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Abstract

In multi-label learning, an example is represented by a de-
scriptive feature associated with several labels. Simply con-
sidering labels as independent or correlated is crude; it would
be beneficial to define and exploit the causality between mul-
tiple labels. For example, an image label ‘lake’ implies the la-
bel ‘water’, but not vice versa. Since the original features are a
disorderly mixture of the properties originating from different
labels, it is intuitive to factorize these raw features to clearly
represent each individual label and its causality relationship.
Following the large-margin principle, we propose an effective
approach to discover the causal features of multiple labels,
thus revealing the causality between labels from the perspec-
tive of feature. We show theoretically that the proposed ap-
proach is a tight approximation of the empirical multi-label
classification error, and the causality revealed strengthens the
consistency of the algorithm. Extensive experimentations us-
ing synthetic and real-world data demonstrate that the pro-
posed algorithm effectively discovers label causality, gener-
ates causal features, and improves multi-label learning.

Introduction
In the conventional single-label learning scenario, an exam-
ple is associated with a single label that characterizes its
property. In many real-world applications, however, an ex-
ample will naturally have several class labels. For example,
an image of a natural scene can simultaneously be annotated
with ‘sky’, ‘mountains’, ‘trees’, ‘lakes’, and ‘water’. Multi-
label learning (Luo et al. 2013b; 2013a; Xu, Yu-Feng, and
Zhi-Hua 2013; Bi and Kwok 2014; Doppa et al. 2014) has
emerged as a new and increasingly important research topic
which has the capacity to handle such tasks.

The most straightforward solution to multi-label learning
is to decompose the problem into a series of binary classi-
fication problems, one for each label (Boutell et al. 2004).
However, this solution is limited because it neglects to take
the relationships between labels into account. Learning mul-
tiple labels simultaneously has been empirically shown to
significantly improve performance relative to independent
label learning, especially when there are insufficient training
examples for some labels. It is therefore advantageous to ex-
ploit the relationships between labels for learning, and some
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works have already used this strategy. For example, (Cai and
Hofmann 2004; Cesa-Bianchi, Gentile, and Zaniboni 2006;
Rousu et al. 2005; Hariharan et al. 2010; Bi and Kwok
2011) utilize external knowledge to derive the label rela-
tionships, such as knowledge of label hierarchies and la-
bel correlation matrices. Since these external knowledge re-
sources are often unavailable for real-world applications,
other studies (Sun, Ji, and Ye 2008; Tsoumakas et al. 2009;
Petterson and Caetano 2011) have attempted to exploit label
relationships by counting the co-occurrence of labels in the
training data.

In practice, the label relationship is asymmetric rather
than symmetric, as assumed by most of the existing multi-
label learning algorithms. For example, an image labeled
‘lake’ implies a label ‘water’, but the inverse is not true.
Only a small number of works have tried to exploit this
asymmetric label relationship. For example, in (Zhang and
Zhang 2010), a Bayesian network was used to character-
ize the dependence structure between multiple labels, and
a binary classifier was learned for each label by treating its
parental labels in the dependence structure as additional in-
put features. (Huang, Yu, and Zhou 2012) assumed that if
two labels are related, the hypothesis generated for one label
can be helpful for the other label, and implemented this idea
as a boosting approach with a hypothesis reuse mechanism.

The feature of each example in multi-label learning de-
termines the appearance of its labels, thus the feature itself
can be seen as a disorderly mixture of the properties origi-
nating from diverse labels. To comprehensively understand
the asymmetric label relationship, we define the relationship
as causality, and propose to reveal the causality from the
perspective of feature. Moreover, there is a demand for the
theoretical results to guarantee that exploiting causality is
actually beneficial for multi-label learning.

In this paper, we intend to transform the original fea-
tures of examples shared by different labels into causal fea-
tures corresponding to each individual label. Following the
large-margin principle, we propose a new algorithm termed
Large-margin Multi-label Causal Feature learning (LMCF)
to achieve this aim. The discovered causal features will re-
veal causality between labels from the perspective of feature.
Geometrically, the causality is encoded by the ‘margins’ cor-
responding to different labels on the hyperplane of causal
features. By encouraging the margins to be large while sat-
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isfying the causality constraints, the optimal causal features
will be discovered. We theoretically show that the proposed
approach yields a tight approximation to the empirical multi-
label classification error, and the exploited causality will fur-
ther strengthen the consistency of the algorithm. Lastly, we
conduct experiments on synthetic data to explicitly illustrate
the discovered causality and show, using real-world datasets,
that our approach effectively improves the performance of
multi-label learning.

Motivation and Notation
In a multi-label learning problem, we are given training data
{(xi, yi)}Ni=1, where each example xi is randomly drawn
from an input space X ⊆ RD, and the corresponding yi =
[yi1, · · · , yiL] in the label space Y contains its L possible
labels. If xi has the j-th label, yij is 1 and -1 otherwise. The
aim of multi-label learning is then to predict the L possi-
ble labels for each example from its unique feature vector.
Since the feature is a disorderly mixture of the properties
originating from different labels, it is reasonable to assume
that the causality between different labels will reflect on the
features as well. Hence, to reveal the causality from the per-
spective of feature, we propose to learn the causal features
corresponding to different labels for each example.

Instead of directly learning a function f : X → Y for
multi-label prediction, we attempt to make the prediction on
a space T ⊆ Rd, which contains the causal features corre-
sponding to different labels of each example. In particular,
for an example xi and its L labels {yij}Lj=1, we use a set
of linear transformations U = [U1, · · · , UL] to obtain the
causal features for different labels:

tij = Ujxi, ∀j ∈ [1, L]. (1)

Our prediction for the labels is parametrized as

f(tij ;w) = wT tij , ∀j ∈ [1, L], (2)

where w ∈ Rd is shared by different labels.

Large-margin Multi-label Causal Feature
Learning

Given two labels yi and yj (e.g., ‘lake’ and ‘water’), if label
yi implies label yj , we define yi → yj ; otherwise, yi ← yj .
To propagate the causality from the labels to the features, we
next analyze what properties the causal features in the new
space T should have.

For an example x, its two labels yi (e.g., ‘lake’) and yj
(e.g., ‘water’) have the causal features ti and tj , respec-
tively. Given the hyperplane w shared by different labels in
space T , the causality (yi = 1) → (yj = 1) implies that
if fi = wT ti ≥ 0, then there must exist fj = wT tj ≥ 0,
in other words, we have 0 ≤ fi ≤ fj . Geometrically, the
constraints on wT ti and wT tj require that both ti and tj
are in the positive region, and tj is farther from the hyper-
plane w than ti, as shown in Figure 1. On the other hand,
if (yi = 1) → (yj = 1) holds, (yi = −1) ← (yj = −1)
exists as well. As a result, for this contrapositive causality
relationship, both ti and tj are in the negative region, and ti
is farther from the hyperplane w than tj .

Figure 1: Geometrical illustration of the causal features.
Note that we only consider two labels in this example. The
marked data points on their corresponding margins are sup-
port vectors.

Formally, we employ a non-negative matrix Q ∈ RL×L
with diagonal elements as zeros to indicate the causality re-
lationships between labels. In particular, Qij measures the
power that label yi = 1 can infer label yj = 1. Note that
Qij is not forced to be the same with Qji, since the relation-
ship between two labels maybe asymmetric. For example,
an image label ‘lake’ implies the label ‘water’, but not vice
versa.

By considering the causality between labels, we want to
find the maximum-margin hyperplane in space T that di-
vides the points having yi = 1 from those having yi = −1
for each label yi. In particular, two hyperplanes can be se-
lected in such a way that they separate the data, with no
points between them, and then try to maximize their dis-
tance. The region bounded by the two hyperplanes is called
“the margin”. These hyperplanes can be described by the
equations

wT t− b = 1 and wT t− b = −1,

for different labels and features. If we consider the afore-
mentioned geometrical constraints from the causality rela-
tionships between labels, the hyperplanes for distinct labels
can be different. By counting the influences from other la-
bels, the hyperplanes for label yi are written as

wT ti − b = 1 +
L∑
j=1

Qji (3)

and

wT ti − b = −1−
L∑
j=1

Qij . (4)

By using geometry, maximizing the distance between these
two hyperplanes is equivalent to minimizing ‖w‖. As we
also have to prevent data points from falling into the margin
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as far as possible, we add the following constraint: for the
points corresponding to label yi

wT ti − b ≥ 1 +
L∑
j=1

Qji − ξ, for yi = 1 (5)

and

wT ti − b ≥ −1−
L∑
j=1

Qij − ξ, for yi = −1 (6)

where ξ is the non-negative slack variable for each point.
This can be rewritten as

yi(w
T ti − b) ≥ 1 + h(yi, Q, i)− ξ, (7)

where h(yi, Q, i) = cond(yi, Q(:,i), Q(i,:)), cond(∗) is the
conditional operator, and Q(:,i) and Q(i,:) are the i-th col-
umn summarization and i-th row summarization of matrix
Q, respectively. We further define Q̂ = {(Qij)γ}Li,j , where
γ is the parameter to control the weights distribution.

Following the large-margin principle, we obtain the re-
sulting objective function

min
Q,w,U

1

2
‖w‖2 +

C1

NL

N∑
i

L∑
j

ξij + C2

L∑
i

‖Ui‖2F

s.t. yij(w
TUjxi − b) ≥ 1 + h(yij , Q̂, j)− ξij ,

ξij ≥ 0, ∀i ∈ [1, N ], ∀j ∈ [1, L],

‖Q‖1 = L, Q ≥ 0,

(8)

where C1 and C2 are non-negative constants that can be de-
termined using cross validation. It is expected that by solv-
ing this problem with multi-label examples, the causality be-
tween labels can be revealed from the perspective of feature,
and the discovered causal features will be beneficial for im-
proving multi-label learning.

Optimization
We solve the optimization Problem 8 in an alternating way.
If we focus on the transformation matrix Uj corresponding
label-j, while keeping the other transformation matrices and
w and Q fixed, we obtain the following sub-problem,

min
Uj

C1

NL

N∑
i

ξij + C2‖Ui‖2F

s.t. yij(w
TUjxi − b) ≥ 1 + h(yij , Q̂, j)− ξij ,

ξij ≥ 0, ∀i ∈ [1, N ].

(9)

The most challenging part arises from the non-smooth hinge
loss function. For simplicity, we define

si = 1 + h(yij , Q̂, j)− yij(wTUjxi − b)). (10)

Here we apply the smoothing technique introduced by (Nes-
terov 2005) to approximate the hinge loss with smooth pa-
rameter σ > 0:

hingeσ =zisi −
σ

2
‖xi‖∞z2

i

Z ={z : 0 ≤ zi ≤ 1, z ∈ Rn},

where zi can be obtained by setting the gradient of this func-
tion as zero and then projecting zi in Z , i.e.,

zi = median

{
si

σ‖xi‖∞
, 0, 1

}
.

Therefore, the smoothed hinge loss is a piece-wise approxi-
mation of hinge loss according to different choices of zi,

hingeσ =


0 zi = 0,

si −
σ

2
‖xi‖∞ zi = 1,

s2
i

2σ‖xi‖∞
else,

(11)

whose gradient is calculated by

∂hingeσ
∂Uj

=


0 zi = 0,

− wxTi yij zi = 1,

−2si(wx
T
i yij)

2σ‖xi‖∞
else.

(12)

The gradient is now continuous and gradient descent type
methods can be efficiently applied to solve the objective
function and find the optimal Uj .

When we fix Q and U , the original problem is reduced to

min
w

1

2
‖w‖2 +

C1

NL

N∑
i

L∑
j

ξij

s.t. yij(w
T tij − b) ≥ 1 + h(yij , Q̂, j)− ξij ,

ξij ≥ 0, ∀i ∈ [1, N ], ∀j ∈ [1, L],

(13)

which is a SVM problem with adapted margins. We can
use the smoothing technique to smooth the loss function in
Eq. (13) as well. The gradient descent method can then be
straightforwardly applied to solve for w based on this prime
problem.

Fixing w and U , Q can be solved by the following La-
grange function:

L∑
i,j

ΩijQ
γ
ij − λ(

L∑
i,j

Qij − L), (14)

where Ω is the constant matrix originating from Eq. (8). To
obtain the optimal solution to the above sub-problem, the
derivate of Eq. (14) with respect to Qij is set to zero. We
have

Qij =

(
λ

γΩij

) 1
γ−1

. (15)

Substituting Eq. (15) into the constraint ‖Q‖1 = L, we ob-
tain:

Qij =
L(γΩij)

1
1−γ∑L

i,j(γΩij)
1

1−γ
. (16)

The diagonal elements of Q are further set as zeros to com-
plete the update.
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Statistical Property
In this section, we provide a statistical interpretation of op-
timizing Problem 8. Our multi-label learning model is char-
acterized by a distributionQ on the space of data points and
labels X × {−1, 1}L, where X ⊆ RD. We receive N train-
ing points {(xi, yi)}Ni=1 sampled i.i.d. from the distribution
Q, where yi ∈ {−1, 1}L are the ground truth label vectors.
Given these training data, we learn feature transformation
matrices {Ui}Li=1 corresponding to L labels and the weight
vector w shared by different labels. Therefore, the aim is to
seek a function f = (f1, · · · , fL) : X → RL such that the
prediction error of f given below is as small as possible:

L(f(·)) = E(x̃,ỹ)∼Q

[
L∑
i=1

I(fi(x̃), ỹi)

]
. (17)

Here I(fi(x̃), ỹi) = 1[ỹifi(x̃) ≤ 0]. We define Lk(fk(·)) =
E(x̃,ỹ)∼Q [I(fk(x̃), ỹk)] for k-th label, and represent the loss
in Eq. (8) as

φ(x) =
L∑
i=1

φk(x), (18)

where φk(x) = (1 + h(yk, Q, k)− ykfk(x))+.
In the following, we consider the prediction error of label-

k for simplicity. Let ηk(x) = P[ỹk = 1|x̃ = x]. For each x,
we seek the minimizer fk(x) of
J (ηk, fk(·)) =E [(1 + h(ỹk, Q, k)− ỹkfk(x))+|x̃ = x]

=ηk(x)(1 +Q(:,k) − fk(x))

+(1− ηk(x))(1 +Q(k,:) + fk(x)).

When fk(x) ∈ [−1−Q(k,:), 1 +Q(:,k)], we get

f∗k (x) =


1 +Q(:,k) if ηk(x) > 1/2,

−1−Q(k,:) if ηk(x) < 1/2,

0 if ηk(x) = 1/2,

(19)

and

J (ηk, f
∗
k ) = (1− |2ηk − 1|)

2 +Q(:,k) +Q(k,:)

2
. (20)

For convenience, we also introduce the notation:
J (ηk, fk) = ηkφk(fk) + (1− ηk)φk(−fk), (21)

∆J (ηk, fk) = J (ηk, fk)− J (ηk, f
∗
k ). (22)

It is then easy to obtain
∆J (ηk, fk) = J (ηk, fk)− J (ηk, f

∗
k )

= ηk(φk(fk)− φk(f∗
k )) + (1− ηk)(φk(−fk)− φ∗

k(−fk))

= ηk(1 +Q(:,k) − fk)+ + (1− ηk)(1 +Q(k,:) + fk)+

− (1− |2ηk − 1|)
2 +Q(:,k) +Q(k,:)

2
,

which implies that
∆J (ηk, 0) =1 + ηk(Q(:,k) −Q(k,:)) +Q(k,:)

− (1− |2ηk − 1|)
2 +Q(:,k) +Q(k,:)

2

= |2ηk − 1|
(
1 + cond(2ηk − 1, Q(:,k), Q(k,:))

)
≥ |2ηk − 1|.

Hence, we can obtain the following theorem to bound the
prediction error of fk(·) w.r.t. φk(·).

Theorem 1. For any measurable function fk(x), we have

Lk(fk(·))− L∗
k ≤ Ex̃∆J (ηk(x̃), fk(x̃))

=Ex̃

[
J (ηk(x̃), fk(x̃))− (1− |2ηk(x̃)− 1|)

2 +Q(:,k) +Q(k,:)

2

]
.

Proof. By definition of L(·), it is easy to verify that

Lk(fk(·))− Lk(2ηk(·)− 1) =Eηk(x)≥0.5,fk(x)<0(2ηk(x)− 1)

+Eηk(x)<0.5,fk(x)≥0(1− 2ηk(x))

≤E(2ηk(x)−1)fk(x)≤0|2ηk(x)− 1|

Since ∆J (ηk, 0) ≥ |2ηk − 1|, we have

Lk(fk(·))− L∗k ≤ E(2ηk(x̃)−1)f(x̃)≤0∆J (ηk(x̃), 0).

To complete the proof, since ∆J (ηk, fk) = J (ηk, fk) −
J (ηk, f

∗
k ), it suffices to show that J (ηk(x), 0) ≤

J (ηk(x), fk(x)) for all x such that (2ηk(x)− 1)fk(x) ≤ 0.
To see this, we consider the following three cases:

• ηk > 0.5: From Eq. (19), we have f∗k (ηk) > 0. In
addition, (2ηk − 1)fk ≤ 0 implies fk ≤ 0. Since
0 ∈ [fk, f

∗
k (ηk)] and the convexity of J (ηk, fk) w.r.t. fk,

we have J (ηk, 0) ≤ max{J (ηk, fk),J (ηk, f
∗
k (ηk))} =

J (ηk, fk.
• ηk < 0.5: In this case, we have f∗k (ηk) < 0 and fk ≥

0, which leads to 0 ∈ [f∗k (ηk), fk]. Thus, J (ηk, 0) ≤
max{J (ηk, fk),J (ηk, f

∗
k (ηk))} = J (ηk, fk).

• ηk = 0.5: Note that f∗k = 0, which implies that
J (ηk, 0) ≤ J (ηk, fk) for all fk.

Given Eq. (22), we then have ∆J (ηk, fk) = J (ηk, fk) −
(1 − |2ηk − 1|) 2+Q(:,k)+Q(k,:)

2 . This completes the proof of
the theorem.

Since Theorem 1 holds for any label, we obtain the fol-
lowing corollary.
Corollary 1. For any measurable function f =
(f1, · · · , fL), we have

L(f(·))− L∗ ≤
L∑
k=1

Ex̃[J (ηk(x̃), fk(x̃))

− (1− |2ηk(x̃)− 1|)
2 +Q(:,k) +Q(k,:)

2
].

For the N training points {(xi, yi)}Ni=1, the em-
pirical estimation of the bound in Corollary 1 is

1
NL

∑N
i=1

∑L
k=1 φk(xi), which implies that optimizing

Problem 8 is equivalent to minimizing the empirical bound
of the difference between L(f(·)) and L∗. Most impor-
tantly, the existence of the exploited causality (i.e., Q(:,k)

and Q(k,:)) in Corollary 1 will tighten this bound, and then
strengthen the consistency of the algorithm.

Experiments
In this section, we qualitatively and quantitatively evalu-
ate the proposed LMCF algorithm on synthetic datasets and
real-world datasets. The proposed algorithm is compared
with RankSVM (Elisseeff and Weston 2001), binary SVM
(BSVM) (Boutell et al. 2004), multi-label hypothesis reuse
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Figure 2: Causal features discovered by LMCF algorithm based on the synthetic data.

(MAHR) (Huang, Yu, and Zhou 2012), multi-label k-nearest
neighbors (ML-KNN) (Zhang and Zhou 2007) and ensem-
ble of classifier chains (ECC) (Read et al. 2011). The perfor-
mances are evaluated through four commonly used multi-
label criteria: Hamming loss, One error, Ranking loss and
Average precision. These criteria measure the performance
from different perspectives and their detailed formulations
can be found in (Zhou et al. 2012). For the LMCF algorithm,
we set C2 = 0.1 and σ = 1, and determine the optimal γ
and C1 on the validation sets.

Toy Example
We first conducted a toy experiment using synthetic data.
This shows our algorithm’s ability to correctly discover the
causal features corresponding to different labels. In particu-
lar, we used the following circular functions to generate the
data points of multiple labels,

S1 = sin(2πt), S2 = 2sin(2πt)cos(2πt),

S3 = cos(π2t),

which are displayed in Figure 2 (a). These three kinds of
curves (i.e, S1, S2 and S3) are regarded as three labels y1,
y2 and y3, respectively. Since S1 is a component of S2, it is
reasonable to define the label causality y2 → y1. Hence, the
data generated from S1 is labeled by [y1 = 1, y2 = −1, y3 =
−1], while those from S2 and S3 are [y1 = 1, y2 = 1, y3 =
−1] and [y1 = −1, y2 = −1, y3 = 1], respectively. For
each curve, we randomly add perturbation, and then uni-
formly sample 50 points on this perturbed curve in the in-
terval (−1, 1), which leads to a 50-dimensional feature vec-
tor. We repeat this procedure 100 times for each curve and
finally obtain a synthetic dataset composed of 300 feature
vectors with 3 labels, as shown in Figure 2 (b).

Figure 2 (c) depicts the 2-dimensional causal features dis-
covered by the proposed LMCF algorithm. We find that for
each label (e.g., y1), its corresponding features are appro-
priately clustered. The positive examples (e.g., y1 = 1) and
negative examples (e.g., y1 = −1) are separated from each
other by the large margin principle. Most importantly, it is
instructive to note that the positive features corresponding

Table 2: Average Precision for different low-dimensional
causal features on different datasets.

d/L Yahoo Enron Yeast Scene Image Corel5k

5% 0.492 0.522 0.698 0.751 0.698 0.088

10% 0.583 0.576 0.749 0.848 0.763 0.196

20% 0.654 0.604 0.768 0.862 0.812 0.222

40% 0.649 0.629 0.755 0.864 0.818 0.276

80% 0.652 0.635 0.758 0.856 0.798 0.293

to y2 = 1 are farther from the hyper-plane w than those
positive features corresponding to y1 = 1. Meanwhile, the
negative features corresponding to y2 = −1 are closer to
the hyper-plane than those negative features corresponding
to y1 = −1. This is actually a reflection of label causality
on the features. Hence the causality between labels has been
effectively propagated to casual features corresponding to
different labels by means of the “margin”.

Multi-label Classification
Six real-world datasets are used in our experiments. These
datasets are extracted from diverse applications: Yahoo for
web paper categorization, Enron for email analysis, Yeast
for gene function prediction, and Scene, Image and Corel5K
for image classification. All these datasets are obtained from
the Mulan website.

The comparison results are shown in Table 1. The pro-
posed LMCF algorithm is designed for minimizing the ham-
ming loss. Compared to other methods, LMCF achieves sta-
ble performance improvements on hamming loss in most
cases; moreover, it obtains comparable performance with
that of MAHR, which is designed for optimizing hamming
loss in a boosting approach. This reflects the strong discrim-
inative ability of LMCF derived through the large-margin
principle. It is instructive to note that LMCF achieves excel-
lent performance for the other three criteria as well, though
it does not aim to optimize these criteria.

To examine the influence of the dimensionality of causal
features, i.e., the parameter d, we conduct LMCF with dif-
ferent ratios d/L on different datasets. The performances
evaluated through hamming loss are presented in Table 2.
From this table, we find that the performance of the lower
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Table 1: Comparison of LMCF with different multi-label learning approaches on different datasets using several evaluation
criteria. ‘↑ (↓)’ indicates the larger (smaller), the better. •(◦) indicates that LMCF is significantly better (worse) than the
corresponding method.

Hamming loss ↓
Yahoo Enron Yeast Scene Image Corel5k

LMCF 0.042± 0.015 0.045± 0.004 0.188± 0.003 0.075± 0.004 0.168± 0.005 0.011± 0.001
RankSVM 0.042± 0.014 0.311± 0.367 • 0.196± 0.003 • 0.251± 0.017 • 0.339± 0.021 • 0.012± 0.001
BSVM 0.044± 0.016 • 0.056± 0.002 • 0.189± 0.003 0.098± 0.002 • 0.179± 0.006 • 0.009± 0.000 ◦
MAHR 0.039± 0.012 ◦ 0.047± 0.003 0.204± 0.004 • 0.084± 0.004 • 0.169± 0.011 • 0.008± 0.002 ◦
ML-KNN 0.043± 0.014 0.051± 0.002 • 0.196± 0.003 • 0.090± 0.003 • 0.175± 0.007 • 0.009± 0.000 ◦
ECC 0.049± 0.017 • 0.055± 0.002 • 0.208± 0.005 • 0.095± 0.004 • 0.180± 0.010 • 0.014± 0.000 •

One error ↓
Yahoo Enron Yeast Scene Image Corel5k

LMCF 0.389± 0.111 0.215± 0.035 0.169± 0.010 0.155± 0.009 0.251± 0.020 0.642± 0.012
RankSVM 0.412± 0.130 • 0.855± 0.020 • 0.224± 0.009 • 0.457± 0.065 • 0.708± 0.052 • 0.977± 0.018 •
BSVM 0.291± 0.016 ◦ 0.359± 0.033 • 0.217± 0.011 • 0.209± 0.014 • 0.291± 0.016 • 0.768± 0.009 •
MAHR 0.398± 0.122 • 0.234± 0.030 • 0.243± 0.011 • 0.217± 0.011 • 0.301± 0.024 • 0.651± 0.013 •
ML-KNN 0.471± 0.157 • 0.299± 0.031 • 0.235± 0.012 • 0.238± 0.012 • 0.325± 0.024 • 0.740± 0.011 •
ECC 0.391± 0.133 • 0.228± 0.036 • 0.180± 0.012 0.232± 0.011 • 0.300± 0.022 • 0.647± 0.012

Ranking loss ↓
Yahoo Enron Yeast Scene Image Corel5k

LMCF 0.103± 0.033 0.113± 0.008 0.129± 0.009 0.063± 0.008 0.156± 0.012 0.221± 0.007
RankSVM 0.112± 0.047 • 0.267± 0.019 • 0.172± 0.006 • 0.214± 0.039 • 0.463± 0.018 • 0.408± 0.035 •
BSVM 0.100± 0.052 0.115± 0.008 0.169± 0.005 • 0.070± 0.005 • 0.161± 0.009 • 0.141± 0.002 ◦
MAHR 0.109± 0.046 • 0.098± 0.010 ◦ 0.184± 0.005 • 0.077± 0.006 • 0.166± 0.012 • 0.310± 0.011 •
ML-KNN 0.102± 0.045 0.091± 0.008 ◦ 0.168± 0.006 • 0.083± 0.006 • 0.177± 0.013 • 0.307± 0.003 •
ECC 0.332± 0.084 • 0.246± 0.018 • 0.279± 0.011 • 0.139± 0.008 • 0.247± 0.016 • 0.601± 0.006 •

Average precision ↑
Yahoo Enron Yeast Scene Image Corel5k

LMCF 0.665± 0.082 0.662± 0.018 0.780± 0.005 0.871± 0.006 0.820± 0.005 0.296± 0.005
RankSVM 0.658± 0.103 • 0.262± 0.017 • 0.767± 0.007 • 0.698± 0.047 • 0.516± 0.011 • 0.067± 0.007 •
BSVM 0.662± 0.089 0.578± 0.019 • 0.771± 0.007 • 0.876± 0.008 0.808± 0.010 0.214± 0.003 •
MAHR 0.660± 0.098 • 0.678± 0.020 ◦ 0.749± 0.007 • 0.869± 0.006 • 0.804± 0.014 • 0.254± 0.003 •
ML-KNN 0.625± 0.117 • 0.636± 0.015 • 0.762± 0.010 • 0.857± 0.007 • 0.788± 0.012 • 0.242± 0.005 •
ECC 0.616± 0.092 • 0.637± 0.021 • 0.731± 0.007 • 0.846± 0.007 • 0.789± 0.014 • 0.227± 0.004 •

Table 3: Example related labels discovered on Enron and Corel5k datasets.

Enron Corel5k
jubilation dislike legal document water art grass

camaraderie political influence company business pool carvings sheep
friendship regulations and regulators dislike stream paintings meadow

include new text in forwarding meeting minutes government report lake sculpture tundra

dimensional causal features is limited, whereas with the in-
creased d, LMCF will discover the effective causal features
and achieve stable performance.

We examine the causality discovered on different datasets
and show the example causalities in Table 3. It can be seen
that the discovered label causality is reasonable. For exam-
ple, we dislike strict rules and regularizations, and ‘grass’ is
likely to appear with ‘sheep’.

Conclusion
In contrast to existing approaches that exploit label correla-
tions in multi-label learning, we assume that the relationship
between labels is asymmetric and define this as causality.
To obtain an in-depth comprehension of the connections be-
tween features and labels, we factorize the original features
shared by multiple labels into causal features correspond-
ing to different labels. Inspired by the large-margin princi-

ple, the causality between labels is interpreted as the margin
related to different causal features, which enables us to re-
veal the label causality from the perspective of feature. The
proposed approach is theoretically shown to be a tight ap-
proximation of the empirical multi-label classification error,
and the exploited causality is beneficial for strengthening
the consistency of the algorithm. Experiments on synthetic
datasets and real-world datasets demonstrate the effective-
ness of the proposed algorithm to discover the causality and
improve the performance of multi-label learning.
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