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Abstract

Accurate road speed predictions can help drivers in
smart route planning. Although the issue has been stud-
ied previously, most existing work focus on arterial
roads only, where sensors are configured closely for
collecting complete real-time data. For collector roads
where sensors sparsely cover, however, speed predic-
tions are often ignored. With GPS-equipped floating
car signals being available nowadays, we aim at fore-
casting collector road speeds by utilizing these sig-
nals. The main challenge compared with arterial roads
comes from the missing data. In a time slot of the real
case, over 90% of collector roads cannot be covered by
enough floating cars. Thus most traditional approaches
for arterial roads, relying on complete historical data,
cannot be employed directly. Aiming at solving this
problem, we propose a multi-view road speed predic-
tion framework. In the first view, temporal patterns are
modeled by a layered hidden Markov model; and in the
second view, spatial patterns are modeled by a collective
matrix factorization model. The two models are learned
and inferred simultaneously in a co-regularized manner.
Experiments conducted in the Beijing road network,
based on 10K taxi signals in 2 years, have demonstrated
that the approach outperforms traditional approaches by
10% in MAE and RMSE.

Introduction
With fast-paced lifestyles, people living in major cities are
increasingly concerned about the road congestion problem.
Spending hours daily on the road constantly compromises
one’s working efficiency and mood. As a result, forecasting
road speeds has become a crucial urban service nowadays.
It help drivers to avoid roads expected to be congested soon.

The problem of the road speed prediction has been ex-
tensively studied previously. But most previous work are
limited in dealing with freeways and arterial roads, where
sensors (such as loops, cameras) are configured closely to
collect complete real-time road speeds. Due to the nontriv-
ial cost, collector roads are often sparsely covered by these
sensors, where most existing approaches will fail to work.
Collector roads refer to secondary main roads that connect
∗The corresponding author.
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Figure 1: The task of forecasting collector road speeds

arterial roads in cities, as illustrated in Fig. 1(a). In route
planning, forecasting collector road speeds usually has the
same importance with arterial roads, as they always com-
pose the alternate routes. Unfortunately, this task has not
been thoroughly explored yet, and most predictions for col-
lector roads are simply approximated by historical average
values.

While configuring sensors for each collector road is very
difficult, other ubiquitous data sources indicating collector
road speeds are already available. A typical example is the
signals from GPS-equipped floating cars, such as taxies and
cargo vans. These vehicles travel both arterial and collec-
tor roads in cities, and their real-time speeds can sense the
corresponding road speeds. Therefore, this brings alternative
opportunities for collector road speeds prediction.

The high percentage of missing data is the main chal-
lenge, which differentiates the task in this paper from pre-
vious tasks. The challenge of data sparsity is also common
in general urban computing tasks (Zheng et al. 2014). Tradi-
tional tasks are based on complete historical data, recorded
by sensors. But in our case, the historical data is incomplete
and sparse. Figure 1(b) shows a snapshot of Beijing collec-
tor roads covered in ten minutes by 10K taxis. Only 10%
have reliable observed road speeds, while a large percent of
the data is missing. Hence, most previous methods, relying
on complete data, cannot be directly applied.

In this work, aiming at forecasting collector road speeds
effectively and efficiently, we propose a multi-view learning
framework based on the following assumptions:

1. Temporal Patterns. The future speed of the active collec-
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tor road depends on the current speeds of its neighbor
roads, as well as the current overall speed of its region.

2. Spatial Patterns. The collector roads, which share com-
mon spatial contexts, such as the road level, the sur-
rounded points of interest (e.g., schools, hospitals), and
the corresponding region, are likely to have similar
speeds.

3. Patterns Agreement. For the missing data, predictions
based on accurate temporal patterns and accurate spatial
patterns, will agree with each other.
The first assumption leads to a two-layer hidden Markov

model (LHMM). In the first layer, we divide a city into re-
gions, and utilize the Markov property to model the temporal
patterns of region speeds. In the second layer, we model tem-
poral patterns of collector road speeds. The second assump-
tion leads to a collective matrix factorization model (CMF)
for spatial pattern analysis. The third assumption leads to a
multi-view learning framework of the LHMM and the CMF,
where disagreements from the two views are penalized. Our
work has three primary contributions.
• Collector road speed prediction. This previously ignored

task has been thoroughly studied in this paper, serving as
complementary information with traditional arterial road
speed predictions for the route planning service.

• Dealing with data sparsity. The multi-view framework
bridges the low-rank property of matrix factorization, be-
ing demonstrated effective in dealing with the missing
data case, with the hidden Markov model. The joint model
naturally combines spacial patterns and temporal patterns
in alleviating the data sparsity problem.

• Real evaluation. By conducting experiments in Beijing
road network, with trajectories of around 10K taxies in
2 years, we demonstrate that the proposed approach out-
performs traditional methods by 10% in MAE and RMSE.

Related Work
Traffic Forecasting with Dense and Complete Data
Approaches for predicting traffic conditions with dense
and complete data have been investigated in detail re-
cently. Typical methods include random walk (Wang
et al. 2006), autoregressive integrated moving average
model (ARIMA) (Hamilton 1994; Haworth and Cheng
2012; Min and Wynter 2011; Smith, Williams, and Keith Os-
wald 2002; Williams and Hoel 2003), neural networks (Lint
et al. 2005; Park and Rilett 1998; Van Lint, Hoogendoorn,
and van Zuylen 2005), support vector regression (Castro-
Neto et al. 2009), hidden Markov model (Qi and Ishak
2014; Thiagarajan et al. 2009) and conditional random
fields (Djuric et al. 2011). Hidden Markov model is one of
the most competitive approaches among them (Qi and Ishak
2014).

Differences. The above approaches are based on dense
and complete data. Hence they only perform well for free-
ways and arterial roads, where sensors can cover. But in our
case, we target at forecasting collector road speeds, where a
large percent of historical records are missing. Most previ-
ous approaches cannot be employed directly.

Traffic Forecasting with Sparse Data
The traffic missing data imputation issue targets at com-
pleting the historical data, where failures occur in sen-
sors. Approaches include neighbor-based heuristic rules (Ni
et al. 2005; Smith, Scherer, and Conklin 2003), neu-
ral networks (Zhong, Lingras, and Sharma 2004), support
vector machines (Zhang and Liu 2009), hidden Markov
model (Herring et al. 2010), factorization-based meth-
ods (Qu et al. 2009; Tan et al. 2013), and etc (Bejan and
Gibbens 2011; Yuan et al. 2011; Zhu et al. 2013). Recently,
Zheng at el. (Shang et al. 2014; Zheng et al. 2010) utilized
factorization techniques to complete the missing data for
taxi related applications, and demonstrated its effectiveness
for alleviating data sparsity.

Differences. The above approaches mainly focus on com-
pleting historical data, where observations exist in all time
slots. But our work focuses on future data prediction, where
no observations are acquired. Although one can utilize these
data imputation approaches to recover the historical miss-
ing data first, and then utilize traditional methods to predict
the future data, the error propagation will impair the per-
formance significantly. Hence, at this point, our work can
be seen as solving the missing historical data imputation
and the future data prediction simultaneously to avoid error
propagations.

Multi-view Learning
Multi-view learning has been widely used when large per-
cent of the data is unlabeled/unobserved (Sridharan and
Kakade 2008; Sun 2013; Yu et al. 2011; Zheng, Liu, and
Hsieh 2013). It is usually composed of two independent fea-
tures/models as views. The underlying assumption is, ei-
ther view can make accurate predictions based on sufficient
data. Thus hypothesis from either view, whose predictions
tend to disagree with predictions based on the other view, is
eliminated. The two views are co-regularized to avoid over-
fitting. In this paper, we build a multi-view framework be-
tween hidden Markov model and matrix factorization. The
former models the temporal patterns, and the latter models
the spatial patterns.

Prediction Framework
Problem Definition
The major task of this paper is to predict collector road
speeds in cities. The dataset to be utilized contains the map
data and the floating car data. The map data consists of
road ids, road connection relations, and road contexts. Fol-
lowing the presentation in Shang et al. and Wang et al.’s
work (Shang et al. 2014; Wang, Zheng, and Xue 2014),
road contexts are pre-processed into the road-context ma-
trix as shown in Fig 2(a), with three sub-categories: (1)
road properties fr, (2) points of interest (POIs) fp, and (3)
global positions fg . fr contains road lengths, road levels,
numbers of connections, and directions, with all values nor-
malized into (0, 1). Ten types of POIs are selected to de-
scribe a road’s surroundings, including hospitals, schools,
and etc. fp denotes the distribution of the numbers of each
POI type near a road. The city map is divided into 16 grids,
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Figure 2: Problem definition & graphical models of LHMM and CMF

as shown in Fig. 2(a). fg describes the grid of a road, indi-
cating its global position in the city. It is denoted by the ac-
tive grid’s neighbors. Take roads in g6 for example, it is de-
noted as (1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0)1. In such a
notation, adjacent grids will share similar vectors. The float-
ing car data has been pre-processed into the road-time ma-
trix as shown in Fig. 2(a). The entry denotes the speed of
a road (precisely defined in the next section) in a time slot
of 10 minutes. ti is the current time slot. Suppose there are
totally n collector roads, m time slots (including the future
time slot ti+1), and l kinds of road features.

The problem under investigation is essentially how to ef-
fectively and efficiently predict the missing values of the fu-
ture time slot ti+1 in the road-time matrix, by utilizing a
sample of recent speed records and the map data? Please
note, if speeds in ti+1 are predicted, the ones in ti+k can be
iteratively predicted based on predictions in [t0, ti+k−1].

Temporal Analysis
A two-layer hidden Markov model, as shown in Fig. 2 (b), is
proposed for temporal analysis. The inside layer is defined
on collector roads, and it models their speeds in a time slot.
The outside layer is defined on the grid (see Fig. 2 (a)), and
it models the overall speed of a region in a period. A period
is defined as a time window of 6 continuous time slots. The
elements of the model is defined as follows.

Definition 1 (Road (Grid) Speed Vab (Uxy)) Vab (or Uxy)
is the average speed on a certain road ra (or grid gx) in a
time slot tb (or period dy). When the number of floating car
signals, which contain their instant speeds, is large than a
threshold (10 in this paper), it is calculated as the average
value; or otherwise, the road (or grid) speed data is missing.

Definition 2 (Road (Grid) State Sab (Qxy)) In time slot tb
(or period dy), road ra (or grid gx) has its hidden state
Sab ∈ {0, 1} (or Qxy ∈ {0, 1}). State 0 means the road (or
grid) is crowed, and state 1 means the road (or grid) is free.

Definition 3 (Road (Grid) Speed Distribution DS (DQ))
When Sab (orQxy) is known, Vab (orUxy) follows an unique
Gaussian N (vab, σ

2
ab|Sab) (or N (uxy, σ

2
xy|Qxy)).

Definition 4 (Road (Grid) State Trans. Probs. PS (PQ))
We utilize 1-order Markov property assumption in mod-
eling state transitions. The future state of the active

1The 1s refer to its neighbors, and the 0s refer to others.

grid depends only on its neighbors’ current states, de-
noted2 by P (Qx,dj+1

|history) = P (Qx,dj+1
|n(Qx,dj )).

The future state of the active road depends on both
its neighbors’ current states and its corresponding
grid’s current state, denoted3 by P (Sa,ti+1

|history) =
P (Sa,ti+1

|Qg(a),d(ti), n(Sa,ti)). To simplify the model
complexity, the neighbors of a road (or grid) contain itself,
and up to only two closest neighbors4.

Definition 5 (Initial Road (Grid) State Dist., πS (πQ))
πS (πQ) refers to initial distributions of road (grid) states.

Under the above definitions, the parameters of the LHMM
are ϑhmm = {πS , πQ, DS , DQ, PS , PQ}, and its variables
are {S,Q}. ϑhmm is learned through a training process,
which will be discussed later. The inference process is to
find {S,Q} that can maximize the following likelihood.

P (V,U, S,Q;ϑhmm) =∏16
x=1 P (Qx,d1)P (Ux,d1 |Qx,d1)I

U
x,d1

·
∏d
j=2

∏16
x=1 P (Qx,dj |n(Qx,dj−1

))P (Ux,dj |Qx,dj )
IUx,dj

·
∏n
a=1 P (Sa,t1)P (Va,t1 |Sa,t1)I

V
a,t1

·
∏m
i=2

∏n
a=1 P (Sa,ti |n(Sa,ti−1), Qg(a),d(ti))P (Va,ti |Sa,ti)

IVa,ti

When {S,Q} are found, the imputation of missing data
and the prediction of future road speeds are calculated as the
expectation speeds over the two states, as

f lhmmab = E(Vab|Sab = 0)P (Sab = 0|Qg(a),d(b−1), S − Sa,b)
+E(Vab|Sab = 1)P (Sab = 1|Qg(a),d(b−1), S − Sa,b).

Spatial Analysis
A collective probabilistic factorization model, as shown in
Fig. 2 (c), is proposed for spatial analysis. Let V be an n×m
data matrix, whose element Vab is the speed of road ra in
time slot tb. Let W be an n × l data matrix, whose element
Wac is the cth context of road ra. The matrix V is factor-
ized into two latent feature matrices R and T , where R is
an n × k matrix, T is an m × k matrix, and k is the di-
mensionality of latent feature vectors in factorization. Vab

2n(Qx,dj ) = {Qz,dj : z ∈ n(x)}, n(x) is gx’s neighbors.
3g(a) refers to the corresponding grid of ra, and d(ti) refers to

the corresponding period of ti.n(Sa,ti) = {Se,ti : e ∈ n(a)}.
4We utilize the number of consecutive occurrences in the float-

ing car trajectories to justify how close two roads (or grids) are.
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is modeled as a Gaussian distribution with the mean RTa Tb.
Similarly, the matrix W is factorized into two matrices R
and F , where R is the above n× k matrix, and F is an l× k
matrix. In the factorization, the road latent feature matrix R
is shared by both V and W . Finally, the elements of R, T
and F are given the zero-mean Gaussian distributions as the
empirical priors. Collectively modeling V and W has two
advantages. First, contexts have been incorporated in impu-
tations and predictions. In factorizing W , roads with similar
contexts will generate similar latent vectors, propagated into
the factorization of V . Second, since W is a dense matrix,
and V is the target sparse matrix, collective factorization al-
leviates the data sparsity problem of factorizing the matrix
V alone.

Under the above definitions, the parameters of the CMF
are ϑcmf = {σ2

R, σ
2
T , σ

2
F , σ

2
V , σ

2
W }, and its variables are

{R, T, F}. ϑcmf is set empirically. The inference process
is to find {R, T, F} that can maximize the likelihood, as

P (V,W,R, T, F ;ϑcmf ) ∝
∏n
a=1

∏m
b=1

[
N (Vab;R

T
a Tb, σ

2
V )
]IVab

·
∏n
a=1

∏l
c=1N (Wac;R

T
a Fc, σ

2
W ) ·

∏n
a=1N (Ra; 0, σ2

R)

·
∏m
b=1N (Tb; 0, σ2

T ) ·
∏l
c=1N (Fc; 0, σ2

F )

When {R, T, F} are found, the imputation of missing
data and the prediction for future speeds are calculated5 as
f cmfab = RTa Tb.

Multi-view Learning Framework
Multi-view learning is a typical semi-supervised learning
paradigm. In our application, the labeled data is the road
speeds sensed by floating cars, and the unlabeled data is the
missing values. We provide two views above for collector
road speed predictions, the temporal view and the spatial
view. The assumption of multi-view learning in our task is,
the missing value predictions from either view should agree
with the other. In other words, if the models from the two
views are trained simultaneously, it will be penalized when
the predictions from the two views for the same missing
value are dissimilar.

The joint likelihood to be maximized in our multi-view
learning framework is defined as follows. The first two terms
are the likelihoods of the proposed LHMM and CMF, re-
spectively. The third term is proposed to model the prob-
abilities of disagreements between the two models on the
missing data6. It is defined by a zero-mean Gaussian, which
penalizes the disagreements between two views.

maxS,Q,R,T,F P (V,U, S,Q;ϑlhmm) · P (V,W,R, T, F ;ϑcmf )

·
∏n
a=1

∏m
b=1

[
N (f lhmmab − f cmfab ; 0, σ2)

]ĪVab
(1)

Joint Inference Process The inference of the multi-view
learning framework is to find {S,Q,R, T, F} that can maxi-
mize the above joint objective function. An iterative process

5Although when b = ti+1, there is no observations, through the
multi-view learning framework, this problem will be fixed.

6ĪVab = 1 when Vab is missing; or otherwise, ĪVab = 0.

is conducted. In each iteration, we fix the variables of one
model, and search the variables of the other.

When the variables of the LHMM {S,Q} are fixed, the
joint objective function can be converted to minimize

L(R, T, F ) = 1
2σ2

∑n
a=1

∑m
b=1 Ī

V
ab(f

lhmm
ab −RTa Tb)2

+ 1
2σ2
V

∑n
a=1

∑m
b=1 I

V
ab(Vab −RTa Tb)2 + 1

2σ2
R

‖R‖2F
+ 1

2σ2
W

∑n
a=1

∑l
c=1(Wac −RTa Fc)2 + 1

2σ2
F

‖F‖2F + 1
2σ2
T

‖T‖2F .

A local minimum of the objective function can be found
by performing gradient descent in {R, T, F}.

∇RaL = 1
σ2

∑m
b=1 Ī

V
ab(f

lhmm
ab −RTa Tb)Tb + 1

σ2
R

Ra

+ 1
σ2
V

∑m
b=1 I

V
ab(Vab −RTa Tb)Tb + 1

σ2
W

∑l
c=1(Wac −RTa Fc)Fc

∇TbL = 1
σ2

∑n
a=1 Ī

V
ab(f

lhmm
ab −RTa Tb)Ra + 1

σ2
T

Tb

+ 1
σ2
V

∑n
a=1 I

V
ab(Vab −RTa Tb)Ra

∇FcL = 1
σ2
W

∑n
a=1(Wac −RTa Fc)Ra + 1

σ2
F

Fc (2)

When the variables of the CMF {R, T, F} are fixed, the
objective function can be converted to maximize

L(S,Q) = P (V,U, S,Q;ϑhmm)·∏n

a=1

∏m

b=1

[
N (f lhmmab − fcmfab ; 0, σ2)

]ĪV
ab .

We first searchQ, and then search S. Since grids are much
easier to be covered by floating cars than collector roads, we
have IUxy = 1 always. Thus searching Q is independent with
the CMF variables. The Gibss sampling approach with sim-
ulated annealing is employed in searching the appropriate
Q. In each iteration, for each state, we sample Qx,dj as

P (Qx,dj = ρ|Q−Qx,dj , U) ∝
P (Qx,dj = ρ|n(Qx,dj−1

);PQ)P (Ux,dj |Qx,dj = ρ;DQ)·∏
z,x∈n(z) P (Qz,dj+1

|Qx,dj = ρ,Qn(z),dj −Qx,dj ;PQ). (3)

The searching of S depends on both LHMM variables and
CMF variables. Similarly, the Gibss sampling approach with
simulated annealing is employed in searching the appropri-
ate S. In each iteration, for each state, we sample Sa,ti as

P (Sa,ti = τ |S − Sa,ti , V,Q) ∝ P (Va,ti |Sa,ti = τ ;DS)I
V
a,ti

·
∏
c,a∈n(c)N (f cmfc,ti − (f lhmmc,ti |Sa,ti = τ, S − Sa,ti); 0, σ2)Ī

V
a,ti

·
∏
c,a∈n(c) P (Sc,ti+1 |Sa,ti = τ, Sn(c),ti − Sa,ti , Qg(a),d(ti))

·P (Sa,ti = τ |n(Sa,ti−1
), Qg(a),d(ti)). (4)

Parameter Estimation The parameters of the CMF
model, {σ2

R, σ
2
T , σ

2
F , σ

2
V , σ

2
W }, are configured empirically.

In this work, we set 1/σ2
R = 1/σ2

T = 1/σ2
F = 0.1,

1/σ2
V = 1.0, and 1/σ2

W = 0.5. Directly estimating the pa-
rameters of the LHMM model, {DS , DQ, πS , πQ, PS , PQ},
is intractable. In this paper, we approximately set the param-
eters of {DS , DQ, πS , πQ} by heuristic rules, and estimate
PS , PQ through the maximum likelihood estimation (MLE).
In setting DS , for each road ra in the time slot tb, four
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Table 1: Statistics of the Beijing collector road network

Level 1 Level 2 Level 3 Level 4
Num. of roads 503 978 1073 261
Total length 588 829 828 203
% covered/time slot 8.26% 6.89% 3.25% 2.01%

parameters need to be configured, N (vSab=0
ab , (σSab=0

ab )2)

and N (vSab=1
ab , (σSab=1

ab )2). We rank all the historical road
speeds of ra in tb in ascending order. The average of the first
half is utilized to set vSab=0

ab , and the variance is utilized to
set (σSab=0

ab )2; and the average of the second half is utilized
to set vSab=1

ab , and the variance is utilized to set (σSab=1
ab )2.

We utilize similar heuristics to setDQ. The values of πS , πQ
are simply set uniformly. The estimation for {PS , PQ} is to
find the best {PS , PQ} to maximize the joint likelihood de-
fined in Eq. 1 in the training data. An iterative process is
conducted. A detailed algorithm is shown in Algorithm 1.

Algorithm 1 Parameter Estimation for LHMM
Input: The historical floating car data and the map data
Outputs: PS , PQ

1: Initialize S,Q,R, T, F, PS , PQ
2: for each iteration do
3: Update R, T, F by Eq. 2
4: Update S,Q by Eq. 3 and Eq. 4
5: Update PS , PQ by
P (Qx,y+1 = ρ|n(Qxy)) =

#(Qx,y+1=ρ|n(Qxy))

#(n(Qxy))

P (Sa,b+1 = τ |n(Sab), Qg(a),d(b)) =
#(Sa,b+1=τ|n(Sab),Qg(a),d(b))

#(n(Sab),Qg(a),d(b))

6: end for

Complexity Analysis In the inference step, the complex-
ity for the gradient descent method in each iteration is
O(|V |+K + NMK), where |V |+ is the number of non-
zero entries in V ; and the complexity for the Gibss sampling
method in each iteration is O(NM). In the training step,
the complexity of the iterative method in each iteration is
O((|V |+K +NMK)H +NMH), where H is the number
of training samples. Since our algorithm will converge after
5 to 10 iterations, this complexity analysis shows that the
proposed framework is very efficient and can scale up with
respect to very large data.

Experiments
Experimental Setup
Experimental verifications are conducted in the road net-
work of Beijing, China. As shown in Fig. 1, all the main
collector roads inside the 4th ring are selected, who cover
a 16km × 16km spatial range, with a total length of 2, 448
km. There totally 2,815 roads, divided into four levels (L1-
L4) according to the road width. The smaller the level is,
the wider the road is. We use GPS trajectories generated by
8,126 taxis over a period of 2 years, with 2,036,792,043 GPS
points and a length of 782,523,971km in total, sampled at a

rate of 79 second/point in average. Table 1 shows the cov-
erage of different road levels, after the GPS points are con-
verted into the road-time matrix. The statistics can demon-
strate the high percentage of missing data in our task. We
utilize the data from Sep. 2013 to Nov. 2013 for evaluation,
and the data from Nov. 2011 to Aug. 2013 for learning the
parameters. In the evaluation, we extract the data from 7am
to 23pm, and divide them into 8 groups, with each group
containing 2 periods and 12 time slots. In each group, the
first 11 time slots are utilized to infer the variables, and the
last time slot is utilized for future speed predictions and eval-
uations. In the experiments, we set σ = 20 in Eq. (1), and
the dimensionality of CMF K = 20. We utilize two met-
rics, the Mean Absolute Error (MAE), and the Root Mean
Square Error (RMSE) for evaluations. The speeds are mea-
sured by km/h. A smaller MAE or RMSE value indicates a
better performance. They are defined7 as

MAE =

∑n

i=1
|yi−ŷi|
n

, RMSE =

√∑n

i=1
(yi−ŷi)2

n
.

We compare our framework with the following baselines.

1. AVG: The average speed of a road (RAVG) and the aver-
age speed of a road in the same time slot (RTAVG).

2. KNN: We employ the logistic regression from the top 5
nearest roads (including the active road), whose current
speed is available, to predict the future speed.

3. Cascade: We first employ matrix factorization techniques
to complete the missing historical data, and then predict
the active road’s speed by the neural networks model.

4. HMM: A simplification of the LHMM with the grid layer
removed, similar to the method in (Herring et al. 2010).

5. LHMM: The proposed Layered HMM without factoriza-
tion techniques from spatial analysis incorporated.

6. LHMM+MF: The multi-view learning framework of the
LHMM and the factorization without road contexts.

The last two baselines are simplified versions of the
propose framework. Our proposed model is denoted as
LHMM+CMF. In LHMM+CMF, both LHMM and CMF
have their own predictions. The predictions from the LHMM
are finally selected in evaluation, as its performances are bet-
ter.

Overall Performances
Table 2 shows the performances of different methods. The
bottom bolded three methods are the ones proposed in this
paper, and the percentages are the improvements from the
best method. From the comparisons of the LHMM+CMF
and the first five baselines, it is observed that the pro-
posed multi-view framework outperform previous methods
by more than 10% in both MAE and RMSE. The AVG meth-
ods perform the worst. Since in the Cascade method, er-
rors in the matrix factorization are propagated to the neural

7ŷi is the prediction, and yi is the ground truth.
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Table 2: Overall Performance of different methods
Methods MAE (km/h) RMSE Time (s)
RAVG 5.695 (45.3%) 9.301 (50.0%) < 1
RTAVG 4.167 (25.2%) 6.632 (29.8%) < 1
KNN 3.605 (13.5%) 5.770 (19.3%) < 1
HMM 3.498 (10.9%) 5.383 (13.5%) 10
Cascade 3.478 (10.4%) 5.253 (11.4%) 18
LHMM 3.364 (7.27%) 5.123 (9.15%) 11
LHMM+MF 3.148 (1.02%) 4.786 (2.76%) 17
LHMM+CMF 3.116 4.654 19

network, performances are also unsatisfactory. The compar-
isons between the LHMM and the LHMM+CMF demon-
strate the effectiveness of the proposed multi-view learn-
ing framework. When the spatial view, modeled by the
CMF, is integrated into the temporal view, modeled by the
LHMM, the performance has been improved by 7.27% in
MAE and 9.15% in RMSE, which demonstrates that the pat-
terns agreement assumption is effective in improving per-
formances. The improvement from the LHMM compared
with the HMM verifies the effectiveness of the grid layer.
Since the data is very sparse, modeling the average speed
of a grid will obtain an accurate coarse-grained information,
which helps to alleviate the sparsity problem, and further
improves the prediction for fine-grained road speeds. The
improvements from the LHMM+CMF compared with the
LHMM+MF verify the effectiveness of road contexts, which
also help to alleviate the sparsity problem. The third column
in the table shows the total time of predictions for all road
speeds in a time slot. By only using one server (with 8-core,
3.6GHz CPU and 32GB RAM), all the proposed approaches
can make road predictions within 20 seconds.

The top two sub-figures in Fig. 3 demonstrate the overall
prediction performances in different road levels. From the
figures, it is observed that wider roads are more difficult to
predict than narrower roads. This satisfies the common sense
that narrow roads usually have less cars, thus the road speeds
are more stable; while wide roads are capable for more cars,
thus the variances are larger. The bottom two sub-figures in
Fig. 3 demonstrate the overall prediction performances in
different time of a day. It is observed that the speeds in the
noon time and the evening time are easier to predict than
other time slots. This also satisfies the common sense that in
these time slots, people are working inside buildings or stay-
ing at homes, when less cars occur on roads. In rush hours,
the variances become larger, making predictions harder.

Convergence and Impact of σ
Figure 4(a) shows the convergence speed of the proposed
multi-view framework. It is observed that the algorithm con-
verges in around 8 iterations. Thus the algorithm is efficient
to find the local optimized point. Figure 4(b) shows the im-
pact of the parameter σ in Eq. (1). When σ is large, the
penalties for the disagreements from the two views will be
weaker. Thus when σ is larger than 1K, the performance
is equivalent to methods based on single views. When σ is
small, the penalties for the disagreements will be stronger.

Figure 3: Performance on Different Road Levels and Time

(a) Convergence (b) Impact of σ

Figure 4: Convergence and impact of σ

When σ = 20, we obtain the best performance.

Conclusion
In this paper, we investigate a novel task, collector road
speed predictions, which has been ignored due to the limita-
tion of the available data. By proposing a multi-view frame-
work to integrate the temporal and spatial patterns, we al-
leviate the data sparsity challenge in utilizing the floating
car signals. Experiments in real data demonstrate the pro-
posed algorithm can forecast collector road speeds in Bei-
jing within 20 seconds, and obtain 10% improvements in
MAE and RMSE, compared with traditional methods.
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