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Abstract

There has been an increasing interest in exploring
signed networks with positive and negative links in that
they contain more information than unsigned networks.
As fundamental problems of signed network analysis,
community detection and sign (or attitude) prediction
are still primary challenges. To address them, we pro-
pose a generative Bayesian approach, in which 1) a
signed stochastic blockmodel is proposed to character-
ize the community structure in context of signed net-
works, by means of explicitly formulating the distri-
butions of both density and frustration of signed links
from a stochastic perspective, and 2) a model learning
algorithm is proposed by theoretically deriving a vari-
ational Bayes EM for parameter estimation and a vari-
ation based approximate evidence for model selection.
Through the comparisons with state-of-the-art methods
on synthetic and real-world networks, the proposed ap-
proach shows its superiority in both community detec-
tion and sign prediction for exploratory networks.

Introduction
In recent years, the study of signed networks becomes a bur-
geoning research area. In contrast to the extensively studied
unsigned networks only encoding whether relationships ex-
ist or not, signed networks contain more information by ex-
tending the single relationship to positive and negative rela-
tionships, wherein positive ones represent to like, trust, sup-
port or collaborate and negative ones represent to dislike,
distrust, oppose or compete, among others. For signed net-
works, community detection is of considerable importance
for understanding the basic patterns of structure and dynam-
ics. This task is trying to identify K antagonistic communi-
ties, so that most links within communities are positive while
most links between communities are negative. In this sense,
communities are consistent with the clusters defined in bal-
ance theory in social science (Cartwright and Harary 1956;
Davis 1967), where a strongly (or weakly) balanced network
can be divided into two (or K) clusters, so that all links
within clusters are positive and all links between clusters are
negative. Note that, real-world signed networks are usually
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unbalanced due to the frustration in them, i.e., negative links
within clusters and positive links between clusters.

Although many methods have been proposed to address
community detection since Girvan and Newman’s work
(Girvan and Newman 2002), however, most of them are ex-
clusively designed for unsigned networks, which focus on
link density rather than link sign to define and detect com-
munities.Therefore, the primary techniques adopted by them
cannot be directly applied to signed networks, such as mod-
ularity optimization (Newman 2004), Markov random walk
(Zhou 2003), clique percolation model (Palla et al. 2005),
spectral analysis (Mitrović and Tadić 2009), evolutionary
optimization (Pizzuti 2008), among many others.

In view of this, new methods have been proposed for
signed community detection. On one hand, some of them are
studied from the perspective of social science. For instance,
based on the social balance theory, Doreiian and Mrvar pro-
posed a frustration-optimization based method, referred to
as DM, which partitions a signed network by minimizing the
sum of negative link quantity within communities and pos-
itive link quantity between communities (Doreian and Mr-
var 1996). Thereafter, Larusso et al improved the same idea
to partition weighted signed networks (Larusso, Bogdanov,
and Singh 2010). Very similarly, Bansal et al proposed a cor-
relation clustering method to maximize the agreement (i.e.
the number of positive intra-cluster links and negative inter-
cluster links) or to minimize the disagreement (i.e. the num-
ber of negative intra-cluster links and positive inter-cluster
links) among nodes (Bansal, Blum, and Chawla 2004).

On the other hand, some of them are proposed by means
of generalizing the current techniques of partitioning un-
signed networks as mentioned above. For examples, based
on potts model Traag et al deduced an improved mod-
ularity function for signed networks and then proposed
a modularity-optimization based partition algorithm PSA
(Traag and Bruggeman 2009). Yang et al generalized the
Markov stochastic process on unsigned network to signed
network and then proposed an improved random-walk based
method FEC (Yang, Cheung, and Liu 2007). Huang et al
improved the clique percoltion model to detect overlapping
signed communities (Huang and Qiu 2010). Anchuri et al
proposed a generalized spectral method for signed network
partition (Anchuri and Magdon-Ismail 2012). Very recently,
multi-objective evolutionary methods have been applied to
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signed network decomposition, by simultaneously optimiz-
ing two objectives defined in terms of not only link density
but also link sign, e.g. internal similarity versus external sim-
ilarity (Liu, Liu, and Jiang 2014) and kernel k-means versus
ratio-cut (Gong et al. 2014).

All the aforementioned methods can be seemed as dis-
criminative, which just focused on looking for a way to
distinguish notes by clustering them into different groups,
based on either predefined optimization objectives (such
as modularity) or heuristics (such as random walk model).
However, they are not concerned with how the real-world
signed networks containing community structures are gener-
ated. Distinctly, in this work we plan to propose a generative
approach. Compared with discriminative methods, genera-
tive methods are more expected because they can be applied
to not only community detection but network modeling, gen-
eration, as well as link and attitude prediction.

Being one important statistical network model, stochastic
blockmodel (SBM) is a good generative model. As it enables
us to reasonably decompose and then properly analyze an
exploratory network without a priori knowledge about its in-
trinsic structure, SBM has attracted more and more attention
since it was originally proposed by Holland and Leinhardt
(Holland and Leinhardt 1981). Although various extensions
of SBM have been proposed to address different tasks of
network analysis, such as multiple role SBM (Airoldi et al.
2008), overlapping SBM (Latouche et al. 2011), dynami-
cal SBM (Yang et al. 2011) and hierarchical SBM (Yang,
Liu, and Liu 2012), however, to the best of our knowledge,
all the existing SBMs are designed for unsigned networks
and thereby incompetent for handling signed networks. In
view of this, we are motivated to propose a novel genera-
tive Bayesian approach. More specifically, our main contri-
butions are two-fold:

(1) We proposed a signed stochastic blockmodel to char-
acterize and generate the block structures of signed networks
by means of explicitly formulating both link density and link
sign from a stochastic perspective. (2) We proposed an ef-
fective algorithm for learning this model from exploratory
networks based on variational Bayes techniques, which can
automatically detect block numbers and assignments.

Signed Stochastic Blockmodel
Let A denote the adjacency matrix of a signed network N
containing n nodes. aij is equal to 1 or -1 if node i is con-
nected to node j by a positive or negative link. Otherwise,
aij will be zero. The signed stochastic blockmodel (SSBM
for short) of N is defined as a 4-tuple:

X = (K,Π,Θ,Ω) (1)

K is the number of blocks. Ω is a K-dimension vector,
wherein ωq denotes the prior probability that a node is as-
signed to block q. Π = (π1,π−1, π0) is a 3-dimension vector,
in which each component denotes the probability that there
is a positive link, negative link, or no link between a pair of
nodes within the same block, respective. Similarly, we de-
fine Θ = (θ1,θ−1,θ0), in which each component denotes the
probability that there is a positive link, negative link, or no
link between a pair of nodes belonging to different blocks.

Given a signed network, one can deduce a latent n × K
matrix Z, indicating the relationship between node and
block assignment. zik = 1 if node i is assigned to block
k, otherwise zik = 0. Moreover, zi follows the following
multinomial distribution with a parameter Ω:

zi ∼M(1,Ω = {ω1, ω2, ..., ωK})

Given Z, aij follows the following multinomial distribu-
tion with parameters Π and Θ:

aij ∼M(1,Π = {π1, π−1, π0}), ziqzjl = 1 and q = l

aij ∼M(1,Θ = {θ1, θ−1, θ0}), ziqzjl = 1 and q 6= l

According to SSBM, one can generate a synthetic signed
network with a block structure by following steps:

1) assign nodes to blocks according to Ω.
2) generate positive and negative links between nodes

within the same blocks according to Π.
3) generate positive and negative links between nodes be-

longing to different blocks according to Θ.
Accordingly, we have proofed that the log-likelihood of

complete data is as follows:

logp(N,Z|K)=

n∑
i=1

K∑
q=1

ziqlogωq+
∑
i<j

∑
q,l

(ziqzjl×

logM(aij ; Π) + (1− ziqzjl) logM(aij ; Θ))

(2)

We now describe the aforementioned SSBM in a full
Bayesian framework. In the framework, we need spec-
ify the priors for the model parameters (Π,Θ,Ω). Since
p(zi|Ω), p(aij |Z,Π) and p(aij |Z,Θ) satisfy multinomial
distribution, respectively, we select Dirichlet distribution as
their conjugate prior distributions, as follows:

p(Ω|ρρρ0 ={ρ0
1, ..., ρ

0
K}) = Dir(Ω;ρρρ0)

p(Π|ηηη0 ={η0
1 , η

0
−1, η

0
0}) = Dir(Π;ηηη0)

p(Θ|µµµ0 ={µ0
1, µ

0
−1, µ

0
0}) = Dir(Θ;µµµ0)

where ∀q:ρ0
q , ∀h: η0

h, ∀h:µ0
h are hyperparameters, which are

interpreted as an effective pseudo-occupations of respective
blocks in the prior, pseudo-observations of three types of
links (positive, negative, no-link) within or between blocks
in the prior, respectively. In other words, in the full Bayesian
framework, parameters Π, Θ, and Ω are regarded as random
variables, the distributions of which depend on their respec-
tive hyperparameters.

Being a generation of standard SBM (Snijders and Now-
icki 1997), SSBM is much more flexible and it is able to
depict more structural patterns of unsigned or signed net-
works, as defined in terms of either link density or link sign
or both of them, from a stochastic perspective. For exam-
ples: (1) in the case of π−1 = 0 and θ−1 = 0, SSBM is
able to characterize either the community structure (when
π1 > θ1) or the multipartite structure (when π1 < θ1) of
unsigned networks in terms of link density; (2) in the case
of π−1 = 0 while θ1 = 0, SSBM is able to characterize
a balanced signed network in terms of link sign; (3) in the
most general case of π−1 6= 0 while θ1 6= 0, SSBM is able
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to characterize the frustration of an unbalanced signed net-
work in terms of both density and sign, in which there are
a small fraction of negative links within communities and a
small fraction of positive links between communities.

Variational Bayes SSBM Learning
Now we introduce SSBM learning algorithm (SSL for
short). SSL adopts a variational Bayes EM algorithm to es-
timate parameters and an approximate Bayesian model evi-
dence for model selection. We adopt such variational tech-
niques due to two main reasons.

First of all, standard EM algorithm cannot be directly used
for SSBM in that the components of latent variable Z are
correlated and thus the posterior distribution of Z, under the
condition of data and model parameters, cannot be explicitly
derived as an input required by standard EM. More specif-
ically, component zi is correlated to others means that the
computation of its posterior distribution P (zi|N,Θ,Π,Ω)
is recursively dependent on the distribution of zj for any
j 6= i. Using variational Bayes EM, one can infer an approx-
imate posterior distribution ofZ in terms of estimated super-
parameters. Note that, in the literature, variational EM has
ever been adopted for SBM learning (Daudin, Picard, and
Robin 2008). Unlike variational EM based on point estima-
tion, variational Bayes EM infers the distribution of Z based
on the distributions of parameters instead of their point es-
timation values (or maximum likelihood estimation values).
Therefore, compared with variational EM, variational Bayes
EM is more robust and is expected to infer a better poste-
rior distribution close to the truth from real-world networks
usually containing much noise.

In addition, although the Bayesian model evidence of net-
work N (i.e. log p(N |K)) can be obtained by computing
the marginal integration of log p(N,Z|K) (see Eq. 2) over
Z, however, this computation involves a summation of Kn

terms, which will quickly becomes prohibitively intractable.
By taking the model parameters (Ω,Π,Θ) as random vari-
ables, bases on variational Bayes techniques one can read-
ily compute a lower bound of the marginal likelihood in
terms of their superparamters, as an approximation of true
evidence, for model selection.

Superparameter estimation The log-likelihood of N (or
the marginal log-likelihood of complete data) can be decom-
posed into two terms:

log p(N) = L(q(·)) + KL(q(·)||p(·|N)) (3)

where

L(q(·)) =
∑
Z

∫ ∫ ∫
q(Z,Π,Θ,Ω)

× log

{
p(N,Z,Π,Θ,Ω)

q(Z,Π,Θ,Ω)

}
dΠdΘdΩ

(4)

KL(q(·)||p(·|N)) =−
∑
Z

∫ ∫ ∫
q(Z,Π,Θ,Ω)×

log

{
p(Z,Π,Θ,Ω|N)

q(Z,Π,Θ,Ω)

}
dΠdΘdΩ

(5)

In Eqs.3 and 5, KL denotes the Kullback-Leibler diver-
gence between q(Z,Π,Θ,Ω) and p(Z,Π,Θ,Ω|N). To min-
imizing Eq.5 with respect to q(Z,Π,Θ,Ω) is equivalent to
maximizing the lower bound Eq.4. To obtain a computation-
ally tractable algorithm, we use mean field approximation,
one of the most popular forms of variational inference, in
which we assume the posterior q(Z,Π,Θ,Ω) is a fully fac-
torized approximation. Formally, we have:

q(Z,Π,Θ,Ω) = q(Π)q(Θ)q(Ω)
n∏
i=1

q(zi) (6)

where q(Π), q(Θ), q(Ω) and q(zi) denote the posteriors of
variables Π, Θ, Ω and Z, respectively, which will be inferred
by a variational Bayes EM. Specifically, in its E-step, each
distribution q(zi) is optimized; and in its M-step, q(Π), q(Θ)
and q(Ω) are optimized, respectively.

We first derive the optimal approximation at node i. Ac-
cording to variational Bayes, the optimal posterior q(zi) is:

log q(zi)=EZ\i,Π,Θ,Ω

[
log p(N,Z,Π,Θ,Ω)

]
+const

= EZ\i,Π,Θ

[
log p(N |Z,Π,Θ)

]
+ EZ\i,Ω

[
log p(Z|Ω)

]
+ const

=
K∑
q=1

ziq

(∑
j 6=i

(
τjq
∑
h

δ(aij , h)(ψ(ηh)− ψ(
∑
h

ηh))

+
∑
l 6=q

τjl
∑
h

δ(aij , h)(ψ(µh)− ψ(
∑
h

µh))
)

+ (ψ(ρq)− ψ(
∑
k

ρk))
)

+ const

(7)

where Z\i denotes Z of all nodes except node i, δ(a, h) =1 ·
I{a=h}+0 · I{a6=h}, and h ∈ {1,−1, 0}. When y ∼
Dir(y; a1, a2, ..., aK), Ey[log(y)] = ψ(aq) − ψ(

∑
aq)

where q ∈ {1, 2, ...,K} and ψ(·) is Digamma function. To
simplify calculations, the terms that do not depend on Zi
have been absorbed into the constant. After taking the expo-
nential of Eq.7 and normalization, the optimal approxima-
tion at node i is the following multinomial distribution:

q(zi) = M(zi; 1, τi1, ..., τiK) (8)

where τiq is the probability of node i belonging to block q,
and satisfies:

τiq∝eψ(ρq)−ψ(
∑

k ρk)
n∏
j 6=i

(
eτjq

∑
h δ(aij ,h)(ψ(ηh)−ψ(

∑
h ηh))

×
K∏
l=1

eτjl
∑

h δ(aij ,h)(ψ(µh)−ψ(
∑

h µh))
)

(9)

Then, we derive the posteriors q(Ω), q(Π), q(Θ) by opti-
mizing the lower bound (see Eq.4), respectively. According
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to variational Bayes, the optimal distribution q(Ω) is:

log q(Ω) = EZ,Π,Θ
[

log p(N,Z,Π,Θ,Ω)
]

+ const

= EZ
[

log p(Z|Ω)
]

+ log p(Ω) + const

=
K∑
q=1

(
ρ0
q − 1 +

n∑
i=1

τiq

)
logωq + const

(10)

After taking the exponential of Eq.10 and normalization, we
obtain the optimal approximation of q(Ω), i.e., a Dirichlet
distribution, which is the same form as its prior p(Ω).

q(Ω) = Dir(Ω;ρρρ), ρq = ρ0
q +

n∑
i=1

τiq (11)

In the same way, we obtain q(Π) and q(Θ), two Dirichlet
distributions, which are the same form as their priors.

q(Π) = Dir(Π;ηηη), ηh=η0
h+

n∑
i<j

K∑
q=1

τiqτjqδ(aij , h) (12)

q(Θ)=Dir(Θ;µµµ), µh=µ0
h+Eh−

n∑
i<j

K∑
q=1

τiqτjqδ(aij , h)

(13)

where Eh denotes the number of the positive, negative and
no link in the network, respectively.

Evidence approximation and model selection So far
we have derived the approximated posteriors of model
parameters and latent variables. However, the problem
of automatically determining block number K has not
been addressed, which is significant for exploring real-
world networks, in that we usually have not a prior
knowledge about K. According to Bayesian theory, an
optimal model should be the one with the largest evi-
dence. Formally, the evidence of SSBM is logP (N |K) =
log{

∑
Z

∫ ∫ ∫
P (N,Z,Π,Θ,Ω|K)dΠdΘdΩ}. Unluckly,

the computation of SSBM evidence is intractable in that for
each value of K, it involves a multiple integration over all
possible values of parameters and latent variables.

To tackle this issue, we plan to approximate the evidence
by its lower bound, as suggested by (Hofman and Wiggins
2008). Recall Eq.3, an evidence is the sum of lower bound
(Eq.4) with respect to q(·) and KL divergence (Eq.5). After
the convergence of minimizing KL divergence by variational
Bayes EM, q(·) is expected to be close to true posterior dis-
tribution, or in other words, the KL divergence is expected to
be much smaller than the lower bound, thereby the evidence
can be approximated by its lower bound with a small er-
ror, which can be seemed as the model selection criterion of
SSBM. The formula of calculating the lower bound in terms
of estimated posteriors of latent variables and parameters is
derived as follows:

L(q(·))

=
∑
Z

∫ ∫ ∫
q(Z,Π,Θ,Ω)log

{
p(N,Z,Π,Θ,Ω)

q(Z,Π,Θ,Ω)

}
dΠdΘdΩ

=EZ,Π,Θ

[
logp(N |Z,Π,Θ)

]
+EZ,Ω

[
logp(Z|Ω)

]
+EΠ

[
logp(Π)

]

+EΘ

[
logp(Θ)

]
+ EΩ

[
logp(Ω)

]
−

n∑
i

Ezi

[
logq(zi)

]
−EΠ

[
logq(Π)

]
− EΘ

[
logq(Θ)

]
−EΩ

[
logq(Ω)

]
=
∑
h

(
η0
h−ηh+

n∑
i<j

K∑
q=1

τiqτjqδ(aij , h)
)(
ψ(ηh)−ψ(

∑
h

ηh)
)

+
∑
h

(
µ0
h−µh+

n∑
i<j

K∑
q 6=l

τiqτjlδ(aij , h)
)(
ψ(µh)−ψ(

∑
h

µh)
)

+

K∑
q=1

((
ρ0
q − ρq +

n∑
i=1

τiq
)(
ψ(ρq)− ψ(

∑
q

ρq)
))

−
n∑

i=1

K∑
q=1

τiq log τiq + log

{
Γ(
∑K

q=1 ρ
0
q)
∏K

q=1 Γ(ρq)

Γ(
∑K

q=1 ρq)
∏K

q=1 Γ(ρ0
q)

}

+ log

{
Γ(
∑

h η
0
h)
∏

h Γ(ηh)

Γ(
∑

h ηh)
∏

h Γ(η0
h)

}{
Γ(
∑

h µ
0
h)
∏

h Γ(µh)

Γ(
∑

h µh)
∏

h Γ(µ0
h)

}

According to Eqs.11,12 and 13, the terms
η0
h − ηh +

∑n
i<j

∑K
q=1 τiqτiqδ(aij , h), µ0

h − µh +∑n
i<j

∑K
q 6=l τiqτjlδ(aij , h), and ρ0

q − ρq +
∑n
i=1 τiq in the

lower bound vanish. So, finally the low bound is:

L(q(·)) = log

{
Γ(
∑K
q=1 ρ

0
q)
∏K
q=1 Γ(ρq)

Γ(
∑K
q=1 ρq)

∏K
q=1 Γ(ρ0

q)

}

+ log

{
Γ(
∑
h η

0
h)
∏
h Γ(ηh)

Γ(
∑
h ηh)

∏
h Γ(η0

h)

}

+log

{
Γ(
∑
h µ

0
h)
∏
hΓ(µh)

Γ(
∑
h µh)

∏
h Γ(µ0

h)

}
−

n∑
i=1

K∑
q=1

τiq log τiq

(14)

SSL Algorithm In summary, the algorithm of SSBM
learning based on variational Bayes approach is given in Ta-
ble 1, which can automatically detect the block structure of a
given signed network. Next, we analyze its time complexity.
Updating the posterior of Z by for loop in line 07-09 takes
O(Kn2). Updating the posterior of Ω by for loop in line
10-11 takes O(Kn). Updating the posteriors of Π and Θ by
for loop in line 12-14 takes O(Kn2). Consequently, when
K is given, the time of SSL is O(IKn2), where I denotes
the iterations of repeat loop until convergence. Calculating
the lower bound LK in 16 takes O(Kn). So, when K is un-
known, the total time of SSL is O(In2(Kmax −Kmin)2).

Validation
In this section, we test the proposed SSBM and SSL toward
two main tasks: community detection and sign prediction.

Validation on community detection
In showing the superiority of SSBM and SSL, three rep-
resentative algorithms for signed community detection are
selected to compare. They are the frustration-optimization
based DM (Doreian and Mrvar 1996), the random-walk
based FEC (Yang, Cheung, and Liu 2007), and the
modularity-optimization based PSA (Traag and Bruggeman
2009), respectively. We use both synthetic networks and
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Figure 1: Performance comparisons of community detection.

Table 1: SSL Algorithm
X=SSL(N ,Kmin,Kmax)
01 Input:N,Kmin, Kmax

02 Output: Z
03 initialize L
04 forK = Kmin toKmax

05 initialize τ, µ, η, ρ;
06 repeat
07 for i = 1 toN // Update the posterior over each zi
08 for q = 1 toK
09 update τiq according to Eq. 9;
10 for q = 1 toK // Update the posterior over Ω

11 update ρq according to Eq. 11;
12 for h ∈ {1,−1, 0} // Update the posterior over Π,Θ

13 update ηh according to Eq. 12;
14 update µh according to Eq. 13;
15 until convergence
16 update LK according to Eq. 14; // Update the lower bound
17 if LK > L then L = LK ; Zp = τττ ;
18 calculate Z according to Zp;

real-world networks to test the four algorithms. Since all test
networks contain ground truth community structures, the
NMI criterion (Kuncheva and Hadjitodorov 2004) is adopted
to quantitatively measure the accuracy of community detec-
tions. Intuitively, the larger NMI, the closer to ground truth.

Synthetic signed networks We first use synthetic net-
works to test. Although the proposed SSBM is a generation
model of signed networks, for the sake of fairness, here we
choose a widely used model (Yang, Cheung, and Liu 2007)
to produce synthetic signed networks, which is defined as:

SG(c, n, k, pin, p−, p+)

where c is the number of communities, n is the number of
nodes in each community, k is the average degree of node,
pin is the probability of each node connecting other nodes
in the same community. p− and p+ regulate noise levels, de-
noting the probabilities of negative links within communities
and positive links across communities, respectively.

First, we generate two types of synthetic signed
networks: balanced networks and unbalanced net-
works. For balanced networks, the generation model is
SG(4, 300, 100, pin, 0, 0), in which pin increases from
0.1 to 1 stepping by 0.1. For unbalanced networks, two

models are used, i.e. SG(4, 300, 100, 0.8, p−, 0.2) and
SG(4, 300, 100, 0.8, 0.2, p+), in which p− and p+ gradu-
ally increase from 0 to 1 stepping by 0.1, respectively. The
two models are used to test the influence of two types of
noise on the performance of community detection. For each
model mentioned above, we generate 100 random networks.

Fig. 1(a) shows the performance of four algorithms on
balanced networks. As we can see, SSL and PSA perform
the best. For all pin, the detections provided by these two al-
gorithms are exactly the same as ground truth (i.e. NMI=1).
Compared with DM and FEC, this result implies a good fea-
ture of SSL and PSA. That is, when handling balanced net-
works, the performance of these two algorithms will be not
affected by the link density within communities.

Figs. 1(b) and 1(c) show the performance of four algo-
rithms on unbalanced networks. In Fig. 1(b), p+ is fixed and
the noisy level within communities augments as p− increas-
ing. As we see, the performance of SSL is significantly bet-
ter than other three, and the detections provided by it are ex-
actly the same as ground truth except for p− > 0.9. In Fig.
1(c), p− is fixed and the noisy level outside communities
augments as p+ increasing. In this case, SSL, FEC and PSA,
particularly the first two, performs much better than DM.
The main reason is, as the fraction of positive links across
communities (i.e. p+) increasing, the signed network being
handled gradually turn into an unsigned network, in which
community structure are dominated by link density. Com-
pared with DM that focuses on optimizing the frustration of
signs, the other three consider not only link sign but also
link density when they are partitioning a network, thereby
leading to a much better performance in this case.

From these results, one notes that SSL performs the best
when handling unbalanced networks contain different types
and different levels of noise. The rationale is two told: 1)
SSBM explicitly models such noise with parameters such as
π−1 and θ1; and 2) SSL adopts variational Bayes to estimate
the distributions rather than point values of such parameters.

Fig. 1(d) shows the model selection process of SSL, in
which y-axis denotes the minus evidence corresponding to
different K. As an example, we just show the interval of K
from 1 to 10. As we see, the evidence reaches its biggest
value when K = 4, exactly the same as the truth.

Modularity-optimization based methods such as PSA will
suffer the problem of resolution limitation. That is, such
methods tend to detect a small number of bigger commu-
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Figure 2: Resolution limitation test.

nities. Next, we will test whether the proposed Bayesian ap-
proach is able to fix this issue. In this experiment, the net-
work to be tested is similar to the one suggested by (Hofman
and Wiggins 2008), which consists of a ring of complete
cliques, as shown in Fig. 2. Each clique stands for a commu-
nity. The links within cliques are positive (see solid lines),
and those between cliques are negative (see dotted lines).
As the number of cliques in the ring (denoted by Ktrue)
increasing, it gets more and more challenge to precisely de-
tect them all. Fig.2 show the performance of SSL and PSA.
As we see, SSL performs perfectly in all cases, much better
than PSA in the cases of largerKtrue, although PSA already
takes effort to weaken the effect of resolution limitation.

Real-world signed networks We use Slovene parliamen-
tary party network (Kropivnik and Mrvar 1996), Gahuku-
Gama subtribes network (Read 1954) and monastery net-
work (Doreian and Mrvar 1996) to further validate SSL.
The three real-world networks are chosen because they
all have ground truth community structures and thereby
have been the benchmarks for testing the performance of
signed community detection (Yang, Cheung, and Liu 2007;
Doreian and Mrvar 1996). In all cases, the detections of
SSL are exactly the same as the ground truth. Note that, be-
fore applying SSL to Slovene parliamentary party network,
we first turn it into a binary network by setting zero as the
threshold of positive and negative links.

Validation on sign (or attitude) prediction
In showing the superiority of SSL for sign prediction, three
representative algorithms are selected to compare. They are
the balance theory based MOI (Chiang et al. 2011), the
supervised learning based HOC (Leskovec, Huttenlocher,
and Kleinberg 2010), and the matrix factorization based LR
(Chiang et al. 2013). Distinctly, SSL predicts link signs
based on community detection. Provided that we have a
community structure of a network, SSL predicts the sign
of an incoming link based on the following rule: the link
is positive if both end nodes fall into the same community,
otherwise it is negative. Based on the same idea, the afore-
mentioned PSA is also selected to join the comparison. The
fraction of correct prediction is used to measure the perfor-
mance of sign prediction, which is defined as Rp = Ep/Et,
where Ep is the number of links being correctly predicted
and Et is the total number of links to be predicted.

In this experiment, we follow the same way as suggested
by (Chiang et al. 2013) to test the sign prediction perfor-
mance of five algorithms, in which the learning data and
testing data are generated as follows. Let N ′ be a fully-

connected and balanced signed network, where there are
five communities that contain 100, 200, 300, 400 and 500
nodes, respectively. A subnetwork N is constructed by sam-
pling links from N ′ with a sampling rate s. N is regarded
as an observed network for training and the rest links in
N ′ − N as incoming links for prediction. s takes the val-
ues 0.005, 0.01,0.02,0.03,0.05,0.07 and 0.1, alternatively.
For each value, 100 subnetworks are sampled to calculate
the prediction accuracy on average. Fig. 3(a) shows the per-
formance of five algorithms. As we see, SSL, PSA and LR
perform very good and stable; SSL provides the best predic-
tion when s > 0.01.
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Figure 3: Performance comparisons of sign prediction.

Next, we test the five algorithms in a more challenge
way by injecting different levels of noise into the above-
generated balanced networks. In this validation, we first con-
struct a subnetwork N with a sampling rate s = 0.1, and
thereafter we change the signs of randomly selected links
within or between communities with a noise rate ε, vary-
ing from 0.1 to 0.4 with an increment 0.03. Similarly, for
each configuration we generate 100 subnetworks to calcu-
late prediction accuracy on average. Fig. 3(b) shows the per-
formance of five algorithms on such unbalanced networks.
As we see, SSL works still better, particularly for the unbal-
anced networks containing more noise (i.e. ε > 0.25). Note
that, both SSL and PSA, the two community detection based
methods, perform quite good among the five competitors
for both balanced and unbalanced networks. This is proba-
bly because these methods implicitly take more information,
provided by the global community structure in terms of both
link density and sign, into account for prediction making.

Conclusion

Community detection and sign prediction are important for
signed network analysis. Most of the existing methods are
discriminative, which are depend on either predefined opti-
mization objectives or heuristics. Distinctly, we propose a
generative Bayesian approach to addressing these tasks, in
which a signed stochastic blockmodel is proposed to char-
acterize the block structures of signed networks in terms of
both link density and sign and a variational Bayes method is
proposed for model learning. To the best of our knowledge,
this is the first effort in the literature to generalize the current
SBM to address signed networks.
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