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Abstract

Clinical trial adaptation refers to any adjustment of the
trial protocol after the onset of the trial. The main goal
is to make the process of introducing new medical inter-
ventions to patients more efficient by reducing the cost
and the time associated with evaluating their safety and
efficacy. The principal question is how should adapta-
tion be performed so as to minimize the chance of dis-
torting the outcome of the trial. We propose a novel
method for achieving this. Unlike previous work our
approach focuses on trial adaptation by sample size
adjustment. We adopt a recently proposed stratifica-
tion framework based on collected auxiliary data and
show that this information together with the primary
measured variables can be used to make a probabilis-
tically informed choice of the particular sub-group a
sample should be removed from. Experiments on simu-
lated data are used to illustrate the effectiveness of our
method and its application in practice.

Introduction
Robust evaluation is a crucial component in the process
of introducing new medical interventions. Amongst others,
these include newly developed medications, novel means
of administering known treatments, new screening proce-
dures, diagnostic methodologies, physio-therapeutical ma-
nipulations, and many others. Such evaluations usually take
on the form of a controlled clinical trial (or a series thereof),
the framework widely accepted as best suited for a rigourous
statistical analysis of the effects of interest (Meinert 1986;
Piantadosi 1997; Friedman, Furberg, and DeMets 1998) (for
a related discussion and critique also see (Penston 2005)).
Driven both by legislating bodies, as well as the scientific
community and the public, the standards that the assessment
of novel interventions are expected to meet continue to rise.
Generally, this necessitates trials which employ larger sam-
ple sizes and which perform assessment over longer peri-
ods of time. A series of practical challenges emerge as a
consequence. Increasing the number of individuals in a trial
can be difficult because some trials necessitate that partic-
ipants meet specific criteria; volunteers are also less likely
to commit to participation over extended periods of time.
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The financial impact is another major issue – both the in-
crease in the duration of a trial and the number of par-
ticipants result in additional cost to an already expensive
process. In response to these challenges, the use of adap-
tive trials has emerged as a potential solution (Fisher 1998;
U.S. Department of Health and Human Services 2010;
Hung, Wang, and ONeill 2006). The key idea underlying
the concept of an adaptive trial design is that instead of
fixing the parameters of a trial before its onset, greater
efficiency can be achieved by adjusting them as the trial
progresses (Chow and Chan 2011). For example, the trial
sample size (e.g. the number of participants in a trial),
treatment dose or frequency, or the duration of the trial
may be increased or decreased depending on the accumu-
lated evidence (Cui, Hung, and Wang 1999; Nissen 2006;
Lang 2011).

Method overview The method for trial adaptation we de-
scribe in this paper has been influenced by recent work on
the analysis of imperfectly blinded clinical trials (Arand-
jelović 2012a; 2012b). Its key contribution was to intro-
duce the idea of trial outcome analysis by patient sub-groups
which comprise trial participants matched by the adminis-
tered intervention (treatment or control) and their responses
to an auxiliary questionnaire in which the participants are
asked to express their belief regarding their assignment in-
tervention in the closed-form. This framework was shown to
be suitable for robust inference in the presence of “unblind-
ing” (Arandjelović 2012a; Haahr and Hróbjartsson 2006).
The method proposed in the present paper emerges from the
realization that the same framework can be used for trial
adaptation by providing information which can be used to
make a statistically informed selection of the trial partici-
pants which can be dropped from the trial before its comple-
tion, without significantly affecting the trial outcome. Thus,
the proposed approach falls under the category of trial adap-
tations by “amending sample size”, in contrast to “dose find-
ing” or “response adapting” methods which dominate previ-
ous work (Lang 2011).

In (Arandjelović 2012a) it was shown that the analysis of
a trial’s outcome should be performed by aggregating evi-
dence provided by matched participant sub-groups, where
two sub-groups are matched if they contain participants
who were administered different interventions but nonethe-
less had the same responses in the auxiliary questionnaire.
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Therefore, our idea advanced here is that an informed trial
sample size reduction can be made by computing which
matched sub-group pair’s contribution of useful information
is affected the least with the removal of participants from
one of its groups.

Contrast with previous work Before introducing the pro-
posed method in detail, it is worthwhile emphasizing two
fundamental aspects in which it differs from the methods
previously described in the literature. The first difference
concerns the nature of the statistical framework which un-
derlies our approach. Most of the existing work on trial
adaptation by sample size adjustment adopts the frequen-
tist paradigm. These methods follow a common pattern: a
particular null hypothesis is formulated which is then re-
jected or accepted using a suitable statistic and the desired
confidence requirement (Jennison and Turnbull 2003). In
contrast, the method described in this paper is thoroughly
Bayesian in nature. The second major conceptual novelty of
the proposed method lies in the question it seeks to answer.
All previous work on trial adaptation by sample size adjust-
ment addresses the question of whether the sample size can
be reduced while maintaining a certain level of statistical
significance of the trial’s outcome. In contrast, the present
work is the first to ask a complementary question of which
particular individuals in the sample should be removed from
the trial once the decision of sample size reduction has been
made. Thus, the proposed method should not be seen as an
alternative to the any of the previously proposed methods but
rather as a complementary element of the same framework.

Auxiliary data collection
The type of auxiliary data collection we utilize in this work
was originally proposed for the assessment of blinding in
clinical trials (James et al. 1996). Since then it has been
adopted for the same purpose in a number of subsequent
works (Bang, Ni, and Davis 2004; Hróbjartsson et al. 2007;
Kolahi, Bang, and Park 2009; Arandjelović 2012a) (also
see (Sackett 2007) for related commentary). The question-
naire allows the trial participants to express their belief on
the nature of the intervention they have been administered
(control or treatment) using a fixed number of choices. The
most commonly used, coarse-grained questionnaire admits
the following three choices:

1: belief that control intervention was administered,
2: belief that treatment intervention was administered, and
3: undecidedness about the nature of the intervention.

Matching sub-groups outcome model
In the general case, the effectiveness of a particular inter-
vention in a trial participant depends on the inherent effects
of the intervention, as well as the participant’s expectations
(conscious or not). Thus, as in (Arandjelović 2012a), in the
interpretation of trial results, we separately consider each
population of participants which share the same combina-
tion of the type of intervention and the expressed belief re-
garding this group assignment. For example, when a 3-tier
questionnaire is used in a trial comparing the administration

of the treatment of interest and control, we recognize control
sub-groups:
GC−: participants of the control group who believe they

were assigned to the control group,
GC0: participants of the control group who are unsure of

their group assignment,
GC+: participants of the control group who believe they

were assigned to the treatment group,
and the three corresponding treatment sub-groups. The
key idea underlying the method proposed in (Arandjelović
2012a) is that because the outcome of an intervention de-
pends on both the inherent effects of the intervention and
the participants’ expectations, the effectiveness should be in-
ferred in a like-for-like fashion. In other words, the response
observed in, say, the sub-group of participants assigned to
the control group whose feedback professes belief in the
control group assignment should be compared with the re-
sponse of only the sub-group of the treatment group who
equally professed belief in the control group assignment.

Sub-group selection
The primary aim of the statistical framework described
in (Arandjelović 2012a) is to facilitate an analysis of trial
data robust to the presence of partial or full unblinding of pa-
tients, or indeed patient preconceptions which too may affect
the measured outcomes. Herein we propose to exploit and
extend this framework to guide the choice of which patients
are removed from the trial after its onset, in a manner which
minimizes the loss of statistical significance of the ultimate
outcomes.

At the onset of the trial, the trial should be randomized
according to the current best clinical practice; this problem is
comprehensively covered in the influential work by (Berger
2005). If a reduction in the number of trial participants was
attempted at this stage, by the very definition of a properly
randomized trial, statistically speaking there is no reason to
prefer the removal of any particular subject (or indeed a set
of subjects) over another. Instead, any trial size adaptation
must be performed at a later stage after some meaningful
differentiation between subjects takes place (Nelson 2010).

The most obvious observable differentiation that takes
place between patients as the trial progresses is that of the
outcomes of primary interest in the trial (the “response”).
This differentiation may allow for a statistically informed
choice to be made about which trial participants can be
dropped from the trial in a manner which minimizes the ex-
pected distortion of the ultimate findings. For example, this
can be done by seeking to preserve the distribution of mea-
sured outcomes within a group (treatment or control) but
with the constraint of a smaller number of participants; in-
deed, our approach partially exploits this idea. However, our
key contribution lies in a more innovative approach, which
exploits additional, yet readily collected discriminative in-
formation. The proposed approach not only minimizes the
effect of smaller participant groups but also ensures that no
unintentional bias is injected due to imperfect blinding. Re-
call that the problem of inference robust to imperfect blind-
ing should always be considered, as blinding can only be
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attempted with respect to those variables of the trial which
have been identified as revealing of the administered treat-
ment (and even for these it is fundamentally impossible to
ensure perfect blinding).

Our idea is to administer an auxiliary questionnaire of the
form described in (James et al. 1996; Bang, Ni, and Davis
2004) every time an adaptation of the trial group size is
sought. As in (Arandjelović 2012a), this leads to the differ-
entiation of each group of participants (control or treatment)
into sub-groups, based on their belief regarding their group
assignment. In general, this means that even if no partici-
pants are removed from the trial, a participant may change
his/her sub-group membership status. This is illustrated with
a hypothetical example in Fig. 1. The first time an auxiliary
questionnaire is administered (top plot), most of the treat-
ment group participants are still unsure of their assignment
(solid blue line); a smaller number of participants have cor-
rectly guessed (or inferred) their assignment (bold blue line);
lastly, an even smaller number holds the incorrect belief that
they are in fact members of the control group (dotted blue
line). All of the sub-groups show a spread of responses to
the treatment, such as may be expected due to various per-
sonal variations of their members. At the time of the second
snapshot (middle plot), at the next instance when auxiliary
data is collected, the proportions of participants in each sub-
group has changed, as do the associated treatment response
statistics. A similar observation can be made with respect to
the third and the last snapshot pictured in the figure (bottom
plot). This sort of a development would not be unexpected
– if the treatment is effective, as the trial progresses there
will be an increase in the number of treatment group par-
ticipants who observe and correctly interpret these changes
(note that this also means that there will be an associated
increase in the number of participants who may exhibit an
additional positive effect from the fortunate realization that
they are receiving the studied treatment intervention, rather
than the control intervention). That being said, it should be
emphasized that no assumption on the statistics of sub-group
memberships or their relative sizes is made in the proposed
method. The example in Fig. 1 is merely used for illustra-
tion.

The question is: how does this differentiation of patients
by auxiliary data sub-groups help us make a statistically
robust choice of which participants in the trial should be
preferentially dropped if a reduction in the trial size is
sought? To answer this question, recall that the main premise
of (Arandjelović 2012a) is“that it is meaningful to com-
pare only the corresponding treatment and control partici-
pant sub-groups, that is, sub-groups matched by their auxil-
iary responses.” Each sub-group comparison contributes in-
formation used to infer the probability density of the differ-
ential effects of the treatment. We can then reformulate the
original question as: from which matching sub-group pair
should participants be preferentially dismissed from further
consideration so as to best conserve the sub-group pair’s in-
formation contribution? Consider how the information on
the differential effects between a single pair of matching
sub-groups is inferred. In its general form, we can esti-
mate some distance between the distributions of the two sub-
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Figure 1: A conceptual illustration on a hypothetical example of
the phenomenon whereby trial participants change their sub-group
membership (recall that each sub-group is defined by its members’
intervention assignment and auxiliary questionnaire responses).
This is quite likely to occur when the effects of the treatment are
very readily apparent but various other mechanisms can act so as
to cause a non-zero and changing sub-group flux.

groups using a Bayesian approach:

ρ∗ ∝
∫

Θc

∫
Θt

ρ(pc(x; Θc), pt(x; Θt))︸ ︷︷ ︸
Distance between distributions
for specific parameter values

×

p(Dc|Θc) p(Dt|Θt)︸ ︷︷ ︸
Model likelihoods

p(Θc) p(Θt)︸ ︷︷ ︸
Parameter priors

× dΘt dΘc (1)

where Θc and Θt are the sets of variables parameterizing
the two corresponding distributions pc(x; Θc) and pt(x; Θt),
p(Θc) and p(Θt) the parameter priors, ρ(pc(x; Θc), pt(x; Θt))
a particular distance function (e.g. the Kullback-Leibler di-
vergence (Kullback 1951), Bhattacharyya (Bhattacharyya
1943) or Hellinger distances (Hellinger 1909), or indeed the
posterior of the difference of means used in (Arandjelović
2012a)), and Dc and Dt the measured trial outcomes (e.g.
the reduction in blood plasma LDL in a statin trial etc).

Note that by changing (reducing) the number of partici-
pants in one of the groups, the only affected term on the right
hand side of (1) is one of the likelihood terms, p(Dc|Θc)
or p(Dt|Θt). Seen another way, a change in the number of
participants in the trial changes the weighting of the prod-
uct of the distance term ρ(pc(x; Θc), pt(x; Θt)) and the priors
p(Θc) p(Θt). Our idea is then to choose to remove a trial
participant from that sub-group which produces the small-
est change in the estimate ρ∗. However, it is not clear how
this may be achieved, since it is the size of the set Dc that is
changing (so, for example, treatingDc andDt as vectors and
f as a function of vectors would not achieve the desired aim).
Examining the sensitivity of ρ∗ with the removal of each da-
tum (i.e. trial participant) from Dc and Dt is also unsatisfac-
tory since the problem does not lend itself to a greedy strat-
egy: the optimal choice of which nrem trial participants to
drop from the trial cannot be made by making nrem optimal
choices of which one participant to drop. An approach fol-
lowing this direction but attempting to examine all possible
sets of size nrem would encounter computational tractability
obstacles since this problem is NP-complete. The alternative
which we propose is to consider and compare the magni-
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tudes of partial derivatives of ρ∗ with respect to the sizes of
data sets Dc and Dt, but with an important constraint – the
derivatives are taken of the expected functional form of ρ∗
over different members of Dc and Dt. Formalizing this, we
compute:

E

[
∂ρ∗

∂nc

]
Dc

and E

[
∂ρ∗

∂nt

]
Dt

, (2)

where E[ρ∗]Dc and E[ρ∗]Dt are respectively the expected
values of ρ∗ across the space of possible observations in
Dc and Dt. Thus E[ρ∗]Dc and E[ρ∗]Dt are functions of two
scalars, the sizes nc and nt of setsDc andDt i.e. the numbers
of members of the corresponding sub-groups.

The proposed solution is not only theoretically justified
but it also lends itself to simple and efficient implementation.
Since the expected values E[ρ∗]Dc and E[ρ∗]Dt are evalu-
ated over sets Dc and Dt, in (1) the only term affected is
p(Dc|Θc) p(Dt|Θt), so the solution is readily obtained as a
closed form expression. Equally, the integration is readily
performed using one of the standard Markov chain Monte
Carlo integration methods (Gilks 1995).

Application example
In order to illustrate how the described method could be
applied in practice, let us consider a hypothetical example.
Let the trial observation data in two matching sub-groups
be drawn from the random variables Xc and Xt, which are
appropriately modelled using normal distributions (Aitchi-
son and Brown 1957): Xt ∼ 1/σt exp−(x−mt)

2/(2σ2
t ) and

Xc ∼ 1/σc exp−(x−mc)
2/(2σ2

c ). The next step is to choose
an appropriate distance function ρ in (1). In practice, this
choice would be governed by the goals of the study. Herein,
for illustrative purposes we choose ρ to be the probability
that a patient will do better when the treatment intervention
is administered:

ρ(pt(x; Θt),pc(y; Θc)) =

∫ ∞
0

∫ x

0

pt(x; Θt) pc(y; Θc) dy dx

where Θc = (mc, σc) and Θt = (mt, σt) are the mean and
standard deviation parameters specifying the corresponding
normal distributions.

ρ∗ ∝
∫ ∞

0

∫ ∞
−∞

∫ ∞
0

∫ ∞
−∞

∫ ∞
0

∫ x

0

pt(x|mt, σt) p(mt, σt) dx dmt dσt ×
pc(y|mc, σc) p(mc, σc) dy dmc dσc

=

∫ ∞
0

∫ x

0

It(x) Ic(y) dy dx (3)

where – assuming uninformed priors on mc, mt, σc, and σt
– each of the integrals It(x) and Ic(y) has the form:

I =

∫ ∞
0

∫ ∞
−∞

1

σ
exp

{
− (x−m)2

2σ2

}
× 1

σn
exp

{
−
∑n
i=1(xi −m)2

2σ2

}
dm dσ, (4)

and {xi} and n stand for either {x(c)
i } and nc or {x(t)

i }
and nt, and {x(c)

i } and {x(t)
i } (i = 1 . . . nt) are exponen-

tially transformed measured trial variables. This integral can
be evaluated by combining the two exponential terms and

completing the square of the numerator of the exponent as
in (Arandjelović 2012a) which leads to the following sim-
plification of (3):

I ∝
∫ ∞

0

1

σn+1
exp

{
− c

2σ2

}
dσ, (5)

where the value of the only non-constant term is c =
x2 +

∑n
i=1 xi

2 − (x +
∑n
i=1 xi)

2/(n + 1). The form of the
integrand in (5) matches that of the inverse gamma distribu-
tion Gamma(z;α, β) = βα

Γ(α)
z−α−1 exp{−β/z}. The variable

z and the two parameters of the distribution, α and β, can be
matched with the terms in (5) and the density integrated out,
leaving:

I ∝ c−
n−1
2 . (6)

Remembering that the functional form of c is different for
the control and the trial groups (since it is dependent on xi
which stands for either x(c)

i or x(t)
i ), and substituting the re-

sult from (6) back into (3) gives the following expression for
the distance function:

ρ
∗
=

∫ ∞
0

∫ x

0

pt(x) pc(y) dy dx ∝
∫ ∞
0

c
−nt−1

2
t

∫ x

0

c
−nc−1

2
c dy dx

Our goal now is to evaluate Sc(ρ∗) and St(ρ∗), the sensitiv-
ities of the distance function to the change in the size of the
control and the treatment groups. Without loss of generality,
let us consider St(ρ∗):

St(ρ
∗) ∝

∫ ∞
−∞

∫ x

−∞
S[It(x)] Ic(y) dy dx (7)

To evaluate S[It(x)] we will employ the standard chain rule
and perform differentiation with respect to nt when the cor-
responding term is a function of the number of treatment
participants but not any x(t)

i . On the other hand, as described
previously, to handle those terms which do depend on x

(t)
i

(through ct), we will use the expected value of the change
in the term, averaged over all possible x

(t)
i that a unitary

decrease in nt can be achieved. Applying this idea on the
expression in (4):

S[It(x)] = −
∫ ∞

0

∫ ∞
−∞

1

σ
exp

{
− (x−m)2

2σ2

}
×[

lnσ

σn
exp

{
−
∑n
i=1(xi −m)2

2σ2

}
+

1

σn
exp

{
−
∑n
i=1(xi −m)2

2σ2

} ∑n
i=1(xi −m)2

2σ2n2

]
dm dσ

(8)

noting that we used the standard result d
dn

1
σn

= − lnσ
σn

with-
out including its derivation with intermediary steps shown
explicitly. Full double integration in (8) is difficult to per-
form analytically. However, one level of integration – with
respect to m – is readily achieved. Note that the first term,
as a function of m, has the same form as the integral in
(4) which we already evaluated. The same procedure which
uses the completion of the square in the exponential term
can be applied here as well (note that unlike in (4) here it
is important to keep track of the multiplicative constants as
these will be different for the second term in (8)). The in-
tegrand in the second term can be expressed in the form

1696



∝ (z − λ)2 exp−z2 dz. This integration is also readily per-
formed using the standard results

∫∞
−∞

1√
2π
z2 exp− z

2

2
dz =

1 and
∫∞
−∞

1√
2π

exp− z
2

2
dz = 1 and by noting that the in-

tegrand is an odd function:
∫∞
−∞

1√
2π

z exp− z
2

2
dz = 0.

A straightforward application to (8) leads to the following
expression for the sensitivity S[It(x)] of the integral It to
changes in the size of the corresponding sub-group:

S[It(x)] = −
∫ ∞

0

lnσ

σn+1

σ

a

√
2π exp

{
− c

2σ2

}
dσ (9)

−
∫ ∞

0

exp
{
− c

2σ2

}
2σn+3n2

[
n
(σ
a

)3

+
√

2π
σ

a

n∑
i=1

xi

]
dσ

This result, together with the expression in (6), can be sub-
stituted into (7) and the remaining integration performed nu-
merically.

From target sub-groups to specific participants
Adopting the framework proposed in (Arandjelović 2012a)
whereby the analysis of a trial takes into account sub-groups
of trial participants, which emerge from grouping partici-
pants according to their assigned intervention and auxiliary
data, thus far we focused on the problem of choosing the
sub-group from which participants should be preferentially
removed if a reduction in trial size is sought. The other ques-
tion which needs to be considered is how specific sub-group
members are to be chosen, once the target sub-group is iden-
tified. Fortunately, the proposed framework makes this a
simple task. Recall that the observed trial data within each
sub-group is assumed to comprise an identically and inde-
pendently distributed sample from the underlying distribu-
tion, i.e. x(c)

i ∼ Xc and x(t)
i ∼ Xt. This means that it is suf-

ficient to randomly sample the set of target sub-group mem-
bers to select those which can be removed.

The simplicity of the selection process that our approach
allows has an additional welcome consequence. Recall that
in the proposed method the choice of the target sub-group is
made by comparing differentials in (2). It is important to ob-
serve that their values are computed for the initial values of
nc and nt. Thus, as the number of participants in either of the
sub-group is changed, so do the values of the differentials,
and thus possibly the optimal sub-group choice. This is why
the removal of participants should proceed sequentially.

Evaluation
The primary novelty introduced in this paper is of a method-
ological nature. In the previous section we explained in de-
tail the mathematical process involved in applying the pro-
posed methodology in practice. Pertinent results were de-
rived for a specific distance function used to quantify the
difference in the outcomes between the control and treat-
ment groups in a trial. The choice of the distance function –
which would in practice be made by the clinicians to suit the
aims of a specific trial – governs the relative loss of infor-
mation when participants are removed from a specific sub-
group, and consequently dictates the choice of the optimal
sub-group from which the removal should be performed if
the overall trial sample size needs to be reduced.

In this section we apply the derived results on experimen-
tal data, and evaluate and discuss the performance of the pro-
posed methodology. We adopt the evaluation protocol stan-
dard in the domain of adaptive trials research, and obtain
data using a simulated experiment.

Experimental setup
We simulated a trial involving 180 individuals, half of which
were assigned to the control and the other half to the treat-
ment group. For each individual we maintain a variable
which describes that person’s belief regarding his/her group
assignment. Thus, for the control group we have nc beliefs
b
(c)
i (i = 1 . . . nc) and similarly for the treatment group nt be-

liefs b(t)i (i = 1 . . . nt). Belief is expressed by a real number,
∀i. b(c)i , b

(t)
i ∈ (−∞,+∞), with 0 indicating true undecided-

ness. Negative beliefs express a preference towards the be-
lief in control group assignment, and positive towards the be-
lief in treatment group assignment. The greater the absolute
value of a belief variable is, the greater is the person’s con-
viction. We employ a three-tier questionnaire. To simulate a
participant’s response, we map the corresponding belief to
one of the three possible questionnaire responses according
to the following thresholding rule:

b < −1→ Belief in control group assignment (10)
−1 ≤ b ≤ 1→ Uncertain (“don’t know”) (11)

1 < b→ Belief in treatment group assignment (12)

The starting beliefs of participants, i.e. their beliefs before
the onset of the trial, are initialized to:

b
(c)
i = b

(t)
i =


−1 for i = 1 . . . 9

0 for i = 10 . . . 81

1 for i = 82 . . . 90

(13)

This initialization models the conservative belief of most in-
dividuals, and the tendency of a smaller number of individu-
als to exhibit “pessimistic” or “optimistic” expectations. The
same distribution was used both for the control and the treat-
ment groups, reflecting a well performed randomization.

Effect accumulation As the trial progresses the effects
of the treatment accumulate. These are modelled as posi-
tive i.e. the treatment is modelled as successful in the sense
that on average it produces a superior outcome in compar-
ison with the control intervention. We model this using a
stochastic process which captures the variability in partici-
pants’ responses to the same treatment. Specifically, at the
discrete time step k + 1 (the onset of the trial corresponding
to k = 0), the effects on the i-th treatment and control group
participants at the preceding time step k are updated as:

e
(t)
i (k + 1) = e

(t)
i (k) + w

(t)
i (k + 1)× exp

{
−k + 1

10

}
(14)

e
(c)
i (k + 1) = e

(c)
i (k) + w

(c)
i (k + 1)× exp

{
−k + 1

10

}
(15)

where w(t)
i (k + 1) and w(c)

i (k + 1) are drawn from Wt ∼
N (0.02, 0.05) and Wc ∼ N (0.00, 0.05) respectively. At the
onset there is no effect of the treatment; thus:

∀.i = 1 . . . nt. e
(t)
i (0) = 0 and ∀.i = 1 . . . nc. e

(c)
i (0) = 0
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Figure 2: (a) Posteriors of the differential effect of treatment after
the removal of 120 participants; (b) the maximum a posteriori es-
timates of the differential effect of treatment during the course of
the trial; the changes in the sample sizes within each of the six par-
ticipant sub-groups observed in our experiment using (c) random
selection based participant removal, and (d) the proposed method.

Belief refinement As the effects of the respective inter-
ventions are exhibited, the trial participants have increasing
amounts of evidence available guiding them towards form-
ing the correct belief regarding their group assignment. In
our experiment this process is also modelled using a stochas-
tic process which is dependent on the magnitude of the effect
that an intervention has in a particular participant, as well as
uncertainty and differences in people’s inference from ob-
servations. At the time step k+1, the beliefs of the i-th treat-
ment and control group participants at the preceding time
step k are updated as follows:

b
(t)
i (k + 1) = b

(t)
i (k) + 0.01 e

(t)
i (k + 1) + ω

(t)
i (k + 1) (16)

b
(c)
i (k + 1) = b

(c)
i (k) + 0.01 e

(c)
i (k + 1) + ω

(c)
i (k + 1) (17)

where ω
(t)
i (k + 1) and ω

(c)
i (k + 1) are drawn from Ωt ∼

N (0.00, 0.005) and Ωc ∼ N (0.00, 0.005) respectively.

Results and discussion
Using the same data obtained by simulating the experiment
outlined in the previous section, we compared the proposed
method with the current practice of randomly selecting par-
ticipants which are to be removed from the trial. In both
cases, data was analyzed using the Bayesian method pro-
posed in (Arandjelović 2012a). A typical result is illustrated
in Fig. 2(a); the plot shows the posterior distributions of the
differential effect of the treatment inferred after the removal
of 120 individuals, obtained using the proposed method (red
line) and random selection (blue line). The most notable dif-
ference between the two posteriors is in the associated un-
certainties – the proposed method results in a much more
peaked posterior i.e. a much more definite estimate. In com-
parison, the posterior obtained using random selection is
much broader, admitting a lower degree of certainty asso-
ciated with the corresponding estimate.

The accuracy of two methods is better assessed by observ-
ing their behaviour over time. The plot in Fig. 2(b) shows

the maximum a posteriori estimates of the differential ef-
fect of treatment obtained using the two methods during the
course of the trial. Also shown is the ‘ground truth’, that
is, the actual differential effect which we can compute ex-
actly from the setup of the experiment. In the early stages
of the trial, while the magnitude of the accumulated effect
is small and the number of participants large, the two es-
timates are virtually indistinguishable, and they follow the
ground truth plot closely. As expected, as the number of par-
ticipants removed increases both estimates start to exhibit
greater stochastic perturbations. However, both the accuracy
(that is, the closeness to the ground truth) and the reliability
(that is, the magnitude of stochastic variability) of the pro-
posed method can be seen to show superior performance –
its maximum a posteriori estimate follows the ground truth
more closely and fluctuates less than the estimate obtained
when random selection is employed instead. It is also impor-
tant to observe the rapid degradation of performance of the
random selection method as the number of remaining par-
ticipants becomes small, which is not seen in the proposed
method. This too can be expected from the theoretical argu-
ment put forward earlier – the statistically optimal choice of
the sub-group from which participants are removed ensures
that the posterior is not highly dependent on a small num-
ber of samples which would make it highly sensitive to the
change in sample size.

Lastly, it is interesting to observe the differences between
the changes in the sample sizes within each sub-group us-
ing the two approaches. This is illustrated using the plots
in Fig. 2(c) and 2(d). As expected, when random partici-
pant removal is employed, the sizes of all sub-groups de-
crease roughly linearly (save for stochastic variability), as
shown in Fig. 2(c). In contrast, the sub-group size changes
effected by the proposed method show more complex struc-
ture, governed by the specific values of the belief and effect
variables in our experiment. It is particularly interesting to
note that the size changes are not only non-linear, but also
non-monotonic. For example, the size of the control sub-
group which includes individuals which correctly identified
their group assignment (i.e. the sub-group GC−) begins to
increase notably after the removal of 30 participants and
starts to decrease only after the removal of further 78 par-
ticipants.

Summary and conclusions
We introduced a novel method for clinical trial adaptation
by amending sample size. In contrast to all previous work in
this area, the problem we considered was not when sample
size should be adjusted but rather which particular samples
should be removed. Our approach is based on the adopted
stratification recently proposed for the analysis of trial out-
comes in the presence of imperfect blinding. This strati-
fication is based on the trial participants’ responses to a
generic auxiliary questionnaire that allows each participant
to express belief concerning his/her intervention assignment
(treatment or control). Experiments on a simulated trial were
used to illustrate the effectiveness of our method and its su-
periority over the currently practiced random selection.
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Haahr, M. T., and Hróbjartsson, A. 2006. Who is blinded in
randomized clinical trials? A study of 200 trials and a survey
of authors. Clin Trials 3(4):360–365.
Hellinger, E. 1909. Neue begründung der theorie quadratis-
cher formen von unendlichvielen veränderlichen. Journal
für die reine und angewandte Mathematik 136:210–271.
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