strategies in terms of
exploitability are RCFR-47% and JQ.Kwhere JQ.K is only
three and a half times more exploitable.

Another useful practical property of RCFR is that it ap-
pears to avoid non-monotonicities that have been observed
in hand-crafted abstractions (Waugh et al. 2008). That is, in-
creasing the complexity of the regressor appears to improve
the full game exploitability of the resulting strategy.

One-on-one Competitions Table 1 is the one-on-one
competition crosstable between each of the agents. Against
almost every opponent, each RCFR variant outperforms its
corresponding strategy. The exceptions, for example, JQ.K
wins 100.70 mb/h against RCFR-22% while RCFR-47%
wins only 97.61 mb/h against this same opponent, are small
margins. In addition, each RCFR strategy defeats or, in the
case of RCFR-96%, ties its counterparts. RCFR-22% and
RCFR-47% even win against larger abstract strategies J.QK
and J.Q.K, respectively. Dividing the agents into an RCFR
team and a conventional agents team, the RCFR team wins
2033.34 mb/h in aggregate.

Future Work
In this paper we introduced RCFR, a technique that obviates
the need for abstraction as a preprocessing step by employ-
ing a regression algorithm online. The regressor essentially
learns and tunes an abstraction automatically as the algo-
rithm progresses greatly simplifying abstraction design.

The experimental results show this technique is quite
promising. The next step is to scale to larger games, e.g.,
no-limit Texas Hold’em, where abstraction is necessary. It
is likely that RCFR is up to this challenge, but a number of
interesting questions need be answered along the way.

First, CFR is the algorithm of choice for equilibrium-
finding due to the powerful sampling schemes available to
it. In this paper, we have not explored sampling with RCFR
at all. Theoretically, there are no obvious restrictions that
forbid sampling, but we posit that lower variance sampling
schemes than are currently employed will be preferred.

Second, the choice of features and regressor are extremely
important and remain open. Online regression algorithms
are appealing due to their simplicity as well as removing
the need to store data from past iterations. If this route is
pursued, care must be taken to ensure access to strategy and

updating the regressor remain inexpensive. This is possible,
for example, by using sparse features.

Third, the average strategy is typically the result of the
equilibrium computation. This average, too, must be en-
coded with a regressor in the case of large games. Concep-
tually, this poses no problems, but again care must be taken.
In particular, due to the sequential nature of the policy, er-
rors made by the regressor propagate and compound. The
DAGGer algorithm corrects this by ensuring the regressor
imposes the same distribution over future decisions as is ob-
served in the true policy (Ross, Gordon, and Bagnell 2011).
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